Rev.R.Acad.Cienc.Exact.Fís.Nat. (Esp) Vol. 93, N.^o 2, pp 213-215, 1999 Matemáticas

A BATOR'S QUESTION ON DUAL BANACH SPACES

(dual Banach space/Cantor ternary set. 1980 M.S.C.: 46B10)

M. LÓPEZ PELLICER*

Departamento de Matemática Aplicada. Universidad Politécnica de Valencia. ETSIA. Apartado 22012. E-46071 Valencia (SPAIN)

E-mail: mlopez@mat.upv.es

Presentado por Manuel López Pellicer el 16 de diciembre de 1998. Aceptado el 15 de marzo de 1999

ABSTRACT

We obtain a characterisation of the nonseparability of the dual of a separable Banach space X by the existence of an operator T from X into $C(\Delta)$, being Δ the Cantor ternary set, giving an answer to a question proposed by E.M. Bator in 1992.

RESUMEN

Obtenemos una caracterización de la no separabilidad del dual de un espacio de Banach separable X mediante la existencia de cierto operador T de X en $C(\Delta)$, siendo Δ el conjunto ternario de Cantor, dando una respuesta a la pregunta propuesta por E.M. Bator en 1992.

1. INTRODUCTION

It is said that x is a condensation point of the topological space X if every neighbourhood of x is uncountable. If all the points of X are condensation points we can determine two non void disjoint balls B_{11} and B_{12} of radius less than 1, two non void disjoint balls B_{21} and B_{22} (B_{23} and B_{24}) of radius less than 1/2 contained in B_{11} (B_{12} , respectively) and so on. Then we have that

$$\Delta = \left(\overline{B}_{11} \cup \overline{B}_{12}\right) \cap \left(\overline{B}_{21} \cup \overline{B}_{22} \cup \overline{B}_{23} \cup \overline{B}_{24}\right) \cap \dots$$

is homeomorphic to the Cantor ternary set with dyadic subsets $\overline{B}_{11} \cap \Delta$, $\overline{B}_{12} \cap \Delta$,...

If the topological space X has an uncountable quantity of points and verifies the second axiom of numerability, then the union Z of open countable subsets is a countable set, because a countable family of these open sets cover Z. Then every point of Y = X-Z is a condensation point of Y. In particular, if A is an uncountable subset of a compact and metrizable topological space, \overline{A} contains a copy of the Cantor ternary set.

Then, if X is a separable Banach space such that its dual X^* is not separable, we can find a Cantor ternary set in the weak* dual unit ball. By making an appropriate use of the Hahn-Banach theorem C. Stegall [4] and E.M. Bator [1] found the Cantor ternary set in such a way that the characteristic functions of the Cantor dyadic subsets can be uniformly approximated by elements of X.

In fact, by the nonseparability of the unit sphere S_{X*} given $\mu > 0$ we can determine by transfinite induction $A = \{x_{\alpha}^* : \alpha < \omega_1\} \subset S_{X*}$ and $\{x_{\alpha}^{**} : \alpha < \omega_1\} \subset X^{**}$ such that $x_{\alpha}^{**}(x_{\alpha}^*) = 1$, $||x_{\alpha}^{**}|| \le 1 + \mu$ and $x_{\beta}^{**}(x_{\alpha}^*) = 0$ when $\alpha < \beta < \omega_1$. This can be done since once determined $\{x_{\alpha}^* : \alpha < \beta\}$ and $\{x_{\alpha}^{**} : \alpha < \beta\}$ the closed linear hull of $\{x_{\alpha}^* : \alpha < \beta\}$ is separable, and then there is a x_{β}^{**} in X^{**} such that $x_{\beta}^{**}(x_{\alpha}^*) = 0$ if $\alpha < \beta$ and $||x_{\beta}^{**}|| = 1 + \mu$. The distance from the origin to the hyperplane $x_{\beta}^{**}(x^*) = 1$ is $1/(1 + \mu) < 1$, implying that the intersection of this hyperplane and S_{X*} is not void. Taking x_{β}^* equal to a point of this intersection we finish the induction.

We can suppose that every point of A is a weak*condensation point, deleting a countable family if it were necessary.

Let $\delta > 0$. Given x_{α}^* and x_{β}^* with $\alpha < \beta$, we know that there exists x_{β}^{**} with $||x_{\beta}^{**}|| < 1 + \eta$ such that

$$x_{\beta}^{**}\left(x_{\alpha}^{*}\right) = 0 \quad x_{\beta}^{**}\left(x_{\beta}^{*}\right) = 1$$

 $[\]ast$ Supported by OPVI project 003/034 (1998) and DGESIC PB97-0342.

By the weak* density of B_X in $B_{X^{**}}$ we can find x_β with $||x_\beta|| < 1 + \eta$ and such that

$$\left|x_{\beta}\left(x_{\alpha}^{*}\right)\right| < \delta = 0 \quad \left|x_{\beta}\left(x_{\beta}^{*}\right) - 1\right| < \delta$$

The preceding two inequalities enable us to determine two weak* neighbourhoods V_1^* and V_2^* of the points x_{α}^* and x_{β}^* such that

$$\left|x_{\beta}(x^{*})\right| < \delta = 0 \text{ for } x^{*} \in V_{1}^{*} \text{ and } \left|x_{\beta}(x^{*}) - 1\right| < \delta \text{ for } x^{*} \in V_{2}^{*}$$

Now we take x_{γ}^* in V_1^* such that $\beta < \gamma$. If we apply the preceding reasoning to the points x_{β}^* and x_{γ}^* we can find some x_{γ} with $||x_{\gamma}|| < 1 + \eta$ and two weak*-neighbourhoods $W_{11}^*(\subset V_1^*)$ and $W_{12}^*(\subset V_2^*)$ of the points x_{γ}^* and x_{β}^* such that

$$\left|x_{\gamma}\left(x^{*}\right)-1\right| < \delta \text{ for } x^{*} \in W_{11}^{*} \text{ and } \left|x_{\gamma}\left(x^{*}\right)\right| < \delta \text{ for } x^{*} \in W_{12}^{*}$$

holding

$$\left|x_{\beta}\left(x^{*}\right)\right| < \delta \text{ for } x^{*} \in W_{11}^{*} \text{ and } \left|x_{\beta}\left(x^{*}\right) - 1\right| < \delta \text{ for } x^{*} \in W_{12}^{*}$$

Then the difference between $x_{11} = x_{\gamma}$ and $x_{12} = x_{\beta}$ acting on the weak* closure of $W_{11}^* \cup W_{12}^*$ and the characteristic functions corresponding to the weak* closure of W_{11}^* and W_{12}^* is δ . By an obvious dicotomic induction process there follows the following Stegal theorem (4):

Let X be a separable Banach space such that X^* is nonseparable. Then for every $\varepsilon > 0$, there exists a subset Δ of B^* which is homeomorphic to the Cantor set, along with subsets $\{C_{ni}\}_{n=1}^{\infty} \sum_{i=1}^{2^n} of \Delta$ weak* homeomorphic to the dyadic intervals, and a sequence $\{x_{ni}\}_{n=1}^{\infty} \sum_{i=1}^{2^n} in X$ such that $||x_{ni}|| < 1+\varepsilon$ for all n, i and

$$|x_{ni}(x^*) - \chi_{C_{ni}}(x^*)| \le \varepsilon 2^{-n}$$
 for all $x^* \in \Delta$

$\chi_{C_{ni}}$ being the characteristic function on the set C_{ni} .

Stegall's result is equivalent to the nonseparability of X*. In fact, given x* in Δ , let $\{i_n\}_{n=1}^{\infty}$ be the unique sequence such that $x^* \in C_{ni_n}$. Then from $|x^*(x_{ni_n})-1| \leq \varepsilon 2^{-n}$ it follows that if x** is a weak* cluster point of the sequence $\{x_n\}_{n=1}^{\infty}$ then we have x** (x*) = 1. If $y^* \in \Delta - \{x^*\}$ there is some n_0 such that $y^* \notin C_{ni_n}$ for $n > n_0$, and then we have $|y^*(x_{ni_n})| \leq \varepsilon 2^{-n}$ for $n > n_0$, implying

 $x^{**}(y^*) = 0$. Therefore Δ is weak discrete, thus norm discrete, and consequently X^* is nonseparable.

2. BATOR'S PROBLEM

From Stegall's result it follows that the natural evaluation map T : $X \to C(\Delta)$ given by $T(x)(x^*) = x^*(x)$ has dense range. Bator (1, example 5) shows that the existence of a continuous linear map T from a separable Banach space X onto a dense subspace of the space of real continuous functions defined on the Cantor ternary set Δ does not characterise separable spaces with nonseparable duals, because the range of the mapping T from 1^2 into $C(\Delta)$

given by $T(\{\alpha_n\}) = \sum_{n=1}^{\infty} \frac{1}{n} \alpha_n t^n$ is dense, since it contains the polynomials, and $(1^2)^* = 1^2$ is separable.

Bator (1. Page 85) asks for what property of a continuous linear map T from a separable Banach space X into the space $C(\Delta)$ of the real functions defined on the Cantor ternary set Δ would be able to characterise separable Banach spaces with nonseparable dual. A very interesting result in this direction had been obtained previously by Pelczynsky-Hagler theorem (2, 3) that states that 1¹ embeds in a separable Banach space X if, and only if, there exists a continuous linear surjection from X into $C(\Delta)$.

The following result gives an answer to Bator question.

Proposition 1. Let X be a separable Banach space. X* is nonseparable if, and only if, given $0 < \varepsilon < \frac{1}{2}$ there is a continuous linear mapping T : X \rightarrow C(Δ) with dense range such that T((1 + ε)B_X)+ ε B_{C(Δ)} contains the characteristics functions X_{C_{ni}}, 1 \leq i \leq 2ⁿ, 1 \leq n $< \infty$, of the dyadic intervals of Δ .

Proof. If X* is nonseparable then, following with the notation given in the preceding Stegall theorem, we have that the sequence $\{x_{ni}\}_{n=1}^{\infty} \stackrel{2^n}{\stackrel{i=1}{i=1}}$ belongs to $(1 + \varepsilon)B_X$ and $|x_{ni}(x^*) - \chi_{C_{ni}}(x^*)| \le \varepsilon 2^{-n} < \varepsilon$ for every $x^* \in \Delta$, which means that if T is the natural evaluation map $(T(x)(x^*) = x^*(x))$ then $\chi_{C_{ni}} - T(x_{ni}) \in \varepsilon B_{C(\Delta)}$.

Conversely, let us suppose that there is a continuous linear mapping $T: X \to C(\Delta)$ with dense range such that $T((1 + \varepsilon)B_X + \varepsilon B_{C(\Delta)})$ contains the characteristic functions $\chi_{C_{ni}}$, $1 \le i \le 2^n$, $1 \le n < \infty$, of the dyadic intervals of Δ .

As the range of T is dense we have that T^* is one-toone. As usual, we identify Δ with a weak* compact subset of the unit sphere of $C(\Delta)^*$. Then $T^*(\Delta)$ is an uncountable weak* compact subset of X* and we are going to prove that it is norm discrete, implying the statement.

$$\left\|Tx_{ni}-\chi_{c_{ni}}\right\|\leq\varepsilon$$

and, therefore, for each $\mu \in \Delta$ we have

$$|(Tx_{ni})(\mu) - \chi_{c_{ni}}(\mu)| \le \varepsilon$$
⁽¹⁾

Therefore, given two different points δ and δ' in Δ we may find C_{ni} such that $\delta \in C_{ni}$ and $\delta' \notin C_{ni}$. Then, replacing μ by δ and δ' in (1), we have:

$$|(Tx_{ni})(\delta)-1|\leq\varepsilon$$

and

$$|(Tx_{ni})(\delta')-0|\leq\varepsilon$$

From these two inequalities it follows:

$$\left|\left\langle x_{ni}, T^*\delta - T^*\delta'\right\rangle\right| = \left|\left\langle Tx_{ni}, \delta - \delta'\right\rangle\right| = \left|\left(Tx_{ni}\right)(\delta) - \left(Tx_{ni}\right)(\delta')\right| \ge 1 - 2\varepsilon$$

and, from $||x_{ni}|| \le 1 + \varepsilon$ we deduce that

$$\left\|T^*\delta - T^*\delta'\right\| \ge \frac{1-2\varepsilon}{1+\varepsilon}$$

which shows that $T^*(\Delta)$ is norm discrete.

Which the same technique the following proposition may be proved:

Proposition 2. Let X be a separable Banach space. X* is nonseparable if, and only if, there is a continuous linear mapping $T : X \rightarrow C(\Delta)$ with dense range, two positive numbers m and δ and a natural number n_o such that $T(mB_X)+\delta B_{C(\Delta)}$ contains the characteristic functions $\chi_{C_{ni}}$, $1 \le i \le 2^n$, $n_0 \le n < \infty$, of the dyadic intervals of Δ corresponding to the steps $n_o +1$, $n_o +2$,....

REFERENCES

- 1. Bator, E.M. (1992) A basic construction in duals of separable Banach spaces. Rocky Mt J. Math. 22 (1), 81-92.
- Hagler, J. (1973) Some more Banach spaces which contains 1¹. Studia Math, 46, 35-42.
- Pelczynsky, A. (1968) On Banach spaces containing L₁. Studia Math, 30, 231-246.
- 4. Stegall, C. (1973) Banach spaces whose duals contain 1^1 (Γ) with applications to the study of dual L^1 (μ) spaces. T.A. Math. Soc. **206**, 213-223.