EXISTENCE OF MONOTONE SOLUTIONS FOR NONLINEAR PERTURBED DIFFERENTIAL INCLUSIONS

(monotone solution/admissible set valued map)

IRINA CHIS-STER

Department of Mathematics. Technical University «Gh. Asachi». Iasi, 6600, Romania. E-mail: mircea@cs.tuiasi.ro

Presentado por J.I. Díaz el 24 de junio de 1998. Aceptado el 10 de febrero de 1999.

ABSTRACT

Let X be a separable Banach space whose dual is uniformly convex, $A:D(A)\subset X\to 2^X$ an m-dissipative operator generating a compact semigroup $S(t)\colon \overline{D(A)}\to \overline{D(A)},\ t\ge 0,\ D$ a locally closed set in $\overline{D(A)}$ and $F:D\to 2^X$ a nonempty, closed convex and bounded valued mapping which is strongly-weakly upper-semicontinuous and locally bounded on D. Let $\ll \preceq \gg$ be a preorder on D, relation characterized by the set-valued map $P:D\to 2^D$, defined by $P(\xi)=\{\eta\in D;\ \xi\preceq\eta\}$ whose graph is closed in $D\times D$. Whe denote by $u(\cdot,0,\xi,y+p)$ the unique mild solution of

$$u'(t) \in Au(t) + y + p,$$

satisfying $u(0, 0, \xi, y + p) = \xi$ and we prove:

Theorem. Under the general assumptions above a sufficient condition in order that for each $\xi \in D$ there exists at least one mild solution u of

$$u'(t) \in Au(t) + F(u(t))$$

satisfying $u(0) = \xi$ and $u(s) \leq u(t)$ for each s < t is the «bounded w-hypermonotonicity condition» below:

(MwHMC) There exists a locally bounded function \mathcal{M} : $D \to R_+^*$ satisfying: for each $\xi \in D$ there exists $y \in F(\xi)$ such that for each $\delta > 0$ each weak neighborhood V of 0 there exist $t \in (0, \delta]$ and $p \in V$ with $||p|| \leq \mathcal{M}(\xi)$ and $u(t, 0, \xi, y + p) \in P(\xi)$.

1. INTRODUCTION

Let us consider the problem:

$$\frac{du}{dt}(t) \in Au(t) + F(u(t)) \ t \ge 0 \tag{DI}$$

with

$$u(0) = \xi \tag{IC}$$

where $A: D(A) \subset X \to 2^X$ is the infinitesimal generator of a semigroup, D is a nonempty subset in D(A) and $F: D \to 2^X$ a nonempty, closed, convex and bounded valued mapping. Let $\ll \leq \gg$ be a preorder on D defined by means of the set-valued mapping $P: D \to 2^D$, given by

$$P(\xi) = \{ \eta \in D; \xi \leq \eta \}$$

for each $\xi \in D$. Our purpose is to find a sufficient condition in order that for each $\xi \in D$ the Cauchy problem $(\mathcal{D}I)$ and (IC) have monotone mild solutions, i.e. mild solutions satisfying

$$u(s) \leq u(t)$$
 for each $t > s$.

If the differential inclusion $(\mathcal{D}I)$ has such a solution, we say that the set-valued map P is *admissible* with respect to $(\mathcal{D}I)$.

The problem has been studied by many authors. We begin with a short review of the main contributions in this area and we will try to make a clasification according the general frame used. So, we will consider the case in which A=0, the case in which A is the infinitesimal generator of a C_0 -semigroup of contractions and we will also specify when X is finite or infinite dimensional.

We start by recalling the pioneering work of Aubin, Cellina and Nohel [2], where A=0, the preorder enjoied an additional convexity property and X is a finite dimensional Banach space. This assumption has been discarted in the, by now classical, paper of Haddad [11], also for X finite dimensional. Aubin-Cellina [1] have considered the case when A=0 and F is upper hemicontinuous (see [1], Definition 1, pag. 59) with compact values and P is lower-semicontinuous (see [1], Definition 6, pag. 45) with closed graph, this time in a Hilbert space. The necessary and

sufficient condition for existence of monotone trajectories given there, described in our terms is:

For each $\xi \in D$ there exist $y \in F(\xi)$, a sequence $(t_n)_n$ decreasing to 0 and a sequence $(p_n)_n$ strongly convergent to 0 satisfying

$$\xi + t_n (y + p_n) \in P(\xi)$$

for each $n \in \mathbb{N}^*$. For the proof, see [1], Theorem 3, pag. 182.

The case in which A is the generator of a compact differentiable C_0 -semigroup and P is lower-semicontinuous multivalued map with closed graph was analyzed by Shi Shuzhong [18]. Under this circumstances, the necessary and sufficiency for the admissibility of P is:

For each $\xi \in D$ there exist $y \in F(\xi)$, a sequence $(t_n)_n$ decreasing to 0, a sequence $(p_n)_n$ strongly convergent to 0 satisfying

$$S(t_n)\xi + t_n(y + p_n) \in P(\xi),$$

for each $n \in \mathbb{N}^*$.

We remember that the simplest necessary condition in order that P is admissible with respect to $(\mathcal{D}I)$ is the viability of D with respect to $(\mathcal{D}I)$. We recall that D is a *viable domain* with respect to $(\mathcal{D}I)$ if for each $\xi \in D$ there exists at least one local mild solution of $(\mathcal{D}I)$ and satisfying (IC).

Starting from the necessary and sufficient conditions in order that a given subset D of a Banach space X be a viable domain for a semilinear differential inclusion (A is the infinitesimal generator of a C_0 -semigroup of contractions) obtained by Cârja and Vrabie [6] combined with an extension for the infinite dimensional Banach spaces of Proposition 9 from Cârja and Ursescu [5], enabled us in [8] to prove some necessary and sufficient conditions in order that for each $\xi \in D$ the semilinear differential inclusion ($\mathcal{D}I$) have monotone solutions. Our technique makes possible the renunciation to the lower semicontinuity of P. The main result given there is:

Theorem. Let X be a reflexive and separable Banach space, D a nonempty, locally weakly closed set in X and $\ll \times$ a preorder on D characterized by the set-valued mapping $P:D\to 2^D$, $P(\xi)=\{\eta\in D;\,\xi\preceq\eta\}$ whose graph is weakly \times weakly sequentially closed in $D\times D$. Let $A:D(A)\subset X\to X$ be the infinitesimal generator of a C_0 -semigroup $S(t):X\to X$, $t\geq 0$ and $F:D\to 2^X$ a nonempty, closed, convex and bounded valued mapping which is weakly-weakly upper-semicontinuous. Then a necessary and sufficient condition in order that P be admissible with respect to (DI) is the «bounded w-monotonicity» condition:

(BwMC) There exists a locally bounded function $\mathcal{M}: D \to R^+_*$ such that for each $\xi \in D$ there exists $y \in F(\xi)$ such that for each $\delta > 0$ and each weak neighborhood V of 0, there exist $t \in (0, \delta)$ and $p \in V$ with $||p|| \leq \mathcal{M}(\xi)$ and satisfying

$$S(t)\xi + t(y + p) \in P(\xi)$$

See Chis-Ster [8] for the proof.

We have also studied the case in which A is the generator of a compact C_0 -semigroup of contractions and the next result holds:

Theorem. Let X be a reflexive Banach space, D a nonempty, locally closed set in X and $\ll \preceq \gg$ a preorder on D characterized by the set-valued mapping $P:D\to 2^D$, $P(\xi)=\{\eta\in D;\ \xi\preceq\eta\}$ whose graph is closed in $D\times D$. Let $A:D(A)\subset X\to X$ be the infinitesimal generator of a compact C_0 -semigroup of contractions $S(t):X\to X$, $t\geq 0$ and $F:D\to 2^X$ a nonempty, closed, convex valued mapping which is strongly-weakly upper-semicontinuous and locally bounded. Then a sufficient condition in order that P is admissible with respect to (DI) is the monotonicity condition (MC).

(MC) for each $\xi \in D$ there exists $y \in F(\xi)$ such that for each $\delta > 0$ there exist $t \in (0, \delta]$ and $p \in X$ with $||p|| < \delta$ satisfying

$$S(t)\xi + t(y + p) \in P(\xi)$$

For more details, see Chis-Ster [9].

Concerning the nonlinear case, a very recent result of Cârja and Vrabie [7] regarding the viability of a nonempty set with respect to $(\mathcal{D}I)$ inspired us a sufficient condition for the admissibility of P. The technique used in the proof is the same as in Chis-Ster [8], [9], the Proposition 9 from Cârja and Ursescu remaining valid even in the case in which A is nonlinear, but with the additional assumption of uniformly convexity of the dual of X. The result proved by Cârja and Vrabie, on which is based our work, is:

Theorem 1.1. Let X be a separable Banach space whose dual is uniformly convex, $A:D(A) \subset X \to 2^X$ an M-dissipative operator, generator of a compact semigroup $S(t):\overline{D(A)} \to \overline{D(A)}$, $t \ge 0$ D a locally closed subset in $\overline{D(A)}$ and $F:D\to 2^X$ a nonempty, closed, convex and bounded valued mapping which is strongly-weakly upper semicontinuous and locally bounded. Under the general assumptions above a sufficient condition in order for each $\xi \in D$ there exists at least one mild solution U of U and satisfying U is the "bounded hypertangency condition" below.

(BwHTC) There exists a locally bounded function \mathcal{M} : $D \to R_*^+$ such that for each $\xi \in D$ there exists $y \in F(\xi)$

191

such that for each $\delta > 0$ and each weak neighborhood V of 0, there exist $t \in (0, \delta]$ and $p \in V$ with $||p|| \leq \mathcal{M}(\xi)$ and satisfying

$$u(t, 0, \xi, y + p) \in D.$$

Acknowledgements. I wish to thank Professor I. I. Vrabie for his constant help and for the very careful reading of the paper. I also thank Professor O. Cârja for being so kind in finding time for the many stimulating discussions.

2. PRELIMINARIES

We assume familiarity with basic concepts and results concerning multivalued mappings and nonlinear evolution equations driven by *m*-dissipative operators and we refer to Aubin-Cellina [1], Barbu [3], Deimling [10], Vrabie [19] for more details.

We consider the differential inclusion

$$\frac{du}{dt}(t) \in Au(t) + F(u(t)) \ t \ge 0 \tag{DI}$$

and the initial condition

$$u(0) = \xi \in D \tag{IC}$$

where $A: \overline{D(A)} \subset X \to 2^X$ is an m-dissipative operator and D is a nonempty set in $\overline{D(A)}$ on which we have defined the preorder $\ll \preceq \gg$ characterized by the set valued map:

$$P:D\to 2^D,\,P(\xi)=\{\eta\in D;\,\xi\preceq\eta\}.$$

Remark 2.1. The set valued map $P: D \to 2^D$ satisfies the conditions:

$$\xi \in P(\xi)$$
 for each $\xi \in D$

and

 $P(\eta) \subset P(\xi)$ for each $\xi \in D$ and for each $\eta \in P(\xi)$.

Definition 2.1. The function $u: [0, T] \to D$ is a *mild solution* for $(\mathcal{D}I)$ and (IC) if there exists $f \in L^1$ ([0, T]; X), with $f(t) \in F(u(t))$ a.e. for $t \in [0, T]$ and such that u is a mild solution for the differential inclusion

$$\frac{du}{dt}(t) \in Au(t) + f(t) \ t \ge 0 \tag{2.1}$$

In all that follows we denote by $u(\cdot, 0, \xi, f)$ the unique mild solution of (2.1) satisfying $u(0, 0, \xi, f) = \xi$ and by S(t): $\overline{D(A)} \to \overline{D(A)}$, $t \ge 0$ the semigroup of nonexpansive mappings generated by A, i. e. $S(t)\xi = u(t, 0, \xi, 0)$ for each $t \ge 0$ and $\xi \in \overline{D(A)}$.

Definition 2.2. The semigroup $\overline{D(A)} \to \overline{D(A)}$, $t \ge 0$ is compact if for each t > 0 S(t) is a compact operator.

Definition 2.3. Let X be a Banach space. A subset K in L^1 (0, T; X) is called *uniformly integrable* if given $\varepsilon > 0$ there exists $\delta(\varepsilon)$ such that

$$\int_{E} \|f(t)\| dt \le \varepsilon$$

for each measurable subset E in [0, T] whose Lebesgue measure is less than $\delta(\varepsilon)$, uniformly for $f \in K$.

Remark 2.2. If a subset K in L^1 (0, T; X) is bounded in L^p (0, T; X) for some p > 1, then it is uniformly integrable.

Let K a subset in L^1 (0, T; X) and let us denote by M(K) the set of all mild solutions of the problem (2.1) and (IC) with $f \in K$. In what follows, we will use the next consequence of a fundamental compactness result in C([0, T]; X) of Baras (See Vrabie [19], Theorem 2.3.3, pag. 47.)

Proposition 2.1. Let X a real Banach space whose dual is uniformly convex. Let $A:D(A) \subset X \to 2^X$ be an M-dissipative operator, the generator of a compact semigroup and let $\xi \in \overline{D(A)}$ a fixed element. Then the solution mapping $M:L^1(0,T;X) \to C([0,T];X)$ defined by M(f):=u for each $f \in L^1(0,T;X)$, where u is the unique mild solution of (2.1), is sequentially continuous from $L^1(0,T;X)$ endowed with its weak topology into C([0,T];X) endowed with its strong topology.

See Vrabie [19], Corollary 2.3.1, pag. 49.

Definition 2.4. The function $u:[0,T] \to X$ is a monotone solution for $(\mathcal{D}I)$ and (IC) with respect to the preorder $\ll \preceq \gg$ if it is a mild solution in the sense of Definition 2.1 and in addition satisfies:

$$u(s) \leq u(t)$$

for each $s, t \in [0, T]$ with $s \le t$ or equivalently,

$$u(t) \in P(u(s))$$

for each $s \in [0, T]$ and each $t \in [s, T]$.

Definition 2.5. The nonempty set $D \subset X$ is a *viable domain* for $(\mathcal{D}I)$ if for every $\xi \in D$ there exists at least one local mild solution $u:[0,T] \to D$ the sense of Definition 2.1.

Definition 2.6. $P: D \to 2^D$ is admissible with respect to $(\mathcal{D}I)$ if for every $\xi \in D$ there exists at least one monotone solution $u: [0, T] \to X$ in the sense of Definition 2.4.

Definition 2.7. Let X be a Banach space, w the weak topology on X, $A: D(A) \subset X \to 2^X$ be an m-dissipative operator. Let D a nonempty set in X.

We say that $y \in X$ is w-A hypertangent to D at $\xi \in D$ if for each $\delta > 0$ and each weak neighborhood V of 0 there exist $t \in (0, \delta)$ and $p \in V$ such that

$$u(t, 0, \xi, y + p) \in D.$$

The set of all w-A hypertangent elements to D at $\xi \in D$ is denoted by $(w)\mathcal{H}T_D^A(\xi)$,

Next, let us define $\gamma: D \times X \to \overline{R}_+$ by

$$\gamma(\xi, y) = \begin{cases} +\infty & \text{if } y \in X \setminus (w) \mathcal{H}T_D^A(\xi) \\ \lim_{(t, p) \to (0, 0)} & \|p\| & \text{if } y \in (w) \mathcal{H}T_D^A(\xi), \\ u(t, 0, \xi, y + p) \in D \end{cases}$$

where the convergence $p \rightarrow 0$ is considered in the weak topology.

Now, let us define $\Gamma: D \to \overline{R}_+$ by

$$\Gamma(\xi) = \inf_{y \in F(\xi)} \gamma(\xi, y).$$

Remark 2.3. We note that $\gamma(\xi, y)$ is finite whenever $y \in (w)\mathcal{HT}_D^A(\xi)$.

Definition 2.8. The nonempty set *D* satisfies:

(i) w-hypertangency condition (wHTC) with respect to $(\mathcal{D}I)$ if

$$F(\xi) \cap (w) \mathcal{H} T_D^A(\xi) \neq \emptyset$$

for each $\xi \in D$.

(ii) bounded w-hypertangency condition (BwHTC) with respect to $(\mathcal{D}I)$ if it satisfies the (wHTC) with respect to $(\mathcal{D}I)$ and the function Γ , defined as above, is locally bounded on D.

Definition 2.9. The set-valued mapping $P: D \rightarrow 2^D$ satisfies:

(i) w-hypermonotonicity condition (wHMC) with respect to $(\mathcal{D}I)$ if

$$F(\xi) \cap (w) \mathcal{H} T_{P(\xi)}^{A}(\xi) \neq 0$$

for each $\xi \in D$.

(ii) bounded w-hypermonotonicity condition (Bw $\mathcal{H}MC$) with respect to ($\mathcal{D}I$) if it satisfies the ($w\mathcal{H}MC$) with respect

to $(\mathcal{D}I)$ and the function Γ , defined as above, is locally bounded on D.

Proposition 2.2. A set-valued mapping $P: D \to 2^D$ satisfies the bounded w-hypermonotonicity condition (BwH- $\mathcal{M}C$) with respect to $(\mathcal{D}I)$ if and only if it satisfies

(MwHMC) There exists a locally bounded function $\mathcal{M}: D \to R_+^*$ such that for each $\xi \in D$, there exists $y \in F(\xi)$ with the property that for each $\delta > 0$ and each weak neighborhood V of 0 there exist $t \in (0, \delta)$ and $p \in V$, $||p|| \leq \mathcal{M}(\xi)$ and satisfying

$$u(t,\ 0,\ \xi,\ y\ +\ p)\ \in\ P(\xi).$$

The proof follows exactly the same lines as that of Cârja and Vrabie [7], Proposition 2.1.

Definition 2.10. The set valued map $F: D \to 2^X$ with nonempty values is *strongly-weakly* (weakly-weakly) upper-semicontinuous if for every $u \in D$ and each neighborhood V of F(u) in the weak topology, there exists a neighborhood W of u in the strong (weak) topology such that $F(v) \subset V$ for every $v \in W$.

3. THE MAIN RESULT

We may now proceed to the statements of our main result.

Theorem 3.1. Let X be a separable Banach space whose dual is uniformly convex, $A:D(A) \subset X \to 2^X$ an M-dissipative operator, generator of a nonlinear compact semigroup of contractions $S(t):\overline{D(A)} \to \overline{D(A)}, \ t \geq 0, \ D$ a nonempty locally closed subset in $\overline{D(A)}, \ F:D \to 2^X$ a nonempty, closed, convex and bounded valued mapping, which is strongly-weakly upper semicontinuous on D and locally bounded. Let $K \to X$ a preorder on $K \to X$, relation characterized by the set-valued mapping $K \to X$ and $K \to X$, whose graph is strongly-strongly closed in $K \to X$. Then a sufficient condition in order that $K \to X$ is admissible with respect to $K \to X$ is $K \to X$.

Now we present a proposition which illustrated our tehnique what we have been talking about in the previous section.

Then P is admissible with respect to (DI) if and only if for every $\xi \in D$, $P(\xi)$ is a viable domain for (DI).

Remark 3.1. The necessity is obvious. For the sufficiency, we need some facts about noncontinuable mild solutions of $(\mathcal{D}I)$ and (IC). Since, by hypotheses, for each $\xi \in D$ there exists at least one local mild solution of $(\mathcal{D}I)$ and (IC), reasoning as in Vrabie [19], Theorem 3.2.1, p. 92, we may prove that for each $\xi \in D$ there exists at least one mild noncontinuable solution $u_{\xi}: [0, T(u_{\xi})) \to D$. Let us denote the set of all noncontinuable solutions of $(\mathcal{D}I)$ and (IC) by $S_{nc}(\xi)$. The proof of the next lemma, with no alterations for the nonlinear case, may be found in Cârja and Vrabie. See [6], Lemma 3.1.

Lemma 3.1. Let X be a reflexive Banach space, $A:D(A) \subset X \to 2^X$ the generator of a nonlinear semigroup of contractions $S(t):\overline{D(A)}\to\overline{D(A)},\ t\geq 0,\ D$ a nonempty locally closed set in $\overline{D(A)},\ F:D\to 2^X$ a nonempty setvalued map which is locally bounded. If D is a viable domain for (DI) then for each $\xi\in D$ there exist $T_\xi,\ r>0$ and M>0 such that, for each $u_\xi\in S_{nc}(\xi),\ T_\xi\leq T(u_\xi),$

$$u_{\xi}(t) \in B(0, r)$$

for each $t \in [0, T_{\varepsilon}]$ and

$$||y|| \le M$$

for each $t \in [0, T_{\varepsilon}]$ and each $y \in F(u_{\varepsilon}(t))$.

In order to prove the sufficiency of Proposition 3.1 we need a technical lemma which is interesting by itself.

Lemma 3.2. Let X be a Banach space, $A:D(A) \subset X \to 2^X$ an m-dissipative operator D a nonempty, locally closed set in $\overline{D(A)}$ and (X, X) a preorder on D characterized by the set-valued mapping $P:D\to 2^D$, $P(\xi)=\{\eta\in D;\ \xi\preceq\eta\}$. Let $F:D\to 2^X$ a nonempty valued mapping which is locally bounded. Assume that, for each $\xi\in D$, $P(\xi)$ is a viable domain with respect to (DI). Then, for each $\xi\in D$ there exists T>0 such that, for each net $\Delta:0=t_1< t_2< ...< t_n=T$, there exists at least one mild solution $u:[0,T]\to D$ of (DI) and (IC) which satisfies:

$$u([s, T]) \subset P(u(s))$$

for each $s \in \Delta$.

See Chis-Ster [8], Lemma 3.2.

Proof of the sufficiency of Proposition 3.1. Let us consider $\xi \in D$ and $T = T_{\xi} > 0$ as given by Lemma 3.2 and the sequence $(\Delta_n)_{n \in \mathbb{N}^*}$ of nets of [0, T] defined by

$$\Delta_n: 0 = t_1 < t_2 < t_3 < \dots < t_n = T, \ t_i = \frac{iT}{2^n}, \ i \in \left\{0, \dots, 2^n\right\}.$$

Clearly $0 \in \Delta_n$, $\Delta_n \subseteq \Delta_{n+1}$ for each $n \in \mathbb{N}^*$ and $\Delta = \bigcup_{n \in \mathbb{N}^*} \Delta_n$ is dense in [0, T]. From Lemma 3.2 it follows that there exists a sequence of mild solutions $u_n : [0, T] \to X$ of $(\mathcal{D}I)$ and (IC) satisfying

$$u_n([s, T]) \subseteq P(u_n(s))$$

for each $n \in IN^*$ and for each $s \in \Delta_n$.

We will show next that the set $\{u_n; n \in IN^*\}$ is relatively sequentially compact in C([0, T]; X). Since u_n is a mild solution of $(\mathcal{D}I)$ and (IC), there exists $f_n \in L^1$ (0, T; X), f_n $(t) \in F(u_n(t))$ a.e. for $t \in [0, T]$ such that

$$\frac{du_n}{dt}(t) \in Au_n(t) + f_n(u_n(t)) \ t \ge 0 \tag{3.1}$$

and

$$u_n(0) = \xi. \tag{3.2}$$

Let us denote by

$$K = \{ f_n \in L^1 (0, T; X); f_n(t) \in F(u_n(t)) \text{ a.e. } t \in [0, T];$$

$$u_n : [0, T] \to X; u_n \in M(K) \}$$

where

$$M(K) = \{u_n; u_n : [0, T] \to X \text{ is a mild noncontinuable}$$

solution for (3.1) and (3.2), $n \in IN^*\}$,

Choosing T, r and M given by Lemma 3.1, it follows that the hypotheses of Proposition 2.1 are satisfied and therefore we may assume without loss of generality that.

$$u_n \to u$$

in C([0, T]; X). Since $||f_n(t)|| \le M$ for every $t \in [0, T]$ and X is reflexive it follows that K is weakly relatively compact in $L^p(0, T; X)$ for each $p \ge 1$. Recalling Proposition 2.1, we have that $u : [0, T] \to X$ defined before is the mild solution (2.1) and (*IC*) with $f \in L^1(0, T; X)$ defined up there. Using the same argument as in Vrabie ([19], Theorem 3.1.2, pag. 88), we have that $f(t) \in F(u(t))$ a.e. $t \in [0, T]$. This means that u is a mild solution of $(\mathcal{D}I)$ and (IC).

It remains to show that

$$u([s, T]) \subset P(u(s))$$

for each $s \in [0, T]$. For this, see Chis-Ster [9], Proposition 3.1.

Proof of the Theorem 3.1. By the virtue of Proposition 3.1, it is sufficient to show that $P(\xi)$ is a viable domain for $(\mathcal{D}I)$, for each $\xi \in D$. From the hypotheses, since $\mathcal{M}: D \to R^*$ is locally bounded, it follows that, for each $\xi \in D$, \mathcal{M}

: $P(\xi) \to R_+^*$ is locally bounded too. Let $\xi \in D$ be arbitrary and let $\eta \in P(\xi) \subset D$. From the $(Bw\mathcal{HMC})$ combined with Remark 2.1, there exists $y \in F(\eta)$ such that for each $\delta > 0$ and each weak neighborhood V of 0, there exist $t \in (0, \delta]$ and $p \in V$ with $||p|| \leq \mathcal{M}(\eta)$ and satisfying

$$u(t, 0, \eta, y + p) \in P(\eta) \subset P(\xi).$$

Now, we have obtained the condition $(Bw\mathcal{H}TC)$ from Theorem 1.1 for $P(\xi)$. It follows that $P(\xi)$ is a viable domain for $(\mathcal{D}I)$, for each $\xi \in D$. An appeal to Proposition 3.1 shows that P is admissible with respect to $(\mathcal{D}I)$ and this completes the proof of the sufficiency.

Remark 3.2. If we consider the strong topology on X, denoted by s, we can define in the same way $(s)\mathcal{H}T_D^A(\xi)$ and it's easy to see that $(s)\mathcal{H}T_D^A(\xi)\subset (w)\mathcal{H}T_D^A(\xi)$ and $(s\mathcal{H}MC)$ implies $(Bw\mathcal{H}MC)$.

Now, we have the a consequence of Theorem 3.1:

Corollary 3.1. Let X be a separable Banach space whose dual is uniformly convex, $A:D(A) \subset X \to 2^X$ an M-dissipative operator, generator of a nonlinear compact semigroup of contractions $S(t):\overline{D(A)} \to \overline{D(A)}$, $t \ge 0$ D a nonempty locally closed subset in $\overline{D(A)}$, $F:D \to 2^X$ a nonempty, closed, convex and bounded valued mapping, which is strongly-weakly upper semicontinuous on D and locally bounded. Let M < M > 0 preorder on M > 0, relation characterized by the set-valued mapping M > 0 M > 0. Then a sufficient condition in order that M > 0 is admissible with respect to M > 0 M > 0.

Concerning the finite dimensional case, we have:

Corollary 3.2. Let X be a finite dimensional Banach space whose dual is uniformly convex, $A:D(A) \subset X \to 2^X$ an m-dissipative operator, generator of a nonlinear semigroup of contractions $S(t):X\to X$, $t\ge 0$, D a nonempty locally compact subset in X, $F:D\to 2^X$ a nonempty, compact and convex valued mapping, which is upper semicontinuous on D. Let $x\le 0$ a preorder on x0, relation characterized by the set-valued mapping x0 x0. Then a sufficient condition in order that x1 is admissible with respect to x2 x3.

REFERENCES

- 1. Aubin, J.P. & Cellina, A. (1984) Differential Inclusions, Springer Verlag, Berlin-Heidelberg-New York-Tokyo.
- Aubin, J.P., Cellina, A. & Nohel, J. (1977) Monotone trajectories of multivalued dynamical systems. *Annali di Matematica pura e applicata*, 115, 99-117.

- 3. Barbu, V. (1976) Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff.
- 4. Bouligand, H. (1930) Sur les surfaces dépourvues de points hyperlimités. Ann. Soc. Polon. Math., 9, 32-41.
- Cârja, O. & Ursescu, C. (1993) The characteristics method for a first order partial differential equation. An. Stiint. Univ. «Al. I. Cuza» Iasi Sect. I a Mat., 39, 367-396.
- Cârja, O. & Vrabie, I.I. (1997) Some new viability results for semilinear differential inclusions. NoDEA, 4, 401-424.
- 7. Cârja, O. & Vrabie, I.I. Viability results for nonlinear perturbed differential inclusions. *PanAmerican Mathematical Journal*, in print.
- **8.** Chis-Ster, I. Existence of monotone solutions for semilinear differential inclusions. *NoDEA*, **6** (1999), 63-78.
- 9. Chis-Ster, I. Existence of monotone solutions for a parabolic problem. An. Stiint. Univ. «Al. I. Cuza» Iasi Sect. I a Mat., Tom XLIII, s.I.a, Mat., 1997, 2.
- 10. Deimling, K. (1992) Multivalued Differential Equations, Walter de Gruyter.
- Haddad, G. (1981) Monotone trajectories of differential inclusions and functional differential inclusions with memory, *Israel J. Math.*, 39, 83-100.
- 12. Pazy, A. (1983) Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, Berlin-Heidelberg-New York-Tokyo.
- 13. Pavel, N.H. (1973) Invariant sets for a class of semilinear equations of evolution. *Nonlinear Anal. Theory, Methods and Appl.*, 1, 399-414.
- 14. Pavel, N.H. & Vrabie, I.I. (1978) Equations d'évolution multivoques dans des espaces de Banach. C.R. Acad. Sc. Paris, 287, Série A, 315-317.
- Pavel, N.H. & Vrabie, I.I. (1979) Semilinear evolution equations with multivalued right hand side in Banach spaces. An. Univ. «Al. I. Cuza» Iasi Sect. I a Mat., 1, 137-157.
- Pavel, N.H. & Vrabie, I.I. (1979) Flow-invariance for differential equations associated to nonlinear operators. An. Univ. «Al. I. Cuza» Iasi, supliment la Tomul 25, Sect. I a Mat., 125-132.
- Severi, F. (1930) Su alcune questioni di topologia infinitesimale. Ann. Polon. Soc. Math., 9, 97-108.
- Shi Shuzhong (1989) Viability Theorems for a Class of Differential Operator Inclusions. *Journal of Differential Equations*, 79, 232-257.
- 19. Vrabie, I.I. (1995) Compactness Methods for Nonlinear Evolutions, Second Edition, Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Addison Wesley Longman.