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ABSTRACT 

In this paper existence of periodic and almost-periodic 
mild solutions of a class of semilinear equation is estab
lished under suitable assumptions. 

1. INTRODUCTION 

Let X be a real Banach space, with norm ||, and we 
consider the following non linear ordinary differential 
equation: 

(1) x{t) = Ax{t) + f[t, x{t)) 

where/fi, xj : R x Z -^ X is almost-periodic in t, uniformly 
for X in compact subsets of X, and A is the infinitesimal 
generator of a Cg-semigroup S(t) satisfying 
|5(i)| . . <Me^\ where p is a negative number. 

In this paper we are mainly interested in finding al
most-periodic mild solution over R of (1). Existence and 
uniqueness of an almost-periodic mild solution of the inho-
mogeneous equation: 

(2) x\t) = Ax{t) + g{t) 

where g is almost-periodic function from 
proved in [8]. 

into X were 

In the case when / is uniformly Lipschitz continuous 
with a Lipschitz constant small enough, existence and 
uniqueness of an almost-periodic mild solution over R of 
(1) were proved by Zaidman in [9]. 

Our work extends Zaidman's results of [8, 9]. 

Our objective in section 2 is to establish sufficient 
condicions on f(t, x) that ensure the existence of the al
most-periodic mild solution (1). 

Our main theorem here generalize Zaidman's results 
obtained in [9], the proof presented applies the Krasnosel-
skii fixed point. 

In section 3, we continue our study of the semilinear 
equation (1). 

If the Lipschitz continuity of / in x or the compactness 
in x are dropped, then as is well known, the existence of 
a mild solution of (1) is no more guaranteed even A = 0. 

In order to assume the existence of almost-periodic 
mild solution in this case, we have to impose further con
ditions on the operator A. If A is the infinitesimal generator 
of a compact CQ-semigroup S(t) verifying |5(/)L^ <^^^ 

we have stronger results, we will see in this case the ex
istence of almost-periodic mild solution is established. 

Section 4 is finally devoted to the study of the semili
near equation of evolution (1); where D is a closed, boun
ded and convex subset of X, and / : R x D -> X is conti
nuous and 0)-periodic. We consider various conditions on 
D, and /, assuring the existence of (O-periodic mild solu
tions of (1). Becker in [2] has studied the existence of 
solutions in a weak sense of 

(3) 
[x' + (A + B{t, x)) X = / ( i , x) 

I x{0) = x{(o) 

where A is the generator of a semigroup of compact type 
on a Hilbert space H, B(t, x) is a bounded linear operator 
and f(t, x) a function with values in H. He established that 
the uniqueness of the linearized version for B and/belong
ing to certain sets implies the existence of a weak solution 
of (3) using perturbation and convergence for equations in 
compact type. Our main result is established on a Banach 
space using a completely different method. 

We start with the following definitions. 
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Definition 1.1. [1] (Bochner's criterion) 

The continuous function x : B^ -^ X is almost periodic 
over R if and only if for some sequence (/z„) there 

exists a subsequence of (/z„ ) , (say (h^ ) again) such 
that the sequence of functions x(.+hj converges to a func
tion x{) uniformly on K as n -^ +oo, 

r ^ 
i.e. lim sup\x[t + h^)-x{t)\ = 0 

Definition 1.2. [9] The continuous function: x ; R -> 
X is a mild solution over R of the semilinear equation 

x\t) = Ax{t)-^f{t,x{t)) 

if the functional relation 

x{t) = S{t-a)x{a)+ Í S{t - a)f(a,x{(j)) da 

is satisfied for all a e R, \ft>a. 

2. A NON LINEAR ABSTRACT DIFFERENTIAL 
EQUATION WITH ALMOST-PERIODIC 
SOLUTION 

Our main assumptions concerning the function / in this 
section will be: 

f(t, x) = f(t, x) + f2(t, x), where/i and/2 are continuous 
from R X Z into X and satisfy (HI) there is a number L > 
0 such that |/i {t, x) - f {t, y)\ < L\x - y\ for all x, y -^ X and 
te R. 

(H2) /2 (R X D) is precompact for each bounded subset 
D of Z, and locally uniformly continuous, that is, for each 
r, £ > 0, there is a ô(r, €) such that \f2{t, x)-f2{t, y)\<£ 
whenever í e R and x, y e X with |jc| < r, l̂ l < r and 
\x-y\<5. 

(H3) lim A}¿2^ = 0, uniformly in í € R. 
|x|->+oo | x | 

Our aim here is to establish the following. 

Theorem 2.1. In addition to (HI), (H2) and (H3), we 
assume that A generates a semigroup {S(t)] satisfying 
\S{t^ . . < Me^^, where ¡3 is a negative number 

/,(i, xj : R X Z -^ X is almost-periodic in t, uniformly for 
X in compact subsets of X, 
fjit, x) : K X X ^ X is almost-periodic in t, uniformly for 
X in compact subsets of X, 
and for L sufficiently small enough Lipschiz constant, then, 
equation (1) has at least one almost-periodic solution. 

For the proof of this theorem we need preliminary lem

mas. 

Lemma 2.2. [8, 9] Let ^ ; R -> Z w almost-periodic, 
then there exists one and only one almost-periodic mild 
solution over R of the differential equation (2), given by: 

x{t) = J S{t- a) g{o)da 

Lemma 2.3. Ifa(t) belongs to L\W), a(t) > Ofor all 
t e R"*", and a(t) f(t) belongs to L\W, Z), then 

j'2{s)f{s)ds €Í J a{s)ds co{f{s\ 0<s<+^) 

Proof. Set s" =- for / = 0, 1, ..., n^. 
n 

we have: 

f2{s)f{s)ds=^iim^xK^r)/(^r)(^r -^;-.) 

= J^14^"i^"-^^ 
m^r)(^r-;iO'^ 

-J,a{4)f{s^){s^;-sl, 

using the convexity 

1 
J^a{sf)f{sf){sf -sl,)eco{f{s),0<s<^). 

\/neIN\ 

So: 

f^a{s)f{s)ds en'2{s)ds] cô{f{sl 0 <^ < +00) 

Proof of theorem 2.1.: We define. 

AP(X) - {(p : R -^ Z; ç> is almost-periodic}, with the 
usual supremum norm over R which we denote by ||^. 

On AP (X) we define a mapping T into itself by: 

T : AP(X) -^ AP(X) 

Ç -^ T(p = u 

which u is the unique mild almost-periodic solution over R 
of the differential equation: 

x\t) = Ax{t)-hf{t, (p{t)) 

(see lemma (2.2)). 
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Observe that, we can express 

T(p = T^(p+T2(p for ail (p e AP(X) 

where 

TMt) = ¡'_S{t-c7)f,{aMc^))da 

T2(p{t) = f_S{t-(j)f2{(J,(p{a))da 

First, we prove the existence of a closed, bounded 
convex subset of AP(X) invariant for T. From hypothesis 
(H3), we have: 

let e > 0 there is r such that: |/2(Í,JC)¡<£|X| for all í e R 
and X e X with \x\ > r. 

Setting: M(£) = sup \f2{U x)\. 
telR 
\x\<r 

Therefore: 

(4) I/2(t, x)\<M{e) + 6:|;c| for all{t,x)eRxX 

\T(p{t)\ < ¡[jS{t-o)l^^^(\f,(cj, (p{a))dcT- f,{G,0)\dcj) + 

LN^-^)L(X)(|/2(^^ ^Hh|/i(^^0)|) 

in view of the assumption (HI) and from (4), we have 

\P\ V telR 

for £, L smalls enough, let R be such that 

with C = M(£) + sup|/i(i,0)|. 

tElR 

We may conclude that T maps the ball of radius R 
centred at 0 of AP{X)[B^{0, R)) into itself. 

To complete the proof of theorem (2.1) it remains to 
show that T2 is completely continuous in AP(X). 

The local uniform continuity of /2 is easily seen to 
imply T2 is continuous on bounded subsets of AP(X). 

Now we show that T2 is compact (we can prove with
out loss of generality that T2(B^(0, R)) is relatively com
pact). 

T2(p{t) = ¡[j{t-a)f2{a,(p{(^))da 

Introduce the new time 

T2(p{t) = ¡^{a)f2{t-(J, cp{t-a))dG 

Let Y > 0 be such that 0 < y < |j8| 

T2(p{t) = l'^e-^(ey^S{o)f2{t-a. (p{t-a))da) 

by lemma (2.3) 

T2(p{t) e (j^e-^''da)œ{e^''S{a)f2{t,x): 

((7,x) e [i,+oo[ X 5(0, R)) for all \(p\^ < R 

if we denote K = f2{R,B{0,R)), hy{H2)K is compact. 
then 

co(e^''S{(j)K;G>0) 

is relatively compact too. In fact, it guarantees that 
e^^S{a)x converges (uniformly in JC € K) to zero as 
(J -^ +00. Therefore T2 is compact. 

We will now conclude that: 

T=T,+T2:B^{0.R)^B^{0,R) 

Tj is a strict contraction for L small see proof of the
orem [9], T2 is completely continuous. 

Therefore by Krasnoselskii fixed point T has a fixed 
point. 

Remark 2.1. More generally the assumption (H3) in 
theorem 2.1 can be replaced by «let D be a closed, convex 
and bounded, f : Rx D -^ X be continuous and bounded; 
suppose 

lim Mh~^ d{S{h)x + hf{t,x)), D) = 0, 

for all (t, x) e Rx X» 

3. ALMOST-PERIODIC SOLUTIONS OF 
SEMILINEAR EQUATIONS WITH COMPACT 
SEMIGROUPUS 

We continue our study of the semi-linear equation: 

(5) x'(t) = Ax(t)+f(t, x(t)) 

The main result of this section is the following exis
tence of almost-periodic mild solution 
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Theorem 3.1. Let A be the infinitesimal generator of 
a compact semigroup S(t), t > 0 satisfying \S{t)\ < 

ef^^{p<0). 

Let f(t, x) be almost-periodic in t uniformly for x in 

\fit,^ 
compact subsets of X, and assume that lim 

uniformly in t. 

0 

The equation (5) has at least one almost-periodic mild 
solution. 

In the proof of this theorem we will need the following 
result. 

Lemma 3.2. [5] Let {7 ,̂ T„ : D (z X -^ X, n = 1, 
2,...} be a family of compact (possible non linear) opera
tors from the (non empty) subset D of X into X. Let T : 
D -^ X be defined by Tx = lim T^x. If T^ -^ Tx as n ^ 

+00 uniformly on bounded subsets of D, then T is compact. 

Proof of theorem 3.1. Under the same notations as 
in the proof of theorem 2.1. 

T : AP{X) -^ AP{X), (p-^T(p = j ' S{t-(j) /(<7, (p{a))da 

using the following representation 

T(p{t) = ¡^S{(j)f{t-G, (p{t~a))dG 

Let e > 0, consider the mapping: 

T^ : AP{X) -^ AP{X), T^(p{t) = J ' i(cj)/(í - a, (p{t - a)) da 

In fact from assumption of our theorem, we have that 
for every e > 0, there exists M(E) such that 

(6) \f{t, x)\ < M{£) + £\x\ for all Í G R 

and we have T^(p{t) = S{€)ï S{a-£)f{t-(7, (p{t-G)\ 

thus, we may conclude that T^ is compact. 

T(p{t) ~ T,(p{t) = Jj5(cT) f{t ~ (J, (p{t - a)) do 

by (6) there exists a constant Q (depending only on R) 
such that: 

%(p-Tç\^ < Cf^j'e^'^da, for all cp e AP{X) such that \(p\^ < R 

This yields T^(p -> Tip as £ —> 0, uniformly on bounded 
subsets of AP(X), and therefore T is compact as a uniform 
limit of compact operators (lemma 3.2). 

Using the same as in the proof of theorem 2.1, we can 
construct an invariant bounded closed convex subset of 
AP(X) for T. 

By Schauder's theorem, there exists (p e AP(X) such 
that T(p = (p. 

The proof is complete. 

4. EXISTENCE OF PERIODIC SOLUTIONS 
OF SEMILINEAR EVOLUTION EQUATIONS 

Consider the following semilinear initial value problem 

x{t) = Ax{t) + f(t,x{t)\ t>0 
(7) 

x(0) = Xo 

where A is the infinitesimal generator of a Co-semigroup 
S(t), t > 0. 

We shall assume throughout that / satisfies 

(U)f:RxX-^Xis continuous and lim ' , / ' = 0 

uniformly in t on bounded intervals. 

Proposition 4.1. [6] In addition to (H), we assume 
that A generates a compact semigroup S(t). Then for every 
XQ G X, the initial value problem (7) has at least one mild 
solution defined on [0, +oo[. 

Our aim here. 

Theorem 4.2. In addition to (H), we assume that A 
generates a compact semigroup, S(t), verifying 
\S{t)\ <e^\ Vi>0, and 1 e p(S((0)) (where p(S((0)) is 
the resolvent set of S((o)). 

Moreover, if t ^ f(t, x) is co-periodic, uniformly in x, 
then the equation (5) has at least one periodic mild solu
tion. 

Proof. By proposition 4.1 the initial value problem (7) 
has a global mild solution x(t) e C([0, +oo]; X). x(t) is (O-
periodic mild solution of the equation. 

x\t) = Ax{t) + f{t,x{t)) 

if and only if: x{0) = x((o), 
and hence 

{co-a)f{a,x{a))da 

Since 1 € p(S((û)), it follows that: 

(8) Xç,={l~S{(o))~^^\(o-G)f{o,x{o)) da 
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Now, we consider the mapping from the Banach space 
C([0, CO]; X) endowed with the uniform norm over [0, œ] 
which we denote by ||^ into itself defined as follows: 

Tx{t)=^ S(t){l - S{(û))''^ ̂ \(ù-a)f{a,x{a)) dG + ̂  S{t-a)f{G,x{G)) da 

Using the same argument as in the proof of theorem 
2.1 we can construct a ball of radius R centred at 0 of 
C([0, CO]; X) invariant for T. 

We first observe that it is equicontinuous subset of 
cm ca]; X). 

Let Í, Í G[0,Û>], t<t, we have 

Tx{t)-Tx{t) = {s{t)-S{ï))[{l-S{œ))-' \t S{co-a)f{^^^^ 

J|) [S{t -(y)-S{t- (j))/(cT, x{a))dG + \\ S{t - (j)f{a, x{(7)) da. 

Setting: 

M= sup |/(i,x)| (finite, fue to hypothesis (H)), let 
te[0,o)] 
\x\<R 

for t e [0, 0)]. 

\Tx{t)-Tx{i)\<œMN\{l-S{œ)y'\^^^^^^ 

M¡^\s{t-a)-S{t-(j)\ dcT + MN{t-t). 

Let £ > 0 choose <5 > 0 such that: ÔMN<—. 
3 

If t-t<8, from [6, theorem 3.2.p.48] we can also 
assume that ô is sufficiently small so that: 

(0MN\ \{i-s[co))Xwys[t)\<'^ 
\LiX 

£ 

\L{X)-'^ 

and 

(úM\s{t-G)-S{t-G)\ <~, for all or G [0,0)] 

and hence 

\Tx{t)-Tx{t)\<£, whenever t - t<5. 

To see that the set U^x, \x\^ < R \ has a compact clo

sure. 

Let a(.) denote the measure of noncompactness on X 
see [3, 4]. 

Now we shall prove that a{Tx{t)\ \x\^ < /?) = 0 for all 
/ e [0, 0)]. 

We consider two situations. 

1. Fix Í > 0, and let 0 < E < i, in this case we can 
write 

Tx{t) = S{£)Tx{t - £) + J ' S{t- a)f{G, X{G)) dG 

using a property of the measure of noncompactness, we 
obtain: 

a[T{x{t))\ \x\^<R)<a[s{£)Tx{t-£)\\x\^<R) + 

+ a{j^_^S{t-£)f{G,x{G)) dG;\xl < R 

Since the map S(£) is compact it follows that: 

a[Tx{t);\x\^<R)<an' S{t-G)f{G,x{G)) dG;\x\^<R 

hence there is a constant C(depending only on R) such 
that: 

a i J ' S{t-G)f{G,x{G)) dG-\x\^ <R]<£C 

since this holds for each 0 < £ < i, we may conclude that: 

a[Tx{t);\x\^<R) = 0 

2. for t = 0, 

a({l - S{o))y^ f S{co - G)f{G, X{G)) dG; \x\^ < R 

< \{I-S{co))-'L^^^«(J"S{co~cj)/(cj,x(a)) dG; \xl < RJ 

Let 0 < £ < Ci), we can write 

J"" S{co - (j)/((7, x{a)) da = 

= S{e)r~^S{o)-e-cr)/((T,x{a))da + j " " S{(o-a)f{a,x{a))da 

we have there exists a C(R) such that 

a(fs{(o-G)f{G,x{G))dG; \X\^<R)<£C{R) 

this being true for each £ > 0, we may conclude that 

a{Tx{0);\xl<R) = 0 

we have from Ascoli's theorem that 7(^^(0, /?)) is rela
tively compact in C([0, co]; X). 
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Therefore, the Schauder-Tychonoff implies that: 
Tx = X, for some x in C([0, O)]; X). It is trivial that x is 
íí>-periodic mild solution of semilinear evolution equation: 

x^(t) = Ax(t) + f(t, x(t)) t > 0 

x(0) = XQ 

where XQ is defined by (8). This complete the proof. 

We close this section with a simple generalization of 
the above result. 

Theorem 4.3. Let D a X be closed convex, bounded, 
A be the infinitesimal generator of a compact semigroup 
S(t), f : W' X D ^ X be continuous bounded, and co-
periodic, suppose 

lim inf h~^d{S{h)x + hf{t,xl D) = Oforall{t,x)eR'-xD 

Then, (5) has a co-periodic mild solution in D. 

Remark 4.1. 1) It should be noted that this statement 
complements the one given in [7] where the method used 

seems to be restricted to D^Q 

2. Under enough strong conditions of the main result 
of Becker [2], for example (X is a Hilbert, B and f satisfy 
certain boundedness and continuity conditions), he esta
blished the existence of a mild periodic solution by apply
ing Schauder theorem. 

5. EXAMPLES 

Example 5.1. Suppose that X is the space Co([0, 1]; 
R) of all ce C([0, 1]; R) such that (p(0) = 0. Define the 
operator A on X by 

D{A) = [çeX:cpis abs. cont, cp'eXand <p(0) = O} 

A(p = -(p' 

Then A is the generator of a semigroup {S(t)} on X 

Suppose that 

/ : [0, 1] X R -^ R is continuous and satisfy 

(HI) there is L > 0 such that 

| / ( T , C ) - / ( T , 7 ] ) | < L | C - 7 7 | 

for all (T,C), (T ,T])G[0,1]XR. 

Suppose also that g : [0, 1]^ x R -> R is continuous 
and satisfy. 

(H2) for each r, £ > 0, there is a ô(r, e) such that 

\g(r,s,Ç)-g{T,s,ri)\<e whenever (x,s) e [0,1]^ and Ç rj e 

R with 1̂1 < r, \n\< r and If-Tj|<5, 

(H3) lim ^*-^'^'^^=Q,uniformly in (x, s) e [0, if. 

Consider the following partial differential equation 

(9) 

u{t,0) = 0 

for all (t, T) G R X [0,1]. 

Theorem 2.1 of section 2 yield the following existence 
result. 

Corollary 5.1. Assume (HI) through (H3) hold. Then 
for each X, continuous and almost periodic, and for L suf
ficiently small enough, there exists at least one almost 
periodic solution of (9). 

Example 5.2. Suppose that X is the space CQQ ([0, 
1]; R) of all cp e C([0, 1]; R) such that cp(0) = <p(l) = 0. 

Define the operator A on X by 

D{A) = {(pEX:(p, (p' are abs. cent., ç)"G Xand (p{0) = (p{í) = O} 

A(p = (p''fox all (peD{A). 

Then A is the generator of a compact semigroup {S(t)}, 
and there are numbers M > 1, ô > O such that 
\S{t)\ <Me~^' for all í > 0 (see ([4] prop. 6.6.). 

Le t / : [0, 1] X R -> R be continuous with/(0, 0) =/( l , 
0) = 0 and a < 0 < Z?. 

Consider the equation 

at dT 
(10) W(Í,0) = M(Í,1) = 0 

a<u{t,T)<b 

( Í , T ) G R X [ 0 , 1 ] . 

and Z) = {ç) G Z : fl < ^T) < b, for all T G [0, I]}. 

Corollary 5.2. For each X, continuous and almost 
periodic. Equation (10) has at least one almost periodic 
solution. 
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This result is an immediate of theorem 3.1 and remark 
2.1. 
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