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ABSTRACT 

We consider the nonlinear parabolic equation 

d 

[A{.,p{u))V^{u)\ñ = 0. 

-l3{u)-div[A{.,l5{u))V^u)) = 0, 

associated with Neumann conditions on the boundary, 
when the function ^ degenerates for the extremal values of 
the variable u. We whow the existence of a weak solution 
and, using a notion of renormalized solution, we prove a 
comparison principle without any assumption on the local 
behaviour of nonlinearities involved in the problem. When 
p is supposed to be injective we derive a uniqueness result. 

1. INTRODUCTION 

We present a problem stemming from the modelization 
of a fluid flow through a porous medium, where the diffu­
sion effect takes into account the instantaneous state of the 
system. The physical context considered in the setting of 
the problem leads to the following class of parabolic de­
generate equations, 

^J^I3{u)-div{A{.,P{up<P{u)) = 0, 

|)3(M)(0) = Í3(«O). 

where, 

i) /Î is a nondecreasing function (P may be constant 
between critical values, for instance when we study a sys­
tem submitted to high pressures). 

ii) The diffusion operator degenerates when the un­
known reaches its extremal values (0 and 1 by a normal­
ization process). 

iii) When the fluid is confined within an impervious 
enclosure, the equation is completed by prescribing a Neu­
mann condition on the boundary, 

Under the general conditions described above, our 
analysis, based on a notion of renormalized solution, gen­
eralizes the results given by A. Plouvier [16], A. Plouvier 
et G. Gagneux [17] (when ^ = Id and O only degenerates 
for one extremal value). 

2. GENERAL ASSUMPTIONS 

Q denotes an open bounded set of IR^ with Lipschitz 
boundary, T a strictly positive real number, and Q = Q x 
]o, n. 

Functional spaces. The Hilbert spaces H = Û {Q) will 
be equipped with their inner scalar product: 

Vw € Û (O), Vv e L^ (Q), (w, v) = JQ uvdx. 

\fu E H^ (Ü), Vv e if' (a) , {{u, v))y = {u, v) + ({u, v)), 

where we define, 

VM € // ' (Q), Vv G H^ (Q), ((w, v)) = J^ ^u. Vv^Jc. 

The duality bracket (•,-)v'v will be briefly denoted 

Identifying H to its dual space leads to the classical 
embeddings, 

V -^ H -^Y 

Nonlinearities. We consider a function /3 satisfying, 

{HI) {p e W''°̂  (]0, 1[), p (0) = 0, p' > 0 £̂  - a.e. in 
]0, i [} . 

As mentioned in the introduction, the function p may 
not be injective. 
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tion. 
For (/, 7) in (1, ..., AÔ , a^ is a Caratheodory type func-

a„ : Q x I R + ^ I R 

{x,X)\-^ aij{x,X) 

and we assume that. 

{H2)\ 

i) 3/ > 0, |Ki,.(^^„,.) ^ / for any {Uj) in (l,...,ivf, 

ii)3a>QyXeíR\\f^eJRj^,aij{.,X)^-^>a\^f£^-a.e.inQ., 

iiï) for any (¿,7) in (1,..., A'̂ ) , and for almost every x in Q., the 

function A —> a^j [x, X) is Lipschitz continuous. 

Furthermore, O satisfies, 

[o O G C' ([o, 1]), 0(0) = O'(0) = 0'(1) = 0 and Vr G ]0, 1[, 0'(r) > 0. 
(/73)J //) O-̂  e C°'̂  ([0,0(1)]), with e e ]0,1[, 

1/.̂ . O'̂  is ^ - Holder continuous on [0,O(l)]. 

Initial datum: 

(HO) {wo G L°° (Q), 0 < Wo ^ 1' £^ - «•̂ - ^« ^ } -

3. EXISTENCE OF A WEAK SOLUTION 

A viscosity method, associated with compactness and 
monotonicity properties (see A. Plouvier [16], M. Artola 
[1] in the case where <I> = Id) leads to the following exist­
ence result: 

Proposition. Under assumptions (HO), ..., (//3), there 
exists at least one function u satisfying, 

• Regularity properties: 

(R) 

ueT(g), 0< w< 1, £^^^ -a.e. in g, 

<D(M) G Û (O, T; V). P{u)(0) = l3{uo ), £^ - a.e. on Q, 

. ^P(u) e l}{0, T; V'\ Urn I3(u)(t) = ¡ÍIUQ ) in Ú (Q), 

• Variational formulation: 

(y> 
£} -a.e.in]OJl VveV, 

à' 
P{u\v\ + J ^{A( . , j8(w))VO(w)} • Vvdx = 0. 

Such a function will be called a weak solution of (iP). 

Remark. The property (R) justifies the existence of a 
trace P (u) (0) because the solution p (u) is continuous on 
[0, 7] with values in V\ and scalar continuous with values 
in Û (O), according to J.L. Lions and E. Magenes [14] vol. 
1, p. 297. 

Proof of the proposition. The proof will be performed 
in three steps: 

Step 1: The regularized problem (iPg): 

We consider the problem (iP̂ ) obtained by changing p 
-> p8 and O -^ <I>8 in the initial problem (9) according to 
the following definition, 

p£ = P + 8/J and <I>8 = O + zld. 

By setting v̂  = P8 (u^ for 8 e ]0, 1], we can refer to 
A. Plouvier [16], in order to insure the existence and 
uniqueness of a function M̂  satisfying, 

u^ e U° (Q), 0 < w, < 1, £̂ ^̂  - a.e. in Q, 

p,{u,)eÛ{0,T;V)and-l3,{u,)eÛ{0,T;r) 

and which verifies, £̂  - a.e. in ]0, T[ the variational equa­
tion, 

Vv € V,(^P,{u,),v\ + 4{4,)8.(«e))V3>.(«.)}• V v ^ = 0 

associated with the initial condition, 

P, (u,) (0) = p, (r/,), £^ - a.e. on Q. 

Step 2: A priori estimates. By choosing v = ŵ  in the 
previous variational formulation, and by a F. Mignot and 
A. Bamberger's lemma (see appendix) we get the follow­
ing a priori estimates: 

O (Wg) is bounded in the space Û (0, T; V), 

^£u^ is bounded in the space L^ (0, T; V), 

d 
à 

Psi^e) is bounded in the space Û (0, T; V). 

Step 3: Passing to the limit when 8 —> 0^: 

1. Convergence of # (\)^): 

There exist x, € L̂  (0, T; V) and a subsequence (still 
denoted by O (u^)) such that, 

<ï> (u,) -^ X, in Û (0, T; V). 

A classical result on closed convex sets insures that the 
limit %, satisfies the inequalities 0 < Xi < <ï> (1), £^^^ - a.e. 
in Q. As ^"^ is continuous, the function u = 0~' (Xi) is £̂ ^̂  
- measurable and 0 < u < I £^^^ - a.e. in Q. We will keep 
in mind that, 

O (u) e Û (0, T; V), O (u^) -> O (u) in Û (0, T; V). 
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2. Convergence of P̂  (u^): 

We first note that the function r -^ Pe o <I>"̂  (r) is 9-
Holder continuous, and we define the space: 

:}{^lveÛ"(0,T;W'-^"{Çl)),^EÛ{0,T;V') 

By taking into account the E. Gagliardo's characteriza­
tion of Sobolev spaces (cf. J.L. Lions and E. Magenes [14], 
t. 1, p. 108), and the previous a priori estimates, we ob­
serve that, 

Pe (Wg) is bounded in the space !H. 

Following J.L. Lions (cf. [13] p. 142), it comes that the 
imbedding of !H in L̂ ®̂ (Q) is compact (as the imbedding 
of WQ'^^Q (Q) compact). Hence, there exists %2 ^^ ^ satis­
fying p£ (Wg) -^ X2 weakly in i^ and strongly in Û'^ (Q). 
A Minty type monotonicity argument (cf. [13] p. 157) 
easily leads to %2 = P M- E will keep in mind that, 

^PeM-^^PM in Û{0,T;V') andp,{u^)^ p{u) £^*^ -a.e. in Q. 
at at 

Conclusion 

The above analysis shows that u satisfies the regularity 
property (R); furthermore, passing to the limit when £ tends 
towards 0"̂ , we immediately deduce the variational equal­
ity (V). 

4. RENORMALIZED FORMULATION OF THE 
PROBLEM 

Under restrictive assumptions on the functions involved 
in the equation (the mapping r i->||-|| ||A (.,p o <í>~' (r))|| is 
a-Holder continuous with a > 1/2), a classical method 
developed for the treatment of first order nonlinear hyper­
bolic problems (see for instance J. Carrillo [8], G. Cag­
neux et M. Madaune-Tort [12] p. 115-120, A. Plouvier 
[16]), leads to a comparison principle for weak solutions 
of (iP). 

The main goal of this paper is to perform such a result 
without any condition on the local behaviour of nonlinear 
terms. In order to overcome this difficulty, we will check, 
following A. Plouvier et G. Cagneux [17] (according to 
the ideas presented by D. Blanchard, H. Redwane [6], F. 
Murât [15], L. Boccardo, D. Ciachetti, J.L Diaz, F. Murat 
[7], R.J. Di Perna et P.L. Lions [11]) that any weak solu­
tion is automatically a renormalized one (with a suitable 
definition), and working with this new formulation, we 
will derive the expected comparison result. 

Let us consider for n e /iV*, the truncation functions S,^ 
and Z,j defined by. 

S„ (r) = min {(2nr - If , 1} and E„ (r) = min {(-2nr 
+ 2n- ly , 1} 

We can give the following definition: 

Definition. We say that u is a renormalized solution of 
(T) if the conditions below are fulfilled, 

• Regularity properties: 

(R). 

ueT (Q), 0 < M < 1, f̂ ""̂  - a.e. in Q, 

O(M)eL-(0,r;y), 

P{U){Q) = P{UQ)£^ -a.e.onQ., 

• Variational equality: 

^íi{u)eÚ{OJ;V'), 

lim^ P{uit) = /3(i<o ) in ¿' (Í2), 

[V) 

for any r¡ G \0À\ 
2 

and for any T^ in W''°°(]0,l[), 

constant on the sets [O, rj] and [l - 7], l], 

for any w e r{Ù)nH\Q.) and £^ -a.e. in ]0,T[, 

Parabolic-hyperbolic adjusting conditions: 

{LQ)1 Urn Í {ALl3{u))V^u)]'VS^{u)dxdt = 0 

Remark. In a first step, the definition of a renormal­
ized solution only takes into account the parabolicity area 
of the phenomenon, namely the measurable set u~^ ([l/2n, 
1 - l/2n]) (we recall that the diffusion operator only de­
generates for the extremal values 0 and 1). In a second step 
we reach the hyperbolicity area w~' ({0, 1}) by means of 
the adjusting conditions (LQ) and (Lj). 

We give now the main theorem of this section: 

Theorem, u is a renormalized solution of the problem 
((P) if and only if u is a weak solution of the problem (iP). 

In other words, the weak and renormalized formulation 
are equivalent. 

Proof of the theorem: 

First step. Let us consider a weak solution of ((P) and 
derive the properties appearing in the above definition. 

Variational equality (F*). For 1^ 2I let us 

choose a generic function T^ in W " (]0, T[), constant on 
[0, r|] and [1 - r|, 1]. We start proving that, 

£' - a.e. in ]0, 71, T^ (u) e H^ (O) n L^ (Q). 

One can easily check that, for £̂  - almost every t in ]0, 
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T^(u)=T^o 0-i(iniii{max<I)(77), ^(w)}, ^(1-r])}), 
£^-a.e. in Q 

where ^'^ is the restriction of <I>~̂  to the set [<ï> (r|), <!> (1 
- r|)]. As O' is bounded froni_below on [T|^1 - TJ] by a 
strictly positive real number, ^'^ and T^o ^'^ are shown 
to be Lipschitz continuous on [# (Tj), ^ (1 - r|)]. Conse­
quently, G. Stampacchia's lemma gives, 

£̂  - a.e. in ]0, 71, T^ (u) e H^ (Q) 

and hence the result. 

Let w be an element of H^ (O) n L^ (Q). 

A classical result in the Banach algebra H^ (Q) n L°°(Q) 
(see H. Brezis [5]) insures that, 

T {u)weH\a)nr{a), 

and\/ÍE{l,...,N}, 
d[T^{u)w) 

dX; 
•TJU) 

dw dT^{u) . 
dX: 

- +w 
dX: 

inL-{Q). 

By taking v = 7V| (M) w in the variational formulation 
(V), the previous rule immediately gives (V*). 

Parabolic hyperbolic adjusting relations. The above 
analysis allows us to choose v = 5^ (w) in the variational 
equality (V); after integrating on ]0, r[, we get, 

\{A{.,p{u))V^{u)]VSMdxdt = --\l^P{u),S,{u))dt. 

As the function r -^ 5^ (r) is increasing and continu­
ous, the extension of A. Bamberger and F. Mignot's lem­
ma (see appendix) gives the following identity: 

\dx. 

0 ^ ' \p{um 

where y denotes any quasi-inverse of p. 

By dominated convergence, we easily check that. 

li^\[~^P{u)AAu))dt = -\jyP{u\T)-m{^))dx. 

Furthermore, the mass conservation law, described by 
considering v = 1^ in the variational formulation (V) yields, 

J^-.. (p {u) (7) - P {u) (0)) dx = 0. 

The latter identity leads to (LQ); the proof of (L,) is 
analogous to the previous one (by taking v = X̂^ (w) in the 
weak formulation). 

Second step. If M is a renormalized solution of (P) we 
can choose any test-function of the form u e H^ (Q) n U° 
(Q) because u = I (u) u (where u ^ I (u) denotes the 
constant function equal to 1, which satisfies the condition 
specified in (V*)). We immediately deduce that w is a weak 
solution of (iP). 

5. COMPARISON PRINCIPLE 

We are now able to state a comparison principle for 
weak-renormalized solutions of the problem. 

Theorem. Let u and û be solutions of (iP) associated 
with the initial data UQ and ÛQ respectively. Then, for î}-
almost every t in ]0, T{, the following inequality holds: 

Proof of the theorem. For £ e ]0, 1], let us define the 
function p¿. 

Vr G [0,1], p^^r) = mm 
V^ J 

For n e W*, we consider the truncated function O,̂  
defined by, 

Vr € [0, 1], 0„ (r) = min {max {O (l/2n), # (r)}, <D 
(1 - l/2n)}, 

and we denote, for the sake of simplicity, T^ = »S„E„. 

For £^- almost every (t, s) fixed in ]0, T[^, let us choose 
in the Banach algebra LT (Q) n H^ (Q), the test-function 
V = r,̂  (u) /?£ (O,̂  (u) - 0„ (Û)) in the weak formulation 
associated with u, and v = T,̂  (û) p^ (0„ (u) - <E>,̂  (û)) in the 
weak formulation associated with û. In other words, we 
take T^ = 7,̂  and w = p^ (<ï>,̂  (u) - O^ (û)) in the renormal­
ized formulation of (iP). 

We introduce the sequence. 

,̂(M) = ^ l ^ J p / ^ 

where ^ e iZ) (]0, 71), ^ > 0, and pb e (D (]0, 71), p^ > 0, 
supp (p8) c ] -Ô, ô[, and ¡¡¡^ pbdt = 1. 

We suppose that ô is sufficiently small, so that ĝ e iZ) 
GO, Tfl 

If we consider the difference between the variational 
equality associated with u and û we get, after integrating 
on ]0, 7I^ 



Patrick Urruty Rev.R.Acad.Cienc.Exact.Fís.Nat. (Esp), 1999; 93 261 

For the sake of brevity we will write, 

Our goal is to study each term of the above identity, 
according to the following strategy: 

Step 1: when 8 goes to 0^, n being fixed in W*. 

Step 2: when n goes to + <̂ . 

Conclusion. We deduce the comparison property by 
passing to the limit when 8 goes to 0"̂  in the inequality 
obtained after the previous steps. 

Convergence of /¿^ : 

We have, 

4 =¡¡(^J^I3iu),T„iu)Pe{^n{u)fj^S dtds. 

We note, for £̂ ^̂  - almost every {s, x) fixed in Q, that 
the function 

f:r^(r„o(ï>-')(,)p^[(o„o4>->)(r)-$„(â)],rG[0,l], 

is Lipschitz continuous on [0, 1] (because 7,̂  and <!>„ are 

constant on 0, 1 
In, and -¿•' whereas O ' is Lip­

schitz continuous on the compact set In, *̂i'-¿ 
The extension of F. Mignot and A. Bamberger's lemma 
(see appendix, corollary) leads to the equality, for £̂  -
almost every s in ]0, T[, 

£'^|/i(»).7;,(»fc(<i.„(»)-*.(S))^jrf< = 

where y denotes any quasi-inverse of (3. 

The deminated convergence theorem gives. 

Urn limjl=- J -^¡{I3{u)-P{ü)y\dxdtds. 
^~^ ]o,r[^xo 

Convergence of / ^ : 

We prove in the same way the convergence of /^ 
towards the real number, 

]o,r[^xQ 

= J ^i[p{u)-p{û)fyxdtds. 

Convergence of P : 

We have, 

ll, j{A(JC, p{u))V(¡>{u)\VT^ (u) 'wdx^g dtds 
]0,T[^xQ 

where w denotes the function p^ (O^ (u) - <î>„ (û)). 

As T^ (u) = S„ (u) X„ (w), the usual calculus rule in the 
Banach algebra L^ (Ç1) n H^ (O) gives, £^^' - a.e. in Q, 

Vr„ {U) = \ {U) V^n M + \ (") V^n (")• 

Consequently, 

^«' = J]O,^[2,„{^(^-)8(M))V<1>(«)}VI„(«)-5„(M)W dx ^s dtds 

We will note, for the sake of brevity, 

/3 = / 3 * + / 3 " 
"'07 '•en ^'m 

Convergence of /¿* : 

Step 1: (£ -^ 0 )̂ 

As 0 < /?£ < 1 and as the sequence (pg )̂  simply con­
verges towards the function sg^, the dominated conver­
gence theorem yields. 

Urn ll\ = C = 

Step 2: (n -^ +oo) 

We note that the function r -^ (L^^ o ^~') (r) is Lip­
schitz continuous on [0, <I> (1)] (because D,̂  is constant on 
[0, 1 - l/n] and [1 - l/2n, 1] , whereas <¿~' is Lipschitz 
continuous on the compact set [# (1 - l/n), <ï> (1 - l/2n)]). 
Following G. Stampacchia gives £^^' - a.e. in Q, 

V I , {u) = V [(I . o <ï>-') (c^ {u))] 
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= (E, o O-'r (O (u)), VO (u). 

By noting that (X^ o <ï>~̂ ) is decreasing on [0, <ï> (1)], 
the coercivity assumption (H2) ii) gives, 

{A (., P («)) VO (M)} VX„ {U) < 0, £̂ »̂ - a.e. in Q. 

Therefore we find, 

T]MJQ{A{X,P{UP^ÍUP1M dxdtds< /^ < 0, 

and we conclude by means of (L,) that, 

Urn 4*=0. 

An analogous proof (wich uses the monotonicity of r 
-> (5„ o 0~') (r) and the identity (LQ)), leads to. 

lim Urn I^ =0. 

Ii = 

Finally, we conclude that. 

lim lim I^^ =0. 

Convergence of /l^ : 

We show in the same way that. 

lim lim I^ = 0. 

Convergence of / ^ : 

We have, 

where w denotes the function p^ (0„ (u) - <!)„ (M)). 

We compute, following G. Stampacchia, 

£"«-a.e.m]0,n^xQ,Vv. = iv(4>„(«)-<I.„(á)).X[„^^„„_^_(.)^^,. 

Let us consider the £^^^ -measurable sets, 

KE = [0 < ^„ (M) - #„ (M) < e] n [w < 1 - l/2n] 
n [w > l/2n] 

7£ = [0 < #,, (w) - <D,̂  (Û) < £] n ([M > 1 - l/ln] u [û 
< llln]) 

- J {?;, (M)A{X, Í3(W))VO(M) - 7,, (M)A(X, J3(M))VO(M)} • V(i>„ (M) - i>„ {ûfj^sdxdtds 

+ i j ^ {r,(i/)A(x,i3(«))-r„(w)A(x,̂ («))}vci)W.v(cï),(«)-ci>„(iî̂ ^<5, dxdtds. 

We will write, for the sake of simplicity, 

T5 T 5* r5** , 5 * * * 

Convergence of /^* : 

We define, for £̂ "̂ ^ - almost every (t, s, x) in ]0, 
71^ X O the real number, 

Ut,s,x) = ^{T„{u)A{x,piu))m{u)-

and write that, 

: f^(t,s,r) dxdtds. 

The definition of /^ associated with the coercivity con­
dition {HI) ii) implies that 

/8„ > 0, £̂ -̂ 2 - a.e. in Jt. 

Finally we conclude that, 

/->o. 

Convergence of /̂ ** : 

We first show the identity, 

i^e = [0 < O (w) - O (w) < e] n [l/2« < w < 1 - llln] 
n [l/2n < M < 1 - l/2n]. 

Indeed, if {t, s, x) is given in ]0, 71^ x Í1, we note that: 

The inequalities O^ {û) {s, x) < 0„ (u) (í, x) and u {t, 
x) < I - llln automatically imply that û {s, x) < I - llln. 

The inequalities <^^ (û) (s, x) < 0„ (u) (t, x) and û (s, 
x) > llln automatically imply that u (t, x) > llln. 

The expected result then follows. 

Now, we can remark that, 

V<ï>„ (u) = V ^ (u) et V^„ (w) =V<ï> {ü\ 
£̂ •̂ 2 - a.e. in Kz, 

and introduce the decomposition. and consequently. 
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5** _ 

i J [T„ (M)A(JC, J3(M))}V(O(M) - ^(M)) • V(<I)(M) - 0(M))|^ dxdtds. 

According to the coercivity condition (H2) ii) we con­
clude that. 

/¿, >0. 

Convergence of /^ 

Therefore, by dominated convergence (for n fixed in 
/AT*) we get, 

lim^ Nc^ JI V#(M)| • I V(0„ (w) - 0„ {û))^^Qdxdtds = 0, 

so that, 

limjr=0. 

As mentioned before, 

isTe = [0 < <I> (w) - O (M) < E] n [l/2n < w < 1 - llln] 
n [l/2n < w < 1 - l/2n]. 

Then we can write. 

If II.II2 denotes the matrix norm subordinate to the eu-
clidian norm of IR^, we can estimate, £^'^^ - almost every­
where in K^, 

For any (/, j) given in (1, ..., Nf, the function, 

r-.(7;oO-')(r).fl,^(x,(j3oO-')(r)), 

is Lipschitz continuous on [<I> (l/2«), O (1 - l/2n)], uni­
formly with respect to x (c„ will denote the associated 
Lipschitz constant). 

Moreover we know that in the space íM'yy (IR), the norm 
II.II2 introduced above is dominated by the matrix euclidian 
norm (see for instance P.G. Ciarlet [9], p. 20); we deduce 
that, - a.e. in Ke, 

||{r„ (u) A (X, P m - r„ (Û) A (X, p (Û))}\\, < Ne, 
1^ (u) - o (Û)l 

and we easily estimate. 

We successively deduce, 

Concerning the right-hand side of the inequality, we 
note that. 

f̂ ""̂  -a.e. in]0,T[^xajimXf^ =0. 

lim inf/£, > Urn inf/^* +lim inf/£!* + Urn 7̂ *̂* > 0 
e^O"^ e^O^ e-̂ O"" £̂ 0"̂  

and conclude that. 

lim inf lim infli, \>0. 
n^+oo V e—>0'̂  

CONCLUSION 

By passing to the lower limit in the initial equality. 

/I __/2 _j_/3 _j4 j5 Q 

the previous analysis gives. 

I^ -f < 0, 

that is. 

J (^+%V(") - Pi^)y^^^^^^ ̂  0-
]o,T[^xQ 

By using a well-known argument based on the notion 
of Lebesgue's point, we can pass to the limit in the above 
inequality when ô goes to 0^, and write, 

V(̂ !Z) ^ {]0, r[), - J ^\t){l3{u) - l3{Û)fdxdt < 0 
]o,r[xQ 

In other words, we have 

^ J [piu) - p{û)fdx <OinŒ)' (]0, T[). 
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Let us consider the real measurable positive function z 
defined by, 

zit) = J [Piu) - l3{Û)fdxfor t E [0, T]. 

fly 
As _ < 0 in iZ)' (]0, 71), we state, according to L. 

dt 
dz 

Schwartz [18], p. 29 et p. 53-54, that - r is a negative 

measure and z is almost everywhere equal to a bounded 
function z which decreases on ]0, T{. The Ü (Q)-continu-
ity of Í -^ P {u) (t) at 0 finally implies that z (t) < z (0) 
for any í in ]0, T[. This achieves the proof of the compar­
ison principle. 

6. A UNIQUENESS RESULT 

The comparison principle described in the preceding 
section easily leads to the following theorem: 

Theorem. Let u and û be solutions of (iP) associated 
with the same initial datum UQ. Then we have the identity, 

p (w) = p (w), l^-"^ - a.e. in Q. 

As a particular case, when p is supposed to be injec-
tive, the problem {T) admits a unique weak solution. 

Remark. When P is constant on a subdomain of ]0, 1[, 
and the initial datum is correctly chosen, we easily prove 
that the uniqueness result does not hold. 

APPENDIX: EXTENSION OF F. MIGNOT AND A. 
BAMBERGER'S LEMMA 

By using a double convexity inequality, A. Bamberger 
(who followed an idea of F. Mignot) performed an «inte­
gration by parts» formula for nonlinear terms like 

—p{u\^{u)), where P is a stricly monotone continuous 

function (see also A. Bamberger [3], [4], S.N. Antontsev 
and J.L Diaz [2], J.L Diaz and F. De Thelin [10], G. Gag-
neux et M. Madaune-Tort [12] p. 31). Here we give (with­
out proof) an extension of the result when P is not sup­
posed to be injective. 

For the sake of brevity, we will say that F satisfies (//) 
if the following condition is fulfilled. 

( / /HF:IR->IR 
is increasing continuous) 

and onto. i 
Note that the technical condition F (IR) = IR is not 

restrictive. Indeed, we often consider a function F defined 

on a bounded interval, and the condition is then immedi­
ately satisfied for a suitable extrapolation F. 

1. Notion of quasi-inverse 

Let P : IR ^ IR be a function satisfying (//). 

Definition. We will say that y is a quasi-inverse of P 
if y is a function whose graph is contained in the graph of 
p-'. 

Properties. We easily show that, 

i) Any quasi-inverse y of p is strictly increasing on 
IR and then continuous up to an enumerable set. 

ii) Two quasi-inverses y and Y ^^e equal up to an 
enumerable set. 

2. F. Mignot and A. Bamberger's lemma 

We first set the following general assumptions: 

i) Let Q = Q, _ ]0, T[, where Q. is an open bounded 
set of IR^ and T be a strictly positive real number. We 
consider a Hilbert space V wich gives rise to the classical 
scheme, 

V ^ Û (Í2) -^ V 

ii) Let P and O be functions satisfying (H). 

iii) We consider a function u defined almost every­
where in 2 , such that 

p (u) e Û ( 0 , 

^P{u)L\OJ-X\ 

^U)EI}{OJ\V). 

Then the following integration rule holds, 

T 1^ . T {^{u){t,x) 1 

for ^ e C' ([0, 71) such that ^ (0) = ^ (D = 0, and where 
y denotes any quasi-inverse of p. 

Consequently we can write in Ü (]0, T\) (where the 
derivative is taken in the sense of distributions): 

^P{u)Mu)) = ^ \ \ \^{Y{r))dr\dx. 
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To end up this work, let us mention the following 
corollary (often used in the paper), wich does not require 
a monotonicity condition on the function involved in the 
duality brackets. 

3. Corollary 

We need the assumptions described in section 2), in 
the particular case where V = H^ (Q), and we consider a 
general function F in W'" ($), without restriction with 
respect to monotonicity. 

Then the following integration rule holds, 

J/^^(^),(FoO)(^.)W^^ ¡{Fo<^){r{r))dr[dxdt, 

for i,e C^ ([0, 7]) such that ^ (0) = ^ (7) = 0, and where 
Y denotes any quasi-inverse of (3. 

Consequently we can write in L̂  (]0, 71) (where the 
derivative is taken in the sense of distributions): 

\dt' 

(Pi^){t,x) 

P{uUFo^){u)) = j - n ¡{Fo^){y{r))dr\dx. 
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