SEMIDIRECT PRODUCTS OF LOCALLY CONVEX ALGEBRAS AND THE THREE-SPACE-PROBLEM

(locally convex algebras/locally m-convex algebras/semi-direct product/three-space-problem))
Susanne Dierolf*, Khin Aye Aye** and Karl-Heinz Schröder*
FB IV Mathematk. Univ. Trier. D-54286 Trier, Germany*
Department of Mathematics. Yangon University. Yangon, Union of Myanmar**
Presentado por José Bonet el 26 de enero de 1998. Aceptado el 1 de abril de 1998.

Abstract

Motivated by the notion of a topological group, which is the semidirect product of a normal subgroup and a subgroup (see[4]), which turned out to be a rich source for examples and counterexamples, we introduce an analogous notion of a locally convex algebra, which is the semidirect product of an ideal and a subalgebra. (Cf. a more specialized notion for operator algebras in [3; Ch. 13]). We present a general method of constructing such semidirect products, which contains the direct products and the adjunction of a unit element as special cases. As an application we obtain an example of an algebra. A provided with a Banach space topology \mathcal{T} and containing an ideal C such that both $(C, \mathcal{T} \cap C)$ and $\left(A / C, \mathcal{T}^{\prime} C\right)$ are Banach algebras but (A, \mathcal{T}) is not.

NOTATIONS

By an algebra we will always mean an associative algebra over the field $I K \in\{I R, \mathbb{C}\}$. A character on an algebra A is by definition a linear multiplicative functional different from zero, and $\sigma(A)$ denotes the set of all characters on A. Given $x \in A, \sigma_{A}(x)$ denotes the spectrum of x with respect to A. If A contains a unit element e, then $G(A)$ denotes the set of invertible elements in A. An element x $\in A$ is called quasiinvertible in A, if there is (a so-called quasiinverse element) $y \in$ A satisfying $x y=y x=x+y$, and the quasiinverse element y is uniquely determined. An algebra provided with a locally convex topology such that multiplication is jointly continuous, is called a locally convex algebra; and a locally convex algebra is called locally m -convex if its 0 -nbhd-filter has a basis consisting of sets U satisfying $U^{2} \subset U$.

Definition 1. Let A be an algebra containing an ideal C and a subalgebra B such that $A=C+B$ and $C \cap$ $B=\{0\}$. Then we call A the semidirect product of C and B and use the notation $A=C \otimes_{S} B$.

Remark. Let $A=C \otimes_{S} B$. Then clearly the quotient algebra A / C is canonically isomorphic to B. Let $q: A \rightarrow B$ denote the corresponding linear multiplicative surjection with $\operatorname{kerq}=C$. For the characters on A we have the representation.

$$
\sigma(A)=\sigma(C) \cup(\sigma(B) \circ q)
$$

More precisely, if $\psi \in \sigma(C)$, there is a unique extension of ψ to a character on A (see [2; theorem C.1]) and if $\varphi \in \sigma(B)$ then $\varphi \circ q \in \sigma(\mathrm{~A})$. Conversely, let $X \in \sigma(A)$. If $\left.X\right|_{C} \neq 0$, then $\left.X\right|_{C} \in \sigma(C)$ and X is its unique extension to a character on A; if $\left.X\right|_{\mathrm{C}}=0$, there is $\psi \in \sigma(B)$ satisfying $X=\psi \circ q$.

Also the quasiinvertibility of elements $c+\mathrm{b} \in A$, where $b \in B, c \in C$, can be characterized. In fact, formal adjunction of a unit element to A yields $A_{e}=(C \times\{0\}) \otimes_{S} B_{e}$ which we may abbreviate to $A_{e}=C \otimes_{S} B_{e}$. Let $c \in C$ and $b \in B$ be given. Then $c+b$ is quassinvertible in A if and only if b is quassinvertible in B and $c(e-b)^{-1}$ is quasiinvertible in C. In fact, if $\mathrm{e}-(c+b)=-c+(e-b) \in G\left(A_{e}\right)$, then $e-b \in G\left(B_{e}\right) \subset G\left(A_{e}\right)$, hence $-c(e-b)^{-1}+e \in G\left(A_{e}\right)$ and $c(e-b)^{-1}$ is quasiinvertible in A_{e} and hence in C, as C is an ideal in $A_{e^{e}}$. Conversely, if $e-b \in G\left(B_{e}\right) \subset G\left(A_{e}\right)$ and $e-c(e-b)^{-1} \in G\left(A_{e}\right)$, then $e-(b+c) \in G\left(A_{e}\right)$. Thus $b+c$ is quasiinvertible in A_{e} and hence also in A.

Now, consequently, a complex number $\lambda \in I K \backslash\{0\}$ belongs to $\sigma_{A}(c+b)$ if and only if either $\lambda \in \sigma_{B}(b)$ or $\frac{1}{\lambda} b$ is quasiinvertible in B with quasiinverse element $d \in \mathrm{~B}$ and $\lambda \in \sigma_{C}(c-c d)$.

Definition 2. Let (A, \mathcal{T}) be a locally convex algebra and let $C \subset A$ be an ideal, $B \subset A$ a subalgebra such that $A=C \otimes_{S} B$. Then we call (A, T) the topological semidirect product of C and B, if the canonical linear bijection

$$
(C, \mathcal{T} \cap C) \times(B, \mathcal{T} \cap B) \rightarrow(A, \mathcal{T}),(c, b) \rightarrow c+b
$$

is a homeomorphism. In that case the quotient algebra $\left(A C_{C}, \mathcal{T} / C\right)$ is canonically topologically isomorphic to the algebra $(B, \mathcal{T} \cap B)$.

Proposition. Let (A, \mathcal{T}) be a locally convex algebra, which is the topological semidirect product of an ideal C and a subalgebra B such that both $(C, \mathcal{T} \cap C$) and $(B, \mathcal{T}$ $\cap B)$ are locally m-convex. Then (A, \mathcal{T}) is also locally m convex.

Proof. Let U be an absolutely convex 0 -nbhd in (A, \mathcal{T}); we may assume that $(U \cap C)^{2} \subset U \cap C$. As (A, \mathcal{T}) is a locally convex algebra, there are absolutely convex 0 -nbhds V and W in $(C, \mathcal{T} \cap C)$ and $(B, \mathcal{T} \cap B)$, respectively; such that

$$
(\Gamma(V \cup W))^{2} \cup(\Gamma(V \cup W))^{3} \subset U, V^{2} \subset V \subset U, W^{2} \subset W \subset U,
$$

(Γ denoting the absolutely convex hull). We will show that $(\Gamma(V \cup W))^{k} \subset U$ for all $k \in I N$, which proves that $\tilde{U}:=\Gamma\left(\cup_{k \in I N}(V \cup W)^{k}\right)$ is a 0 -nbhd in (A, \mathcal{T}) contained in U which satisfies $\tilde{U}^{2} \subset \tilde{U}$. For the proof we first observe that $(\Gamma X)(\Gamma \mathrm{Y}) \subset \Gamma(X Y)$ for arbitrary subsets X, Y in A. Thus we must only prove that $(V \cup W)^{k} \subset U$ for all $k \in I N$. Now $(V \cup W)^{k}$ is the union of $V^{k}(\subset V \subset U), W^{k}(\subset W \subset U)$ and of finite products of sets of the form $V W, W V W, W V$, $V W V$. These latter sets are all contained in $U \cap C$ and (U $\cap C)^{l} \subset U$ for all $l \in \mathbb{I N}$.

Our next aim is to present a method to construct algebras which are semidirect products.

Proposition. Let C and B be algebras and assume that there is a linear multiplicative map

$$
l: B \rightarrow L(C):=\{f: C \rightarrow C \text { linear }\}, b \rightarrow l_{b}
$$

and a linear antimultiplicative map

$$
r: B \rightarrow L(C), b \rightarrow r_{b}
$$

such that $r_{b} \circ l_{\tilde{b}}=l_{\tilde{b}} \circ r_{b}$ for all $b, \tilde{b} \in B$ and such that $l_{b}(a c)$ $=l_{b}(a) c, r_{b}(a c)=a r_{b}(c), a l_{b}(c)=r_{b}(a) c$ for all $b \in B, a$, $c \in C$. Then the multiplication.

$$
\begin{aligned}
& (C \times B) \times(C \times B) \rightarrow(C \times B),\left(\left(c_{1}, b_{1}\right),\left(c_{2}, b_{2}\right)\right) \rightarrow\left(c_{1} c_{2}+l_{b_{1}}\left(c_{2}\right)+r_{b_{2}}\right. \\
& \left.\left(c_{1}\right), b_{1} b_{2}\right)
\end{aligned}
$$

makes $A:=C \times B$ (provided with componentwise addition and scalar multiplication) an associative algebra, such that A is the semidirect product of the ideal $C \times\{0\}$ and the subalgebra $\{0\} \times B$. We will use the notation $A=C \times{ }_{S} B$. Moreover, let \mathcal{T} and \mathcal{S} be locally convex topologies on C and B, respectively, such that (C, \mathcal{T}) and (B, S) are locally convex algebras. Then A provided with the product topology $T \times \mathcal{S}$ is a locally convex algebra if and only if the two bilinear maps

$$
\varphi:(B, S) \times(C, \mathcal{T}) \rightarrow(C, \mathcal{T}),(b, c) \rightarrow l_{b}(c)
$$

and

$$
\psi:(C, \mathcal{T}) \times(B, S) \rightarrow(C, \mathcal{T}),(c, b) \rightarrow r_{b}(c)
$$

are continuous.
Proof. One directly computes that the above multiplication is associative and distributive. For the last assertion, $(A, \mathcal{T} \times S)$ is a locally convex alegra if and only if for all 0 -nbhds U in $(\mathrm{C}, \mathcal{T})$ and V in (B, S) there are 0 -nbhds \tilde{U} in $(\mathrm{C}, \mathcal{T})$ and \tilde{V} in (B, S) such that $\tilde{U}^{2}+\varphi(\tilde{V} \times \tilde{U})+\psi(\tilde{U} \times \tilde{V}) \subset U$ and $\tilde{V}^{2} \subset V$, wich is obviously equivalent to the continuity of φ and ψ at $(0,0)$.

Examples.

1. Let C be an algebra, $B:=\mathbb{C}$ and for all $\lambda \in \mathbb{C}$ let $l_{\lambda}:=r_{\lambda}: C \rightarrow C, c \rightarrow \lambda c$. Then $C \times{ }_{S} B$ coincides with C_{e} (formal adjunction of a unit element). If (C, \mathcal{T}) is a locally convex algebra, then $\left(C \times{ }_{S} B, \mathcal{T} \times \mathcal{T}_{1.1}\right)$ and $(C, \mathcal{T})_{e}$ coincide.
2. Let B, C be locally convex algebras and for all b $\in \mathrm{B}$ let $l_{b}:=r_{b}:=0$-map. Then $C \times_{S} \mathbf{B}$ is equal to the direct product $C \times \mathrm{B}$ with componentwise multiplication.
3. Let D be an algebra and le $B, C \subset D$ be subalgebras such that $B C \cup C B \subset C$. For each $b \in B$ let $l_{b}: c$ $\rightarrow b c$ and $r_{b}: c \rightarrow c b$. Then l, r satisfy the requirements of the proposition, hecen $A=C \times_{S} B$ is a well-defined algebra. Thus a semidirect product $A=C \times{ }_{S} B$ need not be commutative, even if C and B are commutative. Take e.g.

$$
B:=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{C}\right\}, C:=\left\{\left(\begin{array}{ll}
0 & c \\
0 & 0
\end{array}\right): c \in \mathbb{C}\right\} \subset M_{2}(\mathbb{C}) .
$$

4. Let C be an algebra with unit element e, and let \mathcal{T}, S be locally convex topologies on C such that (C, \mathcal{T}) and (C, S) are locally convex algebras. Form $A:=C \times{ }_{S} C$ according to 3) by putting $B:=C=: D$. Then the following are equivalent.
i) $(A, \mathcal{T} \times \mathcal{S})$ is a locally convex algebra.
ii) Multiplication in $(A, \mathcal{T} \times S)$ is separately continuous.
iii) $S \supset \mathcal{T}$.

If in addition $(C, \mathcal{T}),(C, S)$ are locally m-convex, then i) - iii) are equivalent to
iv) $(A, \mathcal{T} \times S)$ is a locally m-convex algebra.

Proof. ii) \rightarrow iii): As left multiplication with ($e, 0$) on $(A, \mathcal{T} \times \mathcal{S})$ is continuous and as $(e, 0) .(0, a)=(a, 0)$ for all $a \in C$, the identity map $(C, S) \rightarrow(C, \mathcal{T})$ is continuous.
iii) $\rightarrow \mathrm{i}$): is true by the last assertion in the proposition, because multiplication as a map $(\mathrm{C}, \mathcal{T}) \times(\mathrm{C}, \mathcal{T}) \rightarrow(\mathrm{C}, \mathcal{T})$
is continuous, thus also continuous on $(\mathrm{C}, \mathcal{T}) \times(\mathrm{C}, \mathcal{S})$ and on $(\mathrm{C}, \mathcal{S}) \times(\mathrm{C}, \mathcal{T})$.

The last part follows from the above proposition.
5. Let C be an algebra and let \mathcal{T}, \mathcal{S} be Hausdorff locally convex topologies on C, such that $S \supset \mathcal{T}$. Then (A, $\mathcal{R}):=\left(C \times{ }_{S} C, T \times S\right)$ is a locally convex algebra. As $\Delta:=$ $\{(-c, c): c \in C\}$ is an ideal in A, we obtain that (A, \mathcal{R}) is the semidirect product of Δ and $\{0\} \times C$ which are both closed, but not the topological semidirect product of Δ and $\{0\} \times C$. On the other hand (A, \mathcal{R}) is topologically isomorphic as an algebra to the direct topological product of (Δ, $\mathcal{R} \cap \Delta)$ and $(C \times\{0\}, \mathcal{R} \cap(C \times\{0\}))$.

Theorem. There exists an algebra A provided with a Banach space topology R, which contains an ideal C such that both $(C, \mathcal{R} \cap C)$ and $(A / C, \mathcal{R} / C)$ are Banach algebras and such that on (A, \mathcal{R}) multiplication is not continuous.

Proof. Let X be a linear space of dimension $2^{I N}$, then by [1,5, exercise 24], X is linearly isomorphic to l^{1} and to l^{2}. Consequently, there exist two different Banach space topologies \mathcal{T} and S on X. Providing X with zero-multiplica-
tion we obtain the algebra $X_{n i l}$, formal adjunction of a unit element yields the algebra $C:=\left(X_{n i}\right)_{e}$, which carries the two different Banach algebra topologies $\tilde{\mathcal{S}}$ and $\tilde{\mathcal{T}}$ generated by S and T , respectively.

Now, by example $4, A:=C \times{ }_{S} C$ provided with $\tilde{\mathcal{T}} \times \tilde{\mathcal{S}}$ satisfies the requirement, as $\mathcal{S} \nsim \mathcal{T}$ and $(A, \tilde{\mathcal{T}} \times \tilde{S}) /(\mathrm{C} \times\{0\})$ is isomorphic to the Banach algebra (C, \tilde{S}).

REFERENCES

1. Bounbaki, N. (1966) Espaces vectoriels topologiques. Chap II) Hermann, Paris.
2. Michael, E. (1952) Locally multiplicatively-convex topological algebras. Memoirs of the Amer. Math. Soc. 11.
3. Kadison, R.V. \& Ringrose, J. R. (1986) Fundamentals of the Theory of Operator Algebras II, Academic Press, Orlando.
4. Roelcke, W. \& Dierolf, S. (1981) Uniform structures on topological groups and their quotients, McGraw-Hill, New York.
