SEMIDIRECT PRODUCTS OF LOCALLY CONVEX ALGEBRAS AND THE THREE-SPACE-PROBLEM

(locally convex algebras/locally m-convex algebras/semi-direct product/three-space-problem))

Susanne Dierolf*, Khin Aye Aye** and Karl-Heinz Schröder*

FB IV Mathematk. Univ. Trier. D-54286 Trier, Germany*

Department of Mathematics. Yangon University. Yangon, Union of Myanmar**

Presentado por José Bonet el 26 de enero de 1998. Aceptado el 1 de abril de 1998.

ABSTRACT

Motivated by the notion of a topological group, which is the semidirect product of a normal subgroup and a subgroup (see[4]), which turned out to be a rich source for examples and counterexamples, we introduce an analogous notion of a locally convex algebra, which is the semidirect product of an ideal and a subalgebra. (Cf. a more specialized notion for operator algebras in [3; Ch. 13]). We present a general method of constructing such semidirect products, which contains the direct products and the adjunction of a unit element as special cases. As an application we obtain an example of an algebra. A provided with a Banach space topology $\mathcal T$ and containing an ideal $\mathcal C$ such that both $(\mathcal C, \mathcal T \cap \mathcal C)$ and $(A/\mathcal C, \mathcal T/\mathcal C)$ are Banach algebras but $(A, \mathcal T)$ is not.

NOTATIONS

By an algebra we will always mean an associative algebra over the field $IK \in \{IR, \mathbb{C}\}$. A character on an algebra A is by definition a linear multiplicative functional different from zero, and $\sigma(A)$ denotes the set of all characters on A. Given $x \in A$, $\sigma_A(x)$ denotes the spectrum of x with respect to A. If A contains a unit element e, then G(A) denotes the set of invertible elements in A. An element $x \in A$ is called quasiinvertible in A, if there is (a so-called quasiinverse element) $y \in A$ satisfying xy = yx = x + y, and the quasiinverse element y is uniquely determined. An algebra provided with a locally convex topology such that multiplication is jointly continuous, is called a locally convex algebra; and a locally convex algebra is called locally m-convex if its 0-nbhd-filter has a basis consisting of sets U satisfying $U^2 \subset U$.

Definition 1. Let A be an algebra containing an ideal C and a subalgebra B such that A = C + B and $C \cap B = \{0\}$. Then we call A the semidirect product of C and B and use the notation $A = C \otimes_S B$.

Remark. Let $A = C \otimes_S B$. Then clearly the quotient algebra A/C is canonically isomorphic to B. Let $q: A \to B$ denote the corresponding linear multiplicative surjection with kerq = C. For the characters on A we have the representation.

$$\sigma(A) = \sigma(C) \cup (\sigma(B) \circ q).$$

More precisely, if $\psi \in \sigma(C)$, there is a unique extension of ψ to a character on A (see [2; theorem C.1]) and if $\varphi \in \sigma(B)$ then $\varphi \circ q \in \sigma(A)$. Conversely, let $X \in \sigma(A)$. If $X|_{C} \neq 0$, then $X|_{C} \in \sigma(C)$ and X is its unique extension to a character on A; if $X|_{C} = 0$, there is $\psi \in \sigma(B)$ satisfying $X = \psi \circ q$.

Also the quasiinvertibility of elements $c+b \in A$, where $b \in B$, $c \in C$, can be characterized. In fact, formal adjunction of a unit element to A yields $A_e = (C \times \{0\}) \otimes_S B_e$ which we may abbreviate to $A_e = C \otimes_S B_e$. Let $c \in C$ and $b \in B$ be given. Then c+b is quassinvertible in A if and only if b is quassinvertible in B and $c(e-b)^{-1}$ is quasiinvertible in C. In fact, if $c = (c+b) = -c + (e-b) \in G(A_e)$, then $c = b \in G(B_e) \subset G(A_e)$, hence $c = c(e-b)^{-1} + e \in G(A_e)$ and $c(e-b)^{-1}$ is quasiinvertible in $c = c(e-b)^{-1} \in G(A_e)$ and $c = c(e-b)^{-1} \in G(A_e)$, then $c = c(b+c) \in G(A_e)$. Thus $c = c(e-b)^{-1} \in G(A_e)$, then $c = c(b+c) \in G(A_e)$. Thus $c = c(e-b)^{-1} \in G(A_e)$ and hence also in $c = c(e-b)^{-1} \in G(A_e)$ and hence also in $c = c(e-b)^{-1} \in G(A_e)$.

Now, consequently, a complex number $\lambda \in IK \setminus \{0\}$ belongs to $\sigma_A(c+b)$ if and only if either $\lambda \in \sigma_B(b)$ or $\frac{1}{\lambda}b$ is quasiinvertible in B with quasiinverse element $d \in B$ and $\lambda \in \sigma_C(c-cd)$.

Definition 2. Let (A, T) be a locally convex algebra and let $C \subset A$ be an ideal, $B \subset A$ a subalgebra such that $A = C \otimes_S B$. Then we call (A, T) the topological semidirect product of C and B, if the canonical linear bijection

$$(C, \mathcal{T} \cap C) \times (B, \mathcal{T} \cap B) \rightarrow (A, \mathcal{T}), (c,b) \rightarrow c+b$$

is a homeomorphism. In that case the quotient algebra (A/C, T/C) is canonically topologically isomorphic to the algebra $(B, T \cap B)$.

Proposition. Let (A, \mathcal{T}) be a locally convex algebra, which is the topological semidirect product of an ideal C and a subalgebra B such that both $(C, \mathcal{T} \cap C)$ and $(B, \mathcal{T} \cap B)$ are locally m-convex. Then (A, \mathcal{T}) is also locally m-convex.

Proof. Let U be an absolutely convex 0-nbhd in (A, T); we may assume that $(U \cap C)^2 \subset U \cap C$. As (A, T) is a locally convex algebra, there are absolutely convex 0-nbhds V and W in $(C, T \cap C)$ and $(B, T \cap B)$, respectively; such that

$$(\Gamma(V \cup W))^2 \cup (\Gamma(V \cup W))^3 \subset U, \ V^2 \subset V \subset U, \ W^2 \subset W \subset U,$$

(Γ denoting the absolutely convex hull). We will show that $(\Gamma(V \cup W))^k \subset U$ for all $k \in IN$, which proves that $\tilde{U} := \Gamma \Big(\bigcup_{k \in IN} \big(V \cup W \big)^k \Big)$ is a 0-nbhd in (A, T) contained in U which satisfies $\tilde{U}^2 \subset \tilde{U}$. For the proof we first observe that (ΓX) $(\Gamma Y) \subset \Gamma(XY)$ for arbitrary subsets X, Y in A. Thus we must only prove that $(V \cup W)^k \subset U$ for all $k \in IN$. Now $(V \cup W)^k$ is the union of $V^k (\subset V \subset U), W^k (\subset W \subset U)$ and of finite products of sets of the form VW, WVW, WV, VWV. These latter sets are all contained in $U \cap C$ and $(U \cap C)^l \subset U$ for all $l \in IN$.

Our next aim is to present a method to construct algebras which are semidirect products.

Proposition. Let C and B be algebras and assume that there is a linear multiplicative map

$$l: B \to L(C) := \{f: C \to C \ linear\}, b \to l_b$$

and a linear antimultiplicative map

$$r: B \to L(C), b \to r_b$$

such that $r_b \circ l_{\tilde{b}} = l_{\tilde{b}} \circ r_b$ for all b, $\tilde{b} \in B$ and such that $l_b(ac) = l_b(a)c$, $r_b(ac) = ar_b(c)$, $al_b(c) = r_b(a)c$ for all $b \in B$, a, $c \in C$. Then the multiplication.

$$\begin{array}{ccc} (C \times B) \times (C \times B) \to (C \times B), & ((c_1,b_1),(c_2,b_2)) \\ & & (c_1), & b_1b_2) \end{array} \rightarrow \\ \begin{array}{cccc} (c_1c_2 + l_{b_1}(c_2) + r_{b_2} \\ \end{array}$$

makes $A := C \times B$ (provided with componentwise addition and scalar multiplication) an associative algebra, such that A is the semidirect product of the ideal $C \times \{0\}$ and the subalgebra $\{0\} \times B$. We will use the notation $A = C \times_S B$. Moreover, let T and S be locally convex topologies on C and B, respectively, such that (C, T) and (B, S) are locally convex algebras. Then A provided with the product topology $T \times S$ is a locally convex algebra if and only if the two bilinear maps

$$\varphi: (B, S) \times (C, T) \rightarrow (C, T), (b,c) \rightarrow l_b(c)$$

and

$$\psi: (C,T) \times (B,S) \rightarrow (C,T), (c,b) \rightarrow r_b(c)$$

are continuous.

Proof. One directly computes that the above multiplication is associative and distributive. For the last assertion, $(A, \mathcal{T} \times \mathcal{S})$ is a locally convex alegra if and only if for all 0-nbhds U in (C, \mathcal{T}) and V in (B, \mathcal{S}) there are 0-nbhds \tilde{U} in (C, \mathcal{T}) and \tilde{V} in (B, \mathcal{S}) such that $\tilde{U}^2 + \varphi(\tilde{V} \times \tilde{U}) + \psi(\tilde{U} \times \tilde{V}) \subset U$ and $\tilde{V}^2 \subset V$, wich is obviously equivalent to the continuity of φ and ψ at (0, 0).

Examples.

- 1. Let C be an algebra, $B := \mathbb{C}$ and for all $\lambda \in \mathbb{C}$ let $l_{\lambda} := r_{\lambda} : C \to C$, $c \to \lambda c$. Then $C \times_S B$ coincides with C_e (formal adjunction of a unit element). If (C, T) is a locally convex algebra, then $(C \times_S B, T \times T_{|\cdot|})$ and $(C, T)_e$ coincide.
- 2. Let B, C be locally convex algebras and for all $b \in B$ let $l_b := r_b := 0$ -map. Then $C \times_S B$ is equal to the direct product $C \times B$ with componentwise multiplication.
- 3. Let D be an algebra and le B, $C \subset D$ be subalgebras such that $BC \cup CB \subset C$. For each $b \in B$ let $l_b : c \to bc$ and $r_b : c \to cb$. Then l, r satisfy the requirements of the proposition, hecen $A = C \times_S B$ is a well-defined algebra. Thus a semidirect product $A = C \times_S B$ need not be commutative, even if C and B are commutative. Take e.g.

$$B := \left\{ \begin{pmatrix} a & \circ \\ \circ & b \end{pmatrix} : a,b \in \mathbb{C} \right\}, C := \left\{ \begin{pmatrix} 0 & c \\ 0 & 0 \end{pmatrix} : c \in \mathbb{C} \right\} \subset M_2(\mathbb{C}).$$

- 4. Let C be an algebra with unit element e, and let \mathcal{T}_i S be locally convex topologies on C such that (C, \mathcal{T}) and (C, \mathcal{S}) are locally convex algebras. Form $A := C \times_S C$ according to 3) by putting B := C =: D. Then the following are equivalent.
 - i) $(A, T \times S)$ is a locally convex algebra.
- ii) Multiplication in $(A, T \times S)$ is separately continuous.
 - iii) $S \supset T$.

If in addition (C, T), (C, S) are locally m-convex, then i) - iii) are equivalent to

iv) $(A, T \times S)$ is a locally m-convex algebra.

Proof. ii) \rightarrow iii): As left multiplication with (e, 0) on $(A, T \times S)$ is continuous and as $(e, 0) \cdot (0, a) = (a, 0)$ for all $a \in C$, the identity map $(C, S) \rightarrow (C, T)$ is continuous.

iii) \rightarrow i): is true by the last assertion in the proposition, because multiplication as a map $(C, T) \times (C, T) \rightarrow (C, T)$

is continuous, thus also continuous on $(C, T) \times (C, S)$ and on $(C, S) \times (C, T)$.

The last part follows from the above proposition.

5. Let C be an algebra and let \mathcal{T} , \mathcal{S} be Hausdorff locally convex topologies on C, such that $S \supset \mathcal{T}$. Then $(A, \mathcal{R}) := (C \times_S C, \mathcal{T} \times \mathcal{S})$ is a locally convex algebra. As $\Delta := \{(-c, c) : c \in C\}$ is an ideal in A, we obtain that (A, \mathcal{R}) is the semidirect product of Δ and $\{0\} \times C$ which are both closed, but not the topological semidirect product of Δ and $\{0\} \times C$. On the other hand (A, \mathcal{R}) is topologically isomorphic as an algebra to the direct topological product of $(\Delta, \mathcal{R} \cap \Delta)$ and $(C \times \{0\}, \mathcal{R} \cap (C \times \{0\}))$.

Theorem. There exists an algebra A provided with a Banach space topology \mathcal{R} , which contains an ideal C such that both $(C, \mathcal{R} \cap C)$ and $(A/C, \mathcal{R}/C)$ are Banach algebras and such that on (A, \mathcal{R}) multiplication is not continuous.

Proof. Let X be a linear space of dimension 2^{lN} , then by [1, 5, exercise 24], X is linearly isomorphic to l^1 and to l^2 . Consequently, there exist two different Banach space topologies \mathcal{T} and \mathcal{S} on X. Providing X with zero-multiplica-

tion we obtain the algebra X_{nil} ; formal adjunction of a unit element yields the algebra $C:=(X_{nil})_e$, which carries the two different Banach algebra topologies $\tilde{\mathcal{S}}$ and $\tilde{\mathcal{T}}$ generated by S and T, respectively.

Now, by example 4, $A := C \times_S C$ provided with $\tilde{\mathcal{T}} \times \tilde{\mathcal{S}}$ satisfies the requirement, as $\mathcal{S} \supset \mathcal{T}$ and $(A, \tilde{\mathcal{T}} \times \tilde{\mathcal{S}})/(C \times \{0\})$ is isomorphic to the Banach algebra $(C, \tilde{\mathcal{S}})$.

REFERENCES

- 1. Bounbaki, N. (1966) Espaces vectoriels topologiques. Chap II) Hermann, Paris.
- 2. Michael, E. (1952) Locally multiplicatively-convex topological algebras. *Memoirs of the Amer. Math. Soc.* 11.
- 3. Kadison, R.V. & Ringrose, J. R. (1986) Fundamentals of the Theory of Operator Algebras II, Academic Press, Orlando.
- 4. Roelcke, W. & Dierolf, S. (1981) Uniform structures on topological groups and their quotients, McGraw-Hill, New York.