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ABSTRACT

We present a model1ing framework for multistage plan~

ning problems under uncertainty -inthe objective function
coefficients and right-hand-side. -A multistagy scenario
analysis scheme with partial recourse is used.· So, the de
cisíon polícy can be ímplemented for a gíven set of ínítíal
time periods (so-cal1ed implementable time stage), such
that the solution for the other periods lioes not need' to be
anticipated and, then, it depends upon the scenario group
to occur at each stage. In any ca~e the solution offered for
each stage takes ínto accountal1 scenaríos but wíthout
subordinating to any of them. A novel scheme is presented
for modelling multistage linkíng constraints .through the
scenarío tree. This type of constraínts is modél1ed by using
a splittíng variable scheme that aU0ws to produce a sibble
of the couplíng variables for each scenario group that be
longs to the latest stage wíth nonzero coefficients in the
given constraints block. The proposed scheme ís very
amenable for usíng decomposition approaches to solve the
deterministic equivalent model and, then, for experimen
ting with parallel computing implementations.

1. INTRODUCTION

Decision making is inherent to all aspects of industríal,
business and social activities. In aH ofthem, difficult tasks
must be accomplíshed. One of the most reliable decision
support tools available today is Optimization, a field at the
confluence of Mathematícs and Computer Science. The
purpose of the field is to build and solve effectively realis
tic mathematícal models of the situation under study, allo
wing the decisíon makers to explore a huge varíety of
possíble alternatíves. As realítyis complex, many of these
models are large (in terms of the number of decision va
riables) and stochastic (there are parameters whose value
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cannot be controlled by the decisíon maker and are uncer
taín). The last fact makes the problem difficult to tackle,
yet ítssolution is critical for many leadíng organizations in
fields such as public policy makíng, supply chain planning,
production and distribution planning and assets al1ocation
among many other areas.

Problems wíth the characteristics given aboye are trans
formed into mathematical optimization models. Often the
re are tens of thousands of constraínts and varíables for a
deterministic situation. The problems can be modelled as
large-scale linear programs. Given today's Operations Re
search state-of-the-art tools, deterministic logistics schedu
ling optimízation should not present major difficulties.
However, it has long been recognized (Beale, 1955 and
Dantzíg, 1955) that traditional deterministic optimizatíon
ís not suitable for capturing the truly dynamic behavíor of
most real-world applications. The main reason is that such
applications involve data uncertainties which arise because
informatíon that will be needed in subsequent decisíon
stages is not avaílable to the decísíon maker when the
decision must be made. See Kall and Wallace (1994), Higle
and Sen (1996) and Birge and Louveaux (1997) for good
surveys on StochasticProgrammíng and addítional refe
rences.

The aim of thís work ís to present a modeling approach
for dealíng wíth multistage linking constraints in an enví
ronment under uncertainty ínsome parameters. The paper
is organized as fol1ows. Section 2 presents the stochastic
environment to deal with. Section 3 presents the multístage
línking constraínts problem to address in the stochastic
environment. Finally, section 4 introduces thesplittíng
variables approach to model this type of constraints and
two alternative mathematícal approaches for problem sol
ving.

2. GENERAL APPROACH

Let the following (deterministic) model
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s.f. Av= P

v~O (2.1)

Note that (2.2) gives an implementable policy based on
the so-called simple recourse scheme. (See that the whole
vector of decision variables is anticipated at time period
1).

where e is the vector of the objective function coefficients,
A is the m .x n constraint matrix, p is the right-hand-side
(rhs) m-vector and v is the n-vector of the decision varia
bles to optimise. It must be extended in order to deal pro
perly with uncertaintyin the values of sorne parameters,
say, e and p. A similar approach can be used for dealing
with the uncertainty in the constraints matrix A.

In this case one needs to consider two additional fea
tures. In the first place, one must model the availability of
information over time, and state what sort of decisions can
be made at each of the various stages. Secondly, to com
pute an optimal solution in the stochastic area any propo
sed solution should also be compared with othercandidate
solutions as it is done in the deterministic field. But, in the
stochastic setting, the criteria by which this comparison
can be performed are much less c1ear. Thus, one needs an
approach to model the uncertainty in the problem data. The
traditional approach is to make probabilistic distribution
assumptions, estimate the parameters from historical data
and, then, develop an stochastic model to take the uncer
tainty into account. Such an approach may not be appro
priate if only limited information is available. On the other
hand, in many applications it is often necessary and possi
ble to take into account information that is not reflected in
the historical data. In many such cases we may employ a
technique so-called scenario analysis, where the uncertain
ty is modelled via a set of scenarios.

Let S denote the set of scenarios to consider, and wS

the likelihood that the decision maker assigns to scenario
s. One way to deal with the uncertainty is to obtain the
solution v that best tracks each of the scenarios, while sa
tisfying the constraints for each scenario. This can be achie
ved by obtaining a solution that minimizes a norm of the
weighted upper difference between the proposed solution
and the optimal solution value for each scenario. The re
sulting model does not increase the number of variables of
the original representation, but now there are mlGI constra
ints. Unfortunately, this representation does not preserve
the structure of the deterministic model (2.1) and the ob
jective function is no·longer linear; see in Escudero (1994)
sorne procedures to overcome this difficulty. Models of
this form are known as scenario immunization models, or
SI models for short, see Dembo (1991) and also Mulvey et
al. (1995).

As an alternative goal, we could minimize the expec
ted value of the objective function; in this case model (2.1)
becomes

•.~ S sT
mm ~w e v

v
SES

3. NONANTICIPATIVE POLICIES

The SI models do anticipate decisions in v that for
multistage environments may not be needed at stage r=1.
Very frequently the decisions for stage r=1 are the decisio
ns to be made since at stage r=2 one may realize that sorne
of the data has been changed, sorne scenarios vanish, etc.
In this case, the models will be usually reoptimized in a
rolling horizon mode. When only spot decisions (i.e., de
cisions for the first stage) are to be made, the information
about future uncertainty is only taken into account for a
better spot decision making. This type of scheme is termed
tul! recourse.

Let R denote the set of stages and v~ denote the vector
of the variables related to stage r under scenario s for r E

Rand S E S, and vs is the set of vectors {v~, \:Ir E R}.

Rockafellar and Wets (1991), see also Wets (1989),
state the so-called non-anticipative principie: If two diffe
rent scenarios, say, s and s' are identical up to stage r on
the basis of the information available about them at that
stage, then the values of the v-variables must be identical
up to stage r. This principIe guarantees that the solution
obtained from the model is not dependent at stage r on the
information that is not yet available. To illustrate this con
cept, consider a so-called scenaria tree where each node
represents a point in time where a decision can be made.
Once a decision is being made several contingencies can
happen, and information related to these contingencies is
available at the beginning of the next stage. This informa
tion structure is visualized as a tree, where each root-to
leave path represents one specific scenario and corresponds
to one realization of the uncertain parameters.

In order to introduce the implications of this principie
in our approach, we define a set of scenario groups, say,
Gr for each stage r, such that all scenarios having the same
realizations of the uncertainty up to stage r belong to the
same scenario group, say, g for g E Gr' Let Sg,r denote the
set of scenarios that belong to group g at stage r for
S e S Let a node in the scenario tree be represented bygr - .

th~ pair, say, (k,r) for k E G,. rE R, such that the scenario

tree is defined by the set of nodes U(k, r)/ k E Gr and
rER

the set of directed arcs E, where (k. 1) E E iff SI,r+! ~ Sk,r

for k E Gr and 1 E Gr+l . Let c; == {l E Cr+l/(k,l) E E}.
Finally, let N denote the set of solutions that satisfy the so
caBed nananticipativity constraints. That is,

s.t. Av = pS, \:ISES

v:?: O

(2.2) (3.1)
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s.t. Avs =pS, 'l/SES (3.2)

VEN

VS 2': O 'l/SES.

(3.5)Xg, r : A, X g" + B~Yl,r-1 + B, Yg, ,+ Cg" Zg, r ::::: Pg, r

VgEG" rER,

For this purpose let fV!5' , denote the set of pairs (k, 1")
such that k E Gl' 1" E Rh 2': r and 3u € U /1" :::::;;, for (g,
r) E Nk, u' That is, (g, r) and (k, 1") for g E Gr and k E G r
are any two nodes in the scenario tree for r, 1" E R, such
that there is a constraint block u for u E U where 1" == r.
and there is a path from sorne node, say, (i, fU> to node (/;,
1") through node (g, r). Note: There is only one path from
node (i, fU> to node (k, 1"). See that (k, 1") is the ending node
of any of its subpaths through node (g, r). (It is the case
where u' E U/fu' > fu, ;;,,:::::;;,::::: 1" such that (g, r) E Nk '

and k E G
r
). ,u

In order to introduce the new representation, let us
rename the Y- and z-variables such that y and Z will beo g, r g. r

replaced by Yg" and z;:;, respectively, and add the new

variables yf, ,-1' Where 1:g E G;_I and

Z;:: V(k, 1") E Ng, r, g E G" rE R. So, the splitting varia
ble representation is as follows.

4. SPLITTING VARIABLE REPRESENTATION

where W g" gives the weight associated to scenario group g
at stage r, such that W ::::: ~ W S a b and c areg, r ~ ·'g,r' g,r .g, r

seSg, ,

the X-, y- and z-variables related objective function coeffi
cients for the pair (g,r), Ar, Br and Cr are theappropriate
constraint matrices, Pg, r is the rhs, all with the conforma-

ble dimensions, and l: g E G;.I for g E G" rE R.

such that

One of the main inconveniences of the compact repre
sentation (3.3)-(3.5) is the inherent difficulty for its de"
composition in smaller models. Given the large-scale ins"
tances of the model, easy decomposition is a key for
success. It can be obtained from the so-called splitting va
riable representation. It requires to produce sibbles of the
Y- and z-variables.

(3.3)VgEG¡:,UEU,
11

Let the following additional notation. U is the set of z
related constraint blocks through stages, so-called multis
tage linking constriants, Ru is the set of time stages related
to constraint block u for u E U, fu and ;;, are the smallest
and largest elements from Ru' respectively, and N u is the
set of nodes in the directed path through the set 6f stages
(i.e., set Ru) whose ending node is node (g, ;;,) and the
unique origin node is, say, (i, r.,,). So, the pair (k, r) index
for variable zk, r is such that (k, r) E Ng, u for ending node
(g, ;;,) and constraint block u. Note: The variable Zk, r can
belong to more than one multistage linking constraint
block. This type of constraint block can be represented as
follows.

Model (3.2) has a nice structure that we may exploit.
Two approaches can be used to represent the nonanticipa
tivity constraints (3.1). One approach is based on a com
pact representation, where (3.1) is used to eliminate varia
bles in (3.2) as well as for reducing model size, so that
thereis a single variable foreachelement at each scenario
group of each stage, but any special structure of the cons
traints in (2.1) is destroyed. In this case let the variables
vector v=(X,y,z) have the following structure: x ,vector
of variables with nonzero coefficients in the ¿o~straints
related to stage r alone for g E Gr , rE R; Yg, r' vector of
variables with nonzero elements in the constraints related
to the stages r and r+ J; and Z , vector of variables withg, r

nonzero elements in the constraints related to stage r as
well as in the constraints related to sets of stages to be
defined below.

So, the Deterministic Equivalent Model (DEM) of the
so-called ful! recourse version of model (2.1) can be ex
pressed

The compact representation of model (3.2) can be ex
pressed as follows.

where Du, r is the matrix for constraint block u related to
the z-variables from stage 1", and d is the rhs of constra
int block u for scenario group g fr¿;'~ stage ;;" u E U. (See

that constraint block u haslG-1 versions).
. 'il

D g'¡;-du.rZk.r - g.U

(4.1)

A x + Ji yg + B yO + e g,'-r g, r r 1, r-l r g, r r Zg. r - Pg, r

VgEGr, TER 31:gEG:_1

I _. 1+1 - o v {} gYg, r Yg, r - 1E o u Gr , g E Gr, TER

Z::;-Z;::=O V(k, r) ENg,r, gEGr, TER

X,Y,Z~O

"" (T +bT o T g, ')"'-' Wg" ag, r Xg, r g, r Yg" +Cg• , Zg, ,
geG,

YI •
g. r •

Zk, r.
g, r •

s.t. Xg. r:

min L
x, y,z reR

(3.4)

Vg€G" rER

VgEG¡:, UEU
11

:¿W g, r(aJ. , Xg, , + bJ. ,Yg, r+cJ. , Zg, r)
gEG,

rnin :¿
x, y reR

s.t. O ::; X g,,' Yg, " Zg" E Xg"

Zg" E Zg, u
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Note: The last two constraint blocks (Le., the constra
int blocks that define the solution spaces yl and Zk, '!")g,r g,r
are the expressions for the non-anticipativity constraints
(3.1). Escudero (1998) and Escudero et al. (1998) present
case studies that make use of the Iinking constraints me
chanism for two consecutive stages. They can use the
multistage linking constraint mechanism as well.

Different types of decomposition approaches can be
used for solving model (4.1); we favour Augmented La
grangian and Benders Decomposition schemes. These ty·
pes of schemes are very amenable for using paraIlel com
puting approaches, see Ruszczynski (1993), Valdimirou
and Zenios (1997), Dempster and Thompson (1998), Escu
dero et al. (1998a), Escudero and Salmerón (1998) and
Vladimirou (1998) among others.

Augmented Lagrangian decomposition methods pro·
ceed by moving the nonanticipativity constraints of model
(4.1) into the objective function to create a problem with
independent sets of constraints, in fact, one set per node in
the scenario tree, so that each set keeps any special struc
ture that might be present in the original problem (2.1).
The resulting problem becomes

(4.2)

where the function v(Dif.l, (J)) is defined as

v(Dp(/l, a)) = ~;,nJ:L wg•,(aJ., xg., +bJ., Y~" + eJ., z::;) +
. , ... TER geG,

where p>O is an appropriate penalty parameter and .u and
(J are the vectors of the Lagrange multipliers for the no
nanticipativity constraints.

Model (4.3) is a quasi-separable quadratic problem
with independent constraint subsystems that can be solved
in reasonable computing time, being very amenable for
paraIlel computing implementations. Mulvey and Rusz
czynski (1992), Ruszczynski (1993), Escudero (1994,
1998), Escudero et al. (1998) and Escudero and Salmerón
(1998) among others present detailled algorithms for sol·
ving model (4.3).

On the other hand, Benders (1962) based methods
exploit the structure of a model by creating the so-caIled
master program and the auxiliary programs, the last ones
included by the structured constraints. Its first application
to 2·stage stochastic programming is due to Van Slyke and
Wets (1969). WeIl known extensions to multistage sto
chastic programming have been presented by Birge (1985),
Gassmann (1990) and Dempster and Thompson (1998)
among many others.

Our Benders decomposition approach for solving mo
del (4.1) requires the dual vectors A, for the X -constra-g, r g,'

ints, 1rg u for the Zg u-constraints where u E U / r. == r (JI. .' . . u' ... g, r

for the ygl r -constraints where 1E {O} u Gg and l/k, '!" for, r r-g, r

the Z;:: -constraints where (k, r) E NE", such that g E G"
r E R. Before applying the decomposition scheme, the dual
of model (4.1) must be obtained.

+'" '" '" .[ak
• rT(zg·, _yk

• r)+E..llzg·, -l, r112
J.L.J L..J ,L,¡ g. r g, r g.r 28' r . g. r .

,eR geG, (k. r)eN'"'

+'" '" '" [ lT ( 1 1+1) P 11
1 1+111

2Jk k k /lg" Yg"-Yg,, +2 h,-Yg" +
reR geG, le{D}uG!

s. t. O::;X, y, zeXg"

ZE Zg,u

"i/g e G" reR

"i/geG;¡" ueU

(4.3)

We can observe in model (4.4) that, by fixing the
(coupling) (j-and I-l-variables, it results into a system inclu
ded by independent sets of constraints (in fact, one per
node in the scenario tree). This observation gives the
motivation for using a Benders Decomposition scheme
since,after the variables fixing, the new model from (4.4)
results in a set of independent systems. From here, the

max LLPg,rAg,r+
rER gEG,

S.t. A~A,g, r

BT A, + (JO _ (JIG,I
r g, r g, r g, r

B~rlAI,r+l +(J~,g -(}~~i

C~A,g, r+ L D~r 1rg, II + L .u:: :
lIEU Ir.=r (k, '!")ENCo'

L D~r 1rk,lI-

lIEU1 ",='!"

~ ag, r Vg E Gr, rE R

~ bg, r Vg E Gr , rE R (4.4.)

~ O VI E G!, g E Gr, r E R

~Cg,r VgEGr , TER

~ O V(k, r) E Ng,r -{(g, r)}, gE Gr, rE R
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procedure for obtaining the optimal solution of model (4.4)
is very standard; see in Escudero and Salmerón (1988) the
details.

5. CONCLUSIONS

In this paper we have presented a modelling approach
to generalize the framework to deal with tage indexed va
riables that have nonzero elements in constraints related to
the proper tage and the next one in stochastic optimization
for decision aid via scenario analysis. The generalization
consists of a very useful modelling seheme for multistage
linking constraints in a full recourse decision policy envi
ronment. We present novel sehemes based on a splitting
variables approach to create the appropriate sibbles of the
multistage variables. The new modelling framework allo
ws to decompose the Deterministie Equivalent Model of
the stochastic problem by considering the special strueture
of the sibblings. Decomposition schemes sueh as Augmen
ted Lagrangian based and Benders based Decomposition
schemes are very appropriate for the treatment of the sib
bling modelling.
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