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ABSTRACT

We consider the nonlinear parabolic equation
d :
—gﬁ(u) - dtv(A(., ,B(u))le'(u)) =0,

associated with Neumann conditions on the boundary,
when the function ® degenerates for the extremal values of
the variable u. We whow the existence of a weak solution
and, using a notion of renormalized solution, we prove a
comparison principle without any assumption on the local
behaviour of nonlinearities involved in the problem. When
B is supposed to be injective we derive a uniqueness result.

1. INTRODUCTION

We present a problem stemming from the modelization
of a fluid flow through a porous medium, where the diffu-
sion effect takes into account the instantaneous state of the
system. The physical context considered in the setting of
the problem leads to the following class of parabolic de-
generate equations,

2 Blu)- i A BV () =0,
Bu)(0)= B(us )

()

where,

i) p is a nondecreasing function (} may be constant
between critical values, for instance when we study a sys-
tem submitted to high pressures).

ii) The diffusion operator degenerates when the un-
known reaches its extremal values (0 and 1 by a normal-
ization process).

iii) When the fluid is confined within an impervious
enclosure, the equation is completed by prescribing a Neu-
mann condition on the boundary,

(A(-. B(w))V(w))-7i =0.
Under the general conditions described above, our
analysis, based on a notion of renormalized solution, gen-
eralizes the results given by A. Plouvier [16], A. Plouvier

et G. Gagneux [17] (when 3 = Id and ® only degenerates
for one extremal value).

2. GENERAL ASSUMPTIONS

Q denotes an open bounded set of IR” with Lipschitz
boundary, T a strictly positive real number, and Q = Q X

10, TT.

Functional spaces. The Hilbert spaces H = L* (Q) will
be equipped with their inner scalar product:

Vue L (Q), Vve L’ (Q), (u v) = JQ uvdx.
Vue H' (Q),Vve H (Q), (i, v), = v) + (1w v)),
where we define,
VYue H' (Q), Vv e H (Q), (u, v) = fﬂ Vu. Vvdx.

The duality bracket <"‘>V’,V will be briefly denoted

)

Identifying H to its dual space leads to the classical
embeddings,

Vo>H->V
Nonlinearities. We consider a function f3 satisfying,

(H) {pe W= (0, 1), P ©0)=0,p 20£ —ae. in
10, I}

As mentioned in the introduction, the function § may
not be injective.
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For (i, j) in (1, ..., N)?, a; is a Caratheodory type func-
tion,

a; :QxIR" 5> IR
(x,),)l—)aij(x,/l)

and we assume that,

D) 31>0, |ay], (

N 2
- (nw) <Iforany (i,j) in (1,...,N)",

(H2)yiD) 30> 0,VAcIR*,\VE€ Ry, a;(,A)E-&2 a|§]2£” —ae inQ,
iii) for any (i, j) in (1,...,N)2, and for almost every x in Q, the

function A — a;;(x,A) is Lipschitz continuous.

Furthermore, ® satisfies,

i) @ e C'([0,1]),®(0) = @’(0) = @’(1) =0 and Vr €]0,1[,@’(r) > 0.
(#3)i) @' € C*([0,@(1)]), with 6 €]0.1],

i.e. @' is § — Holder continuous on [0,®(1)].

Initial datum:

(HO) {uye L™ (Q), 0<uy <1, £¥ — ae. on Q}.

3. EXISTENCE OF A WEAK SOLUTION

A viscosity method, associated with compactness and
monotonicity properties (see A. Plouvier [16], M. Artola
[1] in the case where @ = Id) leads to the following exist-
ence result:

Proposition. Under assumptions (HO), ..., (H3), there
exists at least one function u satisfying,

* Regularity properties:
uel™(Q), 0<u<l, £M'—aeinQ,

(R)y®(u) € L*(0,T;V). Bu)0)=B(uy). £" —ace. onQ,
'37 B) e BO.T5V"). lim Bu)e) = Bluo) in £'(Q),

* Variational formulation:
£ —ae. in lo.7[, VveV,
V) <% ﬁ(u),v> +J. Q{A(‘,ﬁ(u))Vd)(u)} -Vvdx = 0.

Such a function will be called a weak solution of (P).

Remark. The property (R) justifies the existence of a
trace B (1) (0) because the solution B () is continuous on
[0, T] with values in V', and scalar continuous with values
in L* (Q), according to J.L. Lions and E. Magenes [14] vol.
1, p. 297.

Proof of the proposition. The proof will be performed
in three steps:

Step 1: The regularized problem (?,):
We consider the problem (2,) obtained by changing f
— Pe and ® — Pe in the initial problem (P) according to
the following definition,
Be = P + eld and ®e = ® + eld.
By setting v, = Be (u,) for € € 10, 1], we can refer to
A. Plouvier [16], in order to insure the existence and

uniqueness of a function u, satisfying,

u, e L7 (Q),0<u, <1, £ —ae. in Q,
Be(u. )€ L*(0,T;V) and gt-ﬂg (u,)e L*(0,T;V")

and which verifies, £/ — a.e. in 10, T[ the variational equa-
tion,

Vve V,<%/3£(u€ ), v> +JQ{A(.,ﬁ8(ug ))V‘I’e(“e )} -Vvdx=0

associated with the initial condition,

B. () (0) = B, (u,), £" — a.e. on Q.

Step 2: A priori estimates. By choosing v = u, in the
previous variational formulation, and by a F. Mignot and

A. Bamberger’s lemma (see appendix) we get the follow-
ing a priori estimates:

® (u,) is bounded in the space [? O, T; V),
/€, is bounded in the space L’ o, T, V),

0
5 B¢ (u,) is bounded in the space L? (0, T; V).

Step 3: Passing to the limit when £ — 0"
1. Convergence of ® (v,):

There exist ), € L[>, T; V) and a subsequence (still
denoted by ® (u,)) such that,

® (u) > x, in L* 0, T; V).

A classical result on closed convex sets insures that the
limit 7, satisfies the inequalities 0 <, < ® (1), £¥*/ — a.e.
in Q. As @' is continuous, the function u = &' (y,) is £V
— measurable and 0 < u < 1 £¥/ — g.e. in Q. We will keep
in mind that,

®@we L0, T, V), ® ) > ®®win L> (0, T; V).
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2. Convergence of B, (u.):

We first note that the function r — PBe o @' () is 6-
Holder continuous, and we define the space:

H = {v e I'%(0,T; W™ 9(9)),%:— e I*(0, T;V')}.

By taking into account the E. Gagliardo’s characteriza-
tion of Sobolev spaces (cf. J.L. Lions and E. Magenes [14],
t. 1, p. 108), and the previous a priori estimates, we ob-
serve that,

B¢ () is bounded in the space #.

Following J.L. Lions (c¢f. [13] p. 142), it comes that the
imbedding of # in L*® (Q) is compact (as the imbedding
of WO¥0 (Q) compact). Hence, there exists , in # satis-
fying Pe (u,) — Y, weakly in # and strongly in L*® (Q).
A Minty type monotonicity argument (cf. [13] p. 157)
easily leads to x, = B («). E will keep in mind that,

%ﬁe (ug)— %ﬁ(u) in 2(0,T;V") and B, (u,) > B(u) £"*' ~ae.in Q.

Conclusion

The above analysis shows that u satisfies the regularity
property (R); furthermore, passing to the limit when € tends
towards 0%, we immediately deduce the variational equal-

ity (V).

4. RENORMALIZED FORMULATION OF THE
PROBLEM

Under restrictive assumptions on the functions involved
in the equation (the mapping r [ ll4 (.p o @' ()| is
o~-Holder continuous with o > 1/2), a classical method
developed for the treatment of first order nonlinear hyper-
bolic problems (see for instance J. Carrillo [8], G. Gag-
neux et M. Madaune-Tort [12] p. 115-120, A. Plouvier
[16]), leads to a comparison principle for weak solutions
of (P).

The main goal of this paper is to perform such a result
without any condition on the local behaviour of nonlinear
terms. In order to overcome this difficulty, we will check,
following A. Plouvier et G. Gagneux [17] (according to
the ideas presented by D. Blanchard, H. Redwane [6], F.
Murat [15], L. Boccardo, D. Giachetti, J.I. Diaz, F. Murat
[7], R.J. Di Perna et P.L. Lions [11]) that any weak solu-
tion is automatically a renormalized one (with a suitable
definition), and working with this new formulation, we
will derive the expected comparison result.

Let us consider for n € IN*, the truncation functions S,
and X, defined by,

S, (f) = min {(2nr — 1)* , 1} and %, () = min {(=2nr
+2n- 17,1}

We can give the following definition:

Definition. We say that u is a renormalized solution of
(P) if the conditions below are fulfilled,

* Regularity properties:

ueL”(0),0<u<l, £8*' —qe. inQ,
(RR®(u)e L*(0,T;V), '
B(u)(0)= ﬁ(ug) £V _ge.onQ,

% Bu)e *(0,T;V"),
JLim, Blu)(t)= Bluo) in L'(Q),

» Variational equality:

foranyne }0, %[ and for any T, in wh= (0.1)).
.\ | constant on the sets [0,n] and [1-n,1],
( ) foranywe L*(Q)NH' (Q) and £' —a.e. in 10,T],

<% Bu), T,,(u)w>+ IQ{A(., B(u))V@(u)} - {WVT, (1) + T,y () Vw}dx = 0
* Parabolic-hyperbolic adjusting conditions:

(LO){ tim_ [ 1A )V @)} VS, (it =0

n—>+oo

Remark. In a first step, the definition of a renormal-
ized solution only takes into account the parabolicity area
of the phenomenon, namely the measurable set uw' ([1/2n,
1 — 1/2n]) (we recall that the diffusion operator only de-
generates for the extremal values 0 and 1). In a second step
we reach the hyperbolicity area u™' ({0, 1}) by means of
the adjusting conditions (L,) and (L,).

We give now the main theorem of this section:

Theorem. u is a renormalized solution of the problem
(P) if and only if u is a weak solution of the problem (P).

In other words, the weak and renormalized formulation
are equivalent.

Proof of the theorem:

First step. Let us consider a weak solution of (?) and
derive the properties appearing in the above definition.

1
Variational equality (V*). For 775]0,*2—[, let us

choose a generic function T, in W' (]0, T]), constant on
[0, n] and [1 — 7, 1]. We start proving that,

£ —ae in]0, T, T, () € H (Q) N L” (Q).

One can easily check that, for £/ — almost every ¢ in ]0,

T,



260 Patrick Urruty

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93

T,(w)=T,0 ®'(min{maxd(n), ®(u)}, B(1-)}),
£V ae. in Q

where @' is the restriction of @' to the set [® (1), P (1
- n)]. As @ is bounded from below on [N, 1 — ] by a
strictly positive real number, & and T,o @' are shown
to be Lipschitz continuous on [® (’r]) ® (1 - m)]. Conse-
quently, G. Stampacchia’s lemma gives,

£ —ae in0, T, T, (w) € H (Q)
and hence the result.
Let w be an element of H' (Q) N L™ ().

A classical result in the Banach algebra H' () N L™(Q)
(see H. Brezis [5]) insures that,

T,(wywe H' (Q)N L™ (Q),

a(T,7 (u)w)
ox

ow Ih(u).

and Vie{l,...,N}, &x

=T, ()= +w———in L}(Q).

i i i

By taking v = Tn (4) w in the variational formulation
(V), the previous rule immediately gives (V*).

Parabolic hyperbolic adjusting relations. The above
analysis allows us to choose v = S, (1) in the variational
equality (V); after integrating on ]O, T[, we get,

jQ{A(., B(w))V(u)}VS, (u)dxdt = — j % B(u), S,,(u)>dt.
0

As the function r — S, () is increasing and continu-
ous, the extension of A. Bamberger and F. Mignot’s lem-
ma (see appendix) gives the following identity:

i (2 gy sar=-f |

where y denotes any quasi-inverse of P.

J ,oy(r )dr |dx,
B)(0)

By dominated convergence, we easily check that,
i | < B, )t =~ [ (BT) - B0

Furthermore, the mass conservation law, described by
considering v = 1, in the variational formulation (V) yields,

Jo B ) (T) - B () (0)) dx =0

The latter identity leads to (L,); the proof of (L,) is
analogous to the previous one (by taking v = X, (1) in the
weak formulation).

Second step. If u is a renormalized solution of (P) we
can choose any test-function of the form u € H' (Q) N L™
(Q) because u = 1 (u) u (where u — 1 (u) denotes the
constant function equal to 1, which satisfies the condition
specified in (V*)). We immediately deduce that u is a weak
solution of (P).

5. COMPARISON PRINCIPLE

We are now able to state a comparison principle for
weak-renormalized solutions of the problem.

Theorem. Let u and ii be solutions of (P) associated
with the initial data u, and @, respectively. Then, for £'-
almost every t in 10, T[, the following inequality holds:

[ (B)0)- BGE)) dr < | (B(uo)~ Bio)) dx

Proof of the theorem. For € € ]0, 1], let us define the
function p,:

.
Vrel0,1], p.(r)= min(-rg-—,l}

For n € IN*, we consider the truncated function @,
defined by,

Vr e [0, 1], ®, (r) = min {max {® (1/2n), ® (r)}, ®
1 - 1/2n)},

and we denote, for the sake of simplicity, 7, = S,Z,.

For £2— almost every (¢, s) fixed in ]0, TT?, let us choose
in the Banach algebra L~ () N H' (Q), the test-function
v=T, (w) p, (®, (w) — ®, (1)) in the weak formulation
associated with u, and v = T, (%) p, (@, (u) — ®, (1)) in the
weak formulation associated with 4. In other words, we
take T, = T, and w = p_ (®, (1) ~ @, (#)) in the renormal-
ized forrnulatlon of (P).

We introduce the sequence,

&) =g 2o 52}

where & € D (10, T1), & =2 0, and pd € D (]0, 1), p; = 0,
supp (p8) < 1 -8, 8[, and [, pddt = 1.

We suppose that & is sufficiently small, so that &5 € D
a0, 77%).

If we consider the difference between the variational
equality associated with u and # we get, after integrating

on 10, 7T,



Patrick Urruty

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1999; 93 261

"f f < B().T, (u)w> &; drds
T (2 tanam)e o
+Lwm{A<x,ﬁ<u>>vo<u>}vz,<u>.wMﬁ i
Lo el NV, @) w & atas
e LT (A B() V()= T, (&)A (e B(@)VR(@)] Vv die & .
For the sake of brevity we will write,
Iy, —Ip,+ I3, I3, + 1, = 0.

Our goal is to study each term of the above identity,
according to the following strategy:

Step 1: when € goes to 0, n being fixed in IN*.
Step 2: when n goes to + oo.
Conclusion. We deduce the comparison property by

passing to the limit when & goes to 0" in the inequality
obtained after the previous steps.

1.
Convergence of [, :

We have,

=[G s (oo aus

We note, for £/*! — almost every (s, x) fixed in Q, that
the function

F:r—> (7;, 0@ )(I’)Pe[(q)n @ )(r)—cl)ﬂ(ﬁ)],r efo.1}

is Lipschitz continuous on [0, 1] (because T, and ®, are

1 1
constant on [0’_2 } and [1—-,1] whereas @' is Lip-
n, 2n
1

1
schitz continuous on the compact set D — ‘D(l - _)
2n, 2n

The extension of F. Mignot and A. Bamberger’s lemma
(see appendix, corollary) leads to the equality, for £ —
almost every s in ]0, TT,

J0T<%ﬁ(u), T, (u)pe(®, (u)~q>,,(a))>gadt:
J.o7 85? U {j (;M)) T,(v(r ))Ps(q’n(?’(r ))‘“‘D,,(ﬁ))dr}dx)dt,

where v denotes any quasi-inverse of f.

The deminated convergence theorem gives,

lim lim I1
n—+oo g—0"

[ Z S ()~ pi)) s

]o,T[2 xQ
Convergence of /2 :

We prove in the same way the convergence of Ign,
towards the real number,

I’ = J %{(ﬁ(u)— B(ﬁ))+}dxdtds.

Jo.7[*xQ
Convergence of Ifn:
We have,
[{A(x, B))VO@)IVT, (u)- w dx & drds
10,7[*xQ
where w denotes the function p, (®, (u) — @, (1)).

As T, ) =S, (u) Z, (u), the usual calculus rule in the
Banach algebra L~ (Q) N H' (Q) gives, £¥*' — a.e. in Q,

VT, W) =%, W) VI, W) + X, ) VI, ().
Consequently,

L= {A(x, B@)) VOV E, (u)-S, (u)w dx &5 drds

J0.7*xQ

1 ACE B VOIS, () 5, aw e & s

We will note, for the sake of brevity,

Qi

L=, +1,
Convergence of I :
Step 1: (¢ — 0)

As 0 < p, <1 and as the sequence (pg )g simply con-
verges towards the function sgj, the dominated conver-
gence theorem yields,

lim Iy =1 =
g0

j] o 115 VACH BE)VRENV E, ()-8, (0)583 (@, 1) - @, ()5 dceds

Step 2: (n > +o0)

We note that the function r — (£, o ®') () is Lip-
schitz continuous on [0, ® (1)] (because z, 1s constant on
[0, 1 — 1/n] and [1 — 1/2n, 1] , whereas <I) is Lipschitz
continuous on the compact set [® (1 — 1/n), @ (1 — 1/2n)]).
Following G. Stampacchia gives £¥*' — a.e. in Q,

VE, )=V [E, 0 @) (@ )
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=, 0"y (@ (). VP ().

By noting that (X, o @) is decreasing on [0, @ (1)],
the coercivity assumption (H2) ii) gives,

fAGB W Ve W} VI, W) <0, £ —ae. in Q.

Therefore we find,
Tlé]. [ fA(x Bu)VOW}V S, () dsdrds < 3, <0,

and we conclude by means of (L,) that,

lim I2, =0.

A—>+oo

An analogous proof (wich uses the monotonicity of r
— (S, 0 @) (r) and the identity (L)), leads to,

Kok
lim lim I, =0.
n—+oo g0

Finally, we conclude that,

lim lim I =0.

n—+e 0"
4.
Convergence of [ :
We show in the same way that,

lim lim I =0.

n—+o0 g—0*
5.
Convergence of [ :
We have,

1= [{T,)A(x B@)\VO()~ T, (@)A(x, B(i) V(i)}V Exdxdtds,

10,72 xQ
where w denotes the function p, (®, (v) — @, (2)).

We compute, following G. Stampacchia,
£V e in 0,72 xQ, Vw= éV((D,,(u)—(D,,(ﬁ)).x

Let us consider the £¥*? -measurable sets,

Ke=[0<®, u) - D, @) <€l N [u<1l-1/2n]
A [d > 1/2n]

Je=[0<D, (u) -D, (D <elNn(u=21-12n] v [4

< 1/2n))

and introduce the decomposition,

[0<@, (w)-@, (i)<e]

L=

- J {7 WA B) V()= T, @A(x B@)V (@)} (@, (1) - @, (@)serceds
B@)}V (@)~ (@)- V(@ ()~ @, (2)) & dvdrds

T, (@)A(x, B(@) [V @(u)- V(®@, (u) ~ @, (8)) & drdrds.

S fnan
€YK,

3

4= J (T a(xB00)-
We will write, for the sake of simplicity,
D=1+ +0"
Convergence of [ :

We define, for £¥*2 —
T1? x Q the real number,

almost every (¢, s, x) in ]0,

Sonlt:5.2) == {T, (A (3. )V ()~

T, (&)A(x, B(2)VO(@)} - V(@, (1)~ @, (2) &5,

and write that,

= L Sen(t,5,7) dxdtds.

The definition of J, associated with the coercivity con-
dition (H2) ii) implies that

fe, 2 0, £ — a.e. in Je.
Finally we conclude that,
I3 >0.

5** .
Convergence of .~ :

We first show the identity,

Ke=[0<® w)-® @) <eln[12n<u<1-1/2n]
A[l2n<d<1-1/2n]

Indeed, if (¢, s, x) is given in ]O, T1? x Q, we note that:

The inequalities ®, (#) (s, x) < ®, (u) (t, x) and u (1,
x) < 1 = 1/2n automatically imply that 4 (s, x) < 1 — 1/2n.

The inequalities @, (&) (s, x) < @, (u) (¢, x) and i (s,
x) > 1/2n automatically imply that u (¢, x) > 1/2n.

The expected result then follows.
Now, we can remark that,

Vo, (w —V<I> (u) et VO, () =vV® (),
£M2 _ gee. in Ke,

and consequently,
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5=
- J {7 @5 B@)}¥ (000 - (@) V(@G-

According to the coercivity condition (H2) ii) we con-
clude that,

D(i1))é5 dxdtds.

ok
7 >0.
5*** .
Convergence of | o

As mentioned before,

Ke=[0<®Pu)-P @) <e]n[12n<u<1-1/2n]
N [12n < <1 - 1/2n].

Then we can write,

eskk
=

], 0405 00) -7, @45 B0} 9000) (0(0)-

If ||.]l, denotes the matrix norm subordinate to the eu-
clidian norm of IR", we can estimate, £¥*?> — almost every-
where in Ke,

700 Bw) - T, @) (3. B(@) T DG V(0(0) - ()
< L7, wAx 8) - T @) B}

®(2)K;5 drdrds,

"2 | V(u)- |V(<I>(u) - q)(u))l

For any (i, j) given in (1, ..., N)2, the function,

r— (7,007 )(r)- a,.j(x,(ﬁoqr')(r)),

is Lipschitz continuous on [® (1/2r), ® (1 — 1/2n)], uni-
formly with respect to x (c, will denote the associated
Lipschitz constant).

Moreover we know that in the space M, (IR), the norm
|l.]l, introduced above is dominated by the matrix euclidian

norm (see for instance P.G. Ciarlet [9], p. 20); we deduce
that, — a.e. in K¢,

IKT, W) A x, B ) =T, @) A (x, B @)}, < Ne,
P () - @ @),

and we easily estimate,

E jKE {7, (w)A(x, B(w)) ~ T, ()A(x, B(8) V() V(@ (u) - @)l

< Ne, -[Kt [V (u)- |V(<I>(u) - fb(ﬁ))lfadxdtds

Concerning the right-hand side of the inequality, we
note that,

£V _qe. in]0, T[> xQ, lim X =0.
e—>0 f

Therefore, by dominated convergence (for n fixed in
IN*) we get,

Zﬂ@NﬁjW@@WP@%@%@%@» dxdtds =0,

K,

so that,

. Sk
el—larg+ loy = 0.

We successively deduce,

5***

liminf I3, > lim inf I>, +lim inf I, + lim >0
e—0" e—0" £—0" -0

and conclude that,

lmmiMnﬂf)O

n—+oo -0

CONCLUSION
By passing to the lower limit in the initial equality,
-2+ -1t + 12, =0,
the previous analysis gives,
I'-P<0,

that is,

- ] (%m0 @) asias <o
Jo.T[*xQ

By using a well-known argument based on the notion
of Lebesgue’s point, we can pass to the limit in the above
inequality when & goes to 0%, and write,

vep* (10,70~ [&(0)(B(u)- B(a)) dxdr <0

10,7[xQ

In other words, we have

[ (Bw)- B(@))"ax< 0 in " (J0,17).

Y| v
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Let us consider the real measurable positive function z
defined by,

Z(t)= J(ﬁ(u) - ﬁ(ﬁ))+dxfor 1e[0,T].

Q

As %50 in D" (10, T[), we state, according to L.
t

d.
Schwartz [18], p. 29 et p. 53-54, that ?j is a negative

measure and z is almost everywhere equal to a bounded
function Z which decreases on 10, 7T. The L' (Q)-continu-
ity of t = B (w) (¢) at O finally implies that Z (z) < z (0)
for any ¢ in ]O, 7. This achieves the proof of the compar-
ison principle.

6. A UNIQUENESS RESULT

The comparison principle described in the preceding
section easily leads to the following theorem:

Theorem. Let u and ii be solutions of (P) associated
with the same initial datum u,. Then we have the identity,

B =P @), £ —ae in Q.

As a particular case, when B is supposed to be injec-
tive, the problem (P) admits a unique weak solution.

Remark. When B is constant on a subdomain of 10, 1[,
and the initial datum is correctly chosen, we easily prove
that the uniqueness result does not hold.

APPENDIX: EXTENSION OF F. MIGNOT AND A.
BAMBERGER’S LEMMA

By using a double convexity inequality, A. Bamberger
(who followed an idea of F. Mignot) performed an «inte-
gration by parts» formula for nonlinear terms like

d
<5ﬁ(”)’¢’(”)>’ where P is a stricly monotone continuous

function (see also A. Bamberger [3], [4], S.N. Antontsev
and J.I. Diaz [2], J.I. Diaz and F. De Thelin [10], G. Gag-
neux et M. Madaune-Tort [12] p. 31). Here we give (with-
out proof) an extension of the result when B is not sup-
posed to be injective.

For the sake of brevity, we will say that F satisfies (H)
if the following condition is fulfilled,

(H){F R IRis increasing continuous}
: g

and onto.

Note that the technical condition F' (IR) = IR is not
restrictive. Indeed, we often consider a function F defined

on a bounded interval, and the condition is then immedi-
ately satisfied for a suitable extrapolation F.

1. Notion of quasi-inverse

Let B : IR — IR be a function satisfying (H).

Definition. We will say that v is a quasi-inverse of B
if v is a function whose graph is contained in the graph of

B
Properties. We easily show that,

i) Any quasi-inverse y of B is strictly increasing on
IR and then continuous up to an enumerable set.

iil) Two quasi-inverses y and Y are equal up to an
enumerable set.
2. F. Mignot and A. Bamberger’s lemma

We first set the following general assumptions:

i) Let Q = Q _]0, T, where Q is an open bounded
set of IR and T be a strictly positive real number. We
consider a Hilbert space V wich gives rise to the classical
scheme,

Vo LP(Q >V
ii) Let B and @ be functions satisfying (H).

iii) We consider a function u defined almost every-
where in Q, such that

B e L (Q),
2 B (0.1:v),
®(u)e I2(0,T;V).

Then the following integration rule holds,

}<_a_ﬁ(u) <I>(u)>§(t)dt=—}§'(t)~J ﬂ(u‘)’gg)(y(r))dr dxdt
AL AR i ol J ’

for & € C' ([0, T]) such that & (0) = & (T) = 0, and where
v denotes any quasi-inverse of .

Consequently we can write in L' (J0, T[) (where the
derivative is taken in the sense of distributions):

Blu)(t.x)
<gt— ﬁ(u),CIJ(u)> -2 jg{ { Cb(y(r))dr}dx.
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To end up this work, let us mention the following
corollary (often used in the paper), wich does not require
a monotonicity condition on the function involved in the
duality brackets.

3. Corollary

We need the assumptions described in section 2), in
the particular case where V = H' (Q), and we consider a
general function F in W' ($), without restriction with
respect to monotonicity.

Then the following integration rule holds,

(2B (P @u)itonr=-[£10)

Bu)ie.x)
[(Fo@)y(r))ar tdxt,
0

for & € C' ([0, T]) such that & (0) = € (T) = 0, and where
Y denotes any quasi-inverse of .

Consequently we can write in L' (10, TD) (where the
derivative is taken in the sense of distributions):

9 Blu)(t.x)

<%ﬁ(u),(Fo d))(u)> = :?t_J-Q _!(Fo CI))(y(r))dr dx.

BIBLIOGRAPHY

1.

Artola, M. (1986) Sur une classe de problémes paraboliques
quasi linéaires. Boletino UMI (6), 5-B, p. 51-70.

Antontsev, S.N. & Diaz, J.I. (1991) Space and time localiza-
tion in the flow of two immiscible fluids through a porous
medium: energy methods applied to systems. Non linear Anal-
ysis, Theory, Methods and Applications, vol. 16, n.° 4, p. 299-
313.

Bamberger, A. (1977) Etude d’une équation doublement non
linéaire. Journal of functional analysis 24, p. 148-155.

Bamberger, A. (1977) Etude d’une équation doublement non
linéaire. Rapport Interne n.° 4 du Centre de Mathématiques
Appliquées de 1’Ecole Polytechnique.

Brezis, H. (1983) Analyse fonctionnelle, théorie et applica-
tions. Masson.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Blanchard, D. & Redwane, H. (1994) Solutions renormalisées
d’équations paraboliques a deux non-linéarités. C.R. Acad. Sci.
Paris, t. 319, Série I, p. 831-835.

Boccardo, L., Giachetti, D., Diaz, J.I. & Murat, F. (1993) Ex-
istence and Regularity of Renormalized Solutions for some
Elliptic Problems involving Derivatives of Nonlinear Terms.
Journal of Differential Equations, vol. 106, n.° 2.

Carrillo, J. (1987) On the uniqueness of the solution of a class
of elliptic equations with nonlinear convection. Contributions
to nonlinear partial differential equations, vol. I, Longman Sci-
entific & Technical, Pitman Research Notes in Math. Series,
n.° 155, p. 55-68.

Ciarlet, P.G. (1990) Introduction a I’analyse numérique matric-
ielle et a I’optimisation. Masson.

Diaz, J.I. & De Thelin, F. (1994) On a nonlinear parabolic
problem arising in some models related to turbulent flows.
SIAL J. Math. Anal. vol. 25, n.° 4, p. 1085-1111.

Di Perna, R.J. & Lions, J.L. (1989) On the Cauchy problem for
Boltzman equations: global existence and weak stability. Ann.
of Math. (2), 130, n.° 2, p. 321-366.

Gagneux, G. & Madaune-Tort, M. (1995) Analyse mathéma-
tique de modéles non linéaires de l'ingénierie pétroliere. Col-
lection «Mathématiques et applications», Springer-Verlag, vol.
22.

Lions, J.L. (1969) Quelques méthodes de résolution de prob-
lémes aux limites non linéaires. Dunod, Gauthier-Villars, Par-
is.

Lions, J.L. & Magenes, E. (1968) Problemes aux limites non
homogenes et applications. Dunod, vol. 1.

Murat, F. (1994) Equations elliptiques non linéaires avec sec-
ond membre L' ou mesure. Comptes rendus du 26°™ Congrés
National d’Analyse Numérique, les Karellis, p. A12-A24, juin.

Plouvier, A. (1995) Sur une classe de problémes d’évolution
quasi linéaires dégénérés. Revista Matemadtica de la Universi-
dad Complutense de Madrid, vol. 8, n.° 1.

Plouvier-Debaigt, A. & Gagneux, G. (1996) Unicité de la so-
lution faible d’équations des milieux poreux, via un concept de
solution renormalisée. C.R. Acad. Sci. Paris, t. 322, Série I (a
paraitre).

Schwartz, L. (1966) Théorie des distributions. Hermann, Paris.



