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ABSTRACT 

It is shown that a complex Banach algebra which ad
mits a convex normal cone satisfying some additional con
ditions is necessarily a C*-algebra under an equivalent 
norm; these conditions are fullfilled in Vidav-Palmer's 
theorem. 

if it has real numerical range. The algebra A is said to be 
a V-algebra if A = Her(A) + i Her(A), where Her(A) is the 
set of all hermitian elements of A ([cf 3, p. 205]). Recall 
also that a complex Banach algebra endowed with an invo
lution is said to be hermitian if every self adjoint element 
has real spectrum. In a Banach algebra with an involution, 

Ptak's function is defined by xh^ pixx j . 

1. INTRODUCTION 

Vidav-Palmer's theorem asserts that a V-algebra A (see 
below for the definition) is in fact a C*-algebra with res
pect to the involution defined by (h+ik)*=h-ik for h, k in 
Her(A) ([3, theorem 14, p. 211]). We consider cones which 
give rise to an algebra involution on a complex Banach 
algebra and provide a characterization of those involutions 
which turn it into a C*-algebra. This appears to be more 
general than Vidav-Palmer's theorem in which the cone is 
associated to a specific order. Moreover, the proof given 
here does not appeal to representation theory as in [3]. We 
go back to a characterization of C*-algebras which had 
been conjectured by Kaplansky. On the way, we give a 
new proof of that result. 

If (A, II II) is a C*-algebra and Pos(A) denotes the set of 
its positive elements, then Pos(A) is a closed convex cone 
such that Pos{A) n {-Pos{A)) = {0}; moreover if 0 < a < Z?, 
then ||fl||<||¿?|| (cf. [4]), whence the normality of the cone 
Pos(A). Recall that a characterization of a normal cone is 
the following: If (xj,^ and (yj^^ are two sequences of posi
tive elements such that x^^ < y,^ for every n, and if (yj,^ 
tends to zero, then (xj,^ also tends to zero. The aim of this 
note is to show that a complex Banach algebra endowed 
with a convex normal cone satisfying some conditions 
among the numerous ones of Pos(A) is a C*-algebra. 

In the sequel, p and v will designate, respectively, the 
spectral radius and the numerical radius. An element h of 
a complex unital Banach algebra A is said to be hermitian 

2. ON TWO CONJECTURES OF KAPLANSKY 

In 1949,1. Kaplansky stated the following conjectures 
([8]). 

Conjecture 1: Let (A, || ||) be a hermitian Banach al
gebra such that p(/z)>a||/i|| for some a > 0 and every 
hermitian element h. Then A is a C'̂ -algebra for an equiva
lent norm. 

Conjecture 2: Let (A, || ||) be a complex and involu-
tive Banach algebra such that \\xx *|| > a||x|| ||x *|| for some 
a > 0 and every normal element x Then A is a C*-algebra 
for an equivalent norm. 

According to a comment of Aupetit ([2, p. 121]), R. 
Arens gave an affirmative answer, to both conjectures, in 
the commutative case ([1]); and B. Yood solved them 
([11]) for a > 0,677 (precisely for a larger than the real 
root of 4t^-2t^ + t-l=0). Then Aupetit [2] reproduces a 
proof of Ptak [10, 5) implies 1) of theorem 8.4] which 
solves conjecture 1. 

Here, we show that conjectures 1 and 2 are equivalent. 
Then, obtaining a stronger inequality than that used by 
Aupetit, we reduce conjecture 2 to a result of Ptak. 

We need the following lemma of Aupetit ([2, p. 3]), 
which is also an improvement of a lemma of Hirschfeld 
and Zelazko ([5, lemma 2]). The proof is nearly obvious. 
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Lemma 2.1.: Let (A, || ||) be a Banach algebra and 
Ai=A0C its unitization. For every x in A and X in C, we 
have p{x + X)<p{x) + \X\<?>p{x + X). 

Proof: The first inequality is due to the fact that x and 
X commute. The second follows from the fact that Sp(x+X) 
= X + Spx and from the triangle inequality. 

Proposition 2.2: Conjectures 1 and 2 are equivalent. 

Proof: Conjecture 2 follows from conjecture 1 by stan
dard arguments. For the converse, it is also standard that 
the algebra is semi-simple; hence the involution is conti
nuous ([10)]. Let X be a normal element, x = h +ik with h 
and k hermitian. Then 

px >plxx ] 

>p[h^+k^) 

>\[[p{h)f ^[p{k)f 

^ [ I W P + I N P ] 

>r\\x\\\\x' 
; for some |3 > 0 

; for some y > 0 

Theorem 2.3: Let (A, || ||) be a complex Banach alge

bra with an involution such that JCJC* >C||JC|| be* for every 

normal element x and a given c > 0. Then A is a C*-algebra 
for an equivalent norm. 

Proof: By lemma 2.1 and proposition 2.2. we may su
ppose A unitary and with continuous involution. Now one 
shows by induction that, for every normal element x in A, 

( x / ) ^ >c.c^ ...c^"||jcf" ||jc*||̂  fox ne N, 

whence 

pixx*)> c ||x|| p: 
2 

>a\\x\\ for some a>0. 

Let A be a unitary complex Banach algebra and P a. 
(non void) cone. The real linear subspace of A generated 
by P is the set if = P - P= {u - v: u, v e P}. We assume 
that the following conditions hold. 

(PI) A = H + m. 

(PI) H is closed in A. 

(P3) H is closed under both real and imaginary Jordan 
products, i.e.. 

-(xy + yx), —{xy-yx). 

(P4) Every h in H can be written h - p - q with p, q 
in P such that both p q = 0 and q p = 0. 

(P5) For every u in P, u^ is also in P. 

(P6) For every u in P, L^ >c ||M|| for some c > 0. 

Conditions (PI), (P2) and (P3) are necessary in order 
to have a continuous involution. Condition (P4) establishes 
a link between the cone and the multiplication. The very 

strong condition xx* = ||x|p in C*-algebras is reduced here 

to (P6) where only squares of elements of P appear. Fina
lly condition (P4) allows some calculations. 

Lemma 3.1: If the cone P is salient (i.e., x, -x e P 
implies X = 0), then it endows A with a continuous algebra 
involution by (h + ikf = h - ik. 

Proof: To have an algebra involution, it is sufficient 
(by [3, lemma 7, p. 64]) to show that HniH = {0}. If 
xeHniH, then, by (P4), x = p -q = i(p' - q"). Then, 
using (P5), x^ = (p + qf e P and x̂  = -(p' +q'f e (-P), 
So x^ = 0 since P is salient But x̂  = /?^ + q^, whence 
p~ ePn{-P) and so /? = 0 by (P6). Idem for q. The 
involution is continuous since H is closed. 

Hence ||M|| <a^ for every unitary element u in A. Now 
2.3 follows from a result of Pták ([10, theorem 8.4]); the 
equivalent norm being exactly Pták's function. 

3. VIDAV-PALMER'S THEOREM 

The cone of positive elements in a C*-algebra has many 
properties. We select some of them which are sufficient to 
induce a C*-algebra structure. 

For the rest, we need the following characterization: a 
convex cone P is normal if, and only if, there is an a > 0 
such that \\u + v|| > cc{¡\u\\ + ||v||) for every u and v in P (cf. [9, 
proposition 2.2.]). 

Theorem 3.2.: If the cone P is normal and satisfies 
properties (PI) to (P6), then A is a C*-algebra for an equi
valent norm. 
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Proof: Since P is normal, it is salient, and so A is 
endowed with an algebra involution (lemma 3.1). Let a > 
0 be such that \u + v|| > ci:(||w|| + ||v||), for every u, v in P. For 
X normal, we have xx* = h^ -\- k^, where x = h + ik with h, 
k in H. Then 

Proof: As for C*-algebras ([4, proposition 2.1.9]), one 
shows that a continuous linear form on A such that 
l|/|| - /(^) is positive on P. Hence v{a) > v{b) whenever 
0 < a < b. The normality of the cone follows since 

||x|| <—v{x) for every x in A. 

\\xx \\ = \\h +k 

>a(||/2'|| + ||)^'||) 

>ai¡{p + qf\\^\{p+qf\ 

>ac{lp + qf+y+qf) 

>a'c{\\pfmqfmpfmqf 
>a'cilp-qfmp^-qf) 

•^ II I I I I * i i 

-7lWI F 

; for some j8 > 0 

; for some 7 > 0. 

We conclude by theorem 2.3. 

Remark 3.3: Properties (PI), (P2) and (P6), involving 
the norm || ||, are still valid for any equivalent norm. So we 
cannot expect A to be necessarily a C*-algebra for the gi
ven norm. 

Remark 3.4: We clearly have H = H(A)={x e A: 
X* = x}. We also have P = Q, where Q is the set of positive 
elements for the C*-algebra structure. Indeed, by [4, lem
ma 7, p. 207], every v e Q can be written v = u^ with 
u e Q. But QczH, hence u = p - q, with p, q in P and 
pq = 0, qp = 0. Then v = 1/ = (p+qf e P. So QdP. 
Similarly PczQ. 

The previous theorem applies to V-algebras. Indeed, 
conditions (PI) to (P6) are more or less explicit in ([3, pp. 
205-208]). What remains to be shown is the normality of 
the cone of positive elements. 

Proposition 3.5: The cone P of positive elements in a 
V-algebra A is normal. 
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