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ABSTRACT

It is shown that a complex Banach algebra which ad-
mits a convex normal cone satisfying some additional con-
ditions is necessarily a C -algebra under an equivalent
norm; these conditions are fullfilled in Vidav-Palmer's
theorem.

1. INTRODUCTION

Vidav-Palmer's theorem asserts that a V-algebra A (see
below for the definition) is in fact a C -algebra with res-
pect to the involution defined by (h+ik)"=h—ik for h, k in
Her(A) ([3, theorem 14, p. 211]). We consider cones which
give rise to an algebra involution on a complex Banach
algebra and provide a characterization of those involutions
which turn it into a C"-algebra. This appears to be more
general than Vidav-Palmer's theorem in which the cone is
associated to a specific order. Moreover, the proof given
here does not appeal to representation theory as in [3]. We
go back to a characterization of C'-algebras which had
been conjectured by Kaplansky. On the way, we give a
new proof of that result.

If (A, I ”) is a C"-algebra and Pos(A) denotes the set of
its positive elements, then Pos(A) is a closed convex cone
such that Pos(A)N(-Pos(A))={0}; moreoverif 0 <a <b,
then |a| <[b| (cf. [4]), whence the normality of the cone
Pos(A). Recall that a characterization of a normal cone is
the following: If (x,), and (y,), are two sequences of posi-
tive elements such that x, < y, for every n, and if (y,),
tends to zero, then (x,), also tends to zero. The aim of this
note is to show that a complex Banach algebra endowed
with a convex normal cone satisfying some conditions
among the numerous ones of Pos(A) is a C"-algebra.

In the sequel, p and v will designate, respectively, the
spectral radius and the numerical radius. An element & of
a complex unital Banach algebra A is said to be hermitian

if it has real numerical range. The algebra A is said to be
a V-algebra if A = Her(A) + i Her(A), where Her(A) is the
set of all hermitian elements of A ([cf 3, p. 205]). Recall
also that a complex Banach algebra endowed with an invo-
lution is said to be hermitian if every selfadjoint element
has real spectrum. In a Banach algebra withl/ an involution,
*)] 2.

Ptak's function is defined by x |—>[p(xx

2. ON TWO CONJECTURES OF KAPLANSKY

In 1949, 1. Kaplansky stated the following conjectures
([8D.

Conjecture 1: Let (A, I ||) be a hermitian Banach al-

gebra such that p(h)=ca|h|| for some o > 0 and every
hermitian element . Then A is a C"-algebra for an equiva-
lent norm.

Conjecture 2: Let (A,

tive Banach algebra such that |xx*|2 ¢x| ||x*| for some
o > 0 and every normal element x. Then A is a C"-algebra
for an equivalent norm.

) be a complex and involu-

According to a comment of Aupetit ([2, p. 121]), R.
Arens gave an affirmative answer, to both conjectures, in
the commutative case ([1]); and B. Yood solved them
([11]) for o0 > 0,677 (precisely for o larger than the real
root of 4£-2¢ + t-1=0). Then Aupetit [2] reproduces a
proof of Ptak [10, 5) implies 1) of theorem 8.4] which
solves conjecture 1.

Here, we show that conjectures 1 and 2 are equivalent.
Then, obtaining a stronger inequality than that used by
Aupetit, we reduce conjecture 2 to a result of Ptak.

We need the following lemma of Aupetit ([2, p. 3]),
which is also an improvement of a lemma of Hirschfeld
and Zelazko ([5, lemma 2]). The proof is nearly obvious.
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Lemma 2.1.: Let (A, ") be a Banach algebra and
A,=A®C its unitization. For every x in A and A in C, we
have p(x+A4)< p(x)+|A<3p(x+2).

Proof: The first inequality is due to the fact that x and
A commute. The second follows from the fact that Sp(x+2A)
= A + Spx and from the triangle inequality.

Proposition 2.2: Conjectures 1 and 2 are equivalent.
Proof: Conjecture 2 follows from conjecture 1 by stan-
dard arguments. For the converse, it is also standard that
the algebra is semi-simple; hence the involution is conti-

nuous ([10)]. Let x be a normal element, x = h +ik with h
and k hermitian. Then

o2 (")
> p(h2 +k2)

> [(o) + (pt0)’]

> I+

> Bl
27 ||

; for some B > 0

; for some y> 0

Theorem 2.3: Let (4,

bra with an involution such that "xx*” > ||« ”x*” for every

| “) be a complex Banach alge-

normal element x and a given ¢ > 0. Then A is a C -algebra
for an equivalent norm.

Proof: By lemma 2.1 and proposition 2.2. we may su-
ppose A unitary and with continuous involution. Now one
shows by induction that, for every normal element x in A,

2"
(=)

, 2"
>cc? ..o | ”x*“ forneN,

whence

p(xx*) > czl|xl| "x*"

> oA for some o > 0.

-1

Hence |ju|<a? for every unitary element u in A. Now
2.3 follows from a result of Ptdk ([10, theorem 8.4]); the
equivalent norm being exactly Ptdk's function.

3. VIDAV-PALMER'S THEOREM

The cone of positive elements in a C*-algebra has many
properties. We select some of them which are sufficient to
induce a C"-algebra structure.

Let A be a unitary complex Banach algebra and P a
(non void) cone. The real linear subspace of A generated
by Pisthe set H =P —P= {u—v: u, ve P}. We assume
that the following conditions hold.

P1)A=H + iH.
(P2) H is closed in A.

(P3) H is closed under both real and imaginary Jordan
products, i.e.,

1
Eg(xy yx).

%(xy+ yx),

(P4) Every h in H can be written h = p — g with p, g
in P such that both p g =0 and ¢ p = 0.

(P5) For every u in P, u is also in P.

(P6) For every u in P, “u2|l2c‘ Ju* for some ¢ > 0.

Conditions (P1), (P2) and (P3) are necessary in order
to have a continuous involution. Condition (P4) establishes
a link between the cone and the multiplication. The very

strong condition "xx*" =|x|* in C*-algebras is reduced here

to (P6) where only squares of elements of P appear. Fina-
lly condition (P4) allows some calculations.

Lemma 3.1: If the cone P is salient (i.e., x, -x € P
implies x = 0), then it endows A with a continuous algebra
involution by (h + ik)" = h — ik

Proof: To have an algebra involution, it is sufficient
(by [3, lemma 7, p. 64]) to show that HnNiH ={0}. If
x€ HNiH, then, by P4), x = p — q = i(p' - %I)' Then,
using (P5), x> = (p + g/’ € P and x> = —(p' +q')* € (-P).
So x* = 0 since P is salient. But x> = p2 + qz, whence
p?> €PN (=P) and so p* = 0 by (P6). Idem for g. The
involution is continuous since H is closed.

For the rest, we need the following characterization: a
convex cone P is normal if, and only if, there is an o0 > 0

such that [ju+v] > oc(|juf| +[v]]) for every u and v in P (cf. [9,
proposition 2.2.]).

Theorem 3.2.: If the cone P is normal and satisfies
properties (P1) to (P6), then A is a C -algebra for an equi-
valent norm.
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Proof: Since P is normal, it is salient, and so A is
endowed with an algebra involution (lemma 3.1). Let o >
0 be such that [ju+v]|= a(|u+|v]), for every u, v in P. For

x normal, we have xx* = h* + k%, where x = h + ik with h,
k in H. Then

*
=

=[? +#2]

> o]+

2aff(p+ |+ 40 7))
2acllp+al’ +1p +4IF)

2 (|of +lal’ +1 1 +14 1)
>0’ clp-df’ +7 ~41F)

2
> Bl
>yl ||

; for some >0

; for some ¥ > 0.

We conclude by theorem 2.3.

Remark 3.3: Properties (P1), (P2) and (P6), involving
the norm | |, are still valid for any equivalent norm. So we

cannot expect A to be necessarily a C'-algebra for the gi-
ven norm.

Remark 3.4: We clearly have H = H(A)={x € A:
x" = x}. We also have P = Q, where Q is the set of positive
elements for the C*-algebra structure. Indeed, by [4, lem-
ma 7, p. 207], every v € Q can be written v = u* with
ue Q. But Qc H, hence u = p — g, with p, g in P and
pqg=0,gp=0.Then v = u* = (p+q)* € P. So QcP.
Similarly Pc Q.

The previous theorem applies to V-algebras. Indeed,
conditions (P1) to (P6) are more or less explicit in ([3, pp.
205-208]). What remains to be shown is the normality of
the cone of positive elements.

Proposition 3.5: The cone P of positive elements in a
V-algebra A is normal.

Proof: As for C -algebras ([4, proposition 2.1.9]), one
shows that a continuous linear form on A such that
| 7= f(e) is positive on P. Hence v(a)2v(b) whenever

< a < b. The normality of the cone follows since

] < %v(x) for every x in A.
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