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ABSTRACT

We carry out Bayesian inference for the Jelinski-Mo-
randa and Littlewood software failure models given a sam-
ple of failure times. Furthermore, we illustrate how to as-
sess the optimal length of an additional pre-release testing
period under each of these models. Modern Bayesian com-
putational methods are used to estimate the posterior ex-
pected utility of testing for and additional time.

1. INTRODUCTION

Software usually goes through various stages of testing
before its eventual release. Early stage testing might be
carried out in order to try modifications of software code
being developed, or to assess the progress of the develop-
ment procedure. At this stage, random or partition testing
procedures are often, used, whereby inputs are randomly
generated from the operational profile (assumed distribu-
tion of usage) of the code and the number of faulty outputs
are recorded. See e.g. Chen & Yu (3) or Hierons & Wiper
(8), for introductions. Pre-release testing is undertaken both
to detect and correct bugs in a piece of code so that it is
unlikely to fail in service. Such failures could lead to ex-
pensive recalls of the product and loss in customer confi-
dence. In this case, interest centres on the CPU time bet-
ween failures and intra-failure times are recorded in testing.
This is the scenario we consider here.

Pre-release testing can be expensive, both in terms of
the costs involved in the procedure (assessment of failure,
assessment of a realistic operational profile,...) and of the
opportunity costs of non-refease of the software. Short test
periods leading to early release are particularly important
in a competitive market, when different companies produ-
ce similar software products, and the first to release may
well corner the market despite its product being less relia-
ble than those of its competitors. On the other hand, the
release of «buggy», untested code could have serious fi-
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nancial implications, when customers cease to buy the
company's products. In particular, safety critical software
needs to be very reliable and careful testing is likely to be
of much greater importance than early release, see e.g.
Littlewood & Wright (15). It is important to develop pro-
cedures to decide upon suitable time periods for software
testing.

Different criteria have been applied to the problem of
when to stop software testing. For example, optimization
of cost criteria subject to given reliability constraints, e.g.
(21), (10), or game-theoretic techniques (22). Decision
theoretic approaches are considered by Dalal & Mallows
(4) and Singpurwalla (18). Singpurwalla looks at preposte-
rior analysis, i.e. deciding the length of a test period before
doing any testing. In this paper, we shall consider the case
where we have already done some testing and then wish to
decide the length of a possible final test period prior to
software release.

Unless we wish to consider non-parametric approaches,
in order to assess what length of test to use, we need to
have a model for how failures occur in software. There are
many different models for software failure in the literature,
see e.g. Dale (5) or Singpurwalla & Wilson (19) for tho-
rough reviews. Here we shall consider two of the most
popular, those of Jelinski & Moranda (9) and Littlewood
(12). We will introduce these models in Section 2.

In Sections 2.1 and 2.2, we assume that testing has
taken place (either for a fixed time, or until a certain num-
ber of failures were observed) and use Bayesian inference
to estimate the posterior distributions of the relevant para-
meters of both models. In particular, we show how to es-
timate the number of bugs remaining in the software after
the test period.

In Section 3, we suggest a utility function and show
how the posterior expected utility of a further test period
of length T may be estimated. An example using software
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failure data is given in Section 4. In Section 5, we briefly
illustrate how a recently introduced approach of Bielza et
al (2) may be applied to the related problem of preposte-
rior testing. In Section 6 we draw some conclusions and
suggest extensions of our approach.

2. INFERENCE FOR THE JELINSKI-MORANDA
AND LITTLEWOOD MODELS

We introduce the two software models which we shall
consider in this paper. Let T}, T,... be the successive times
between failures of a piece of software under test. The
Jelinski-Moranda (JM) model (9) assumes that:

TN, ¢ ~ E((N-i+1) ¢)

i.e. that intra-failure times are exponentially distributed.
The model basically assumes that, initially, there are N
faults in the software and after each one is discovered, it
is perfectly corrected. The parameter ¢ relates to the «size»
of a fault.

Various criticisms of this model, see e.g. (13), have
lead to several alternative models. One of them is
Littlewood's (12), which assumes that

(B+t’ )(N—i+l)A
) (N—l+1)AW

N,A,B,t,...
(I : (B+t

i
where # = 2 t;. Here, as with JM, N represents the
j=1

number of bugs initially present in the code. For a fuller
discussion of the significance of the other parameters and
the relationship of the model to JM, see (13).

In the following subsections, we shall undertake Baye-
sian inference for both models. In both cases, we shall
assume that either testing has been carried out until a fixed
number m of failures have been observed, or that testing
has been carried out for a fixed time ¢ and that m — 1
failures have been observed before this time. In this se-
cond case, the m-th failure time ¢,, is thus considered to be
right-censored. We look first at inference for the M mo-
del.

21 JM

Bayesian inference for this model has also been exami-
ned in e.g. (14), (4) and (11). Here we just give a brief
introduction. Assume that we test until we observe m failu-
res. Then, the likelihood function is

L(N, ¢|data) o (NN ; " exp[ [[N+1] mt‘-iit,] ¢]

i=1

. In the case where the last observa-

- m
where { = — Z

tion is right censored the likelihood is as above, with m
replaced by m — 1 in the first two terms.

We shall consider the following prior distributions for
N and ¢

N ~ B())

a Poisson distribution with mean A, truncated at some upper
limit, say N*, and

q) ~ G0, B)

a gamma distribution. Under this model, given the full
data, the marginal posterior distributions of both parame-
ters may be written down:

—(ot+m)

P(N = n|data) o

for N2 m,
f(¢|data) o ¢™*! exp[ Ae™™9 — (ﬁ+mt+m t—Z"J ]
i=1

Similar expressions for these posteriors are available, assu-
ming that the last failure time is right truncated.

It is relatively straightforward to calculate moments of
these distributions by either numerical integration, -or trun-
cation of sums methods. For example,

—{a+m)

2.2. Littlewood

Inference for this model has also been undertaken by
e.g. Littlewood (12) and Abdel Ghaly (1). We undertake a
fully Bayesian approach. The likelihood, under this model,
is given by

N I—I (B4 VA

L(N, A, Bldata) o —— \Bri)
( I ) (N - m)! i (B + ti,)(N-l+l)A+}

in the case of complete data, where r, = z'_ i In case
j=

the final failure time is truncated,
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N m (B+2‘A~ 1)(N—i-bl)A
. _l * 1=
(N-m+1)! A" (B+t,,,) i=1 (B+ ')(N—M)AH'

i

L(N, A, B|data) o

We consider the following prior distributions:
N ~ TA})
as for IM
A ~ Go, B),

i.e., a gamma distribution.
B ~ Ff

i.e. B has a distribution proportional to a scaled (Fisher's)
F distribution with d degrees of freedom, both in the nu-
merator and the denominator.

Given these priors, it is impossible to write down the
full, marginal posterior distributions of the model parame-
ters in simple form. Earlier authors, e.g. (12), (1) conside-
red ad-hoc approaches to the inference problem. However,
with the advent of modern Bayesian computaticnal me-
thods, we can simulate samples from the relevant posterior
distributions. Specifically, we consider a (Metropoli within)
Gibbs sampling approach, see e.g. (7), which proceeds as
follows:

1. Set initial values N, A®, B, =0

2. Generate NV from AN]A!, B, data)

3. Generate A™" from AAIN®Y, B, data)

4. Generate BV from AB|N™D, A™D, data)

5. i=1i+1, goto 2.

The algorithm continues until convergence is judged to
have been reached in practice, say after r iterations, when
the sample NU*D, ACHD Birth | Nrs) - AU4) - BUr+9) approxi-
mates to a sample of size s from the joint posterior distri-

bution.

The relevant posterior, conditional distributions nee-
ded for Gibbs sampling, given the full data, are as follows:

(N ~m) |4, B, data ~?[/”L( B )] €]

B+t

m
N B+t

A|N,B,data~G| oc+m,B- Y (N—i+1)log——= 2)
| g h g( log B+

Ba’/2—l m (B+t,"_.1

(C+B)d L (B+ti,)(N-—i+l)A+l

)(N—i+l)A

f(B|N, 4, data) o ©)

In the case where the last failure time is truncated, the
posteriors are modified slightly: we replace N — m by N -
m -+ 11in (1), replace o + m by o + m — 1 in (2) and the
posterior for B in (3) is multiplied by the extra term
(B+1;,).

Sampling from the first two distributions is straig-
htforward. To sample from the distribution of B, we use a
Metropolis step, see e.g. (7): to generate B#™Y we first
generate a candidate B, from a suitable candidate distri-
bution. Specifically, we generate B“* ~ B F¢. The de-
grees e of freedom of the F distribution can be adjusted to
improve the sampling properties of the algorithm. Then
accept the candidate and set B! = B with probability
(given the complete data)

p = min{l, P} where

di2- AN m N-i+1)A
b= pgeand 1 C+B(l) 1_[ Bcand +t,',._1 (N=i+1).
BY c+ B B4y,

i=1

B(i) N [I.' (N-i+1)A+1
Bcand +t;

where N and A are the current values of these parameters.
Otherwise, reject the candidate and set B™" = B,

Features of the posterior distribution are then easy to
estimate. For example, the posterior mean number of bugs
initially in the software is estimated by

1 &
E[Ndata] =~ = Y NO.
§

i=r+l

3. DEFINING A UTILITY FOR FURTHER
TESTING

We assume now that after initial testing, we wish to
decide upon an optimal time T for further testing. The
costs of this further testing might depend upon the size of
T (short test periods will be cheaper), the number of bugs
discovered in testing (these will have to be corrected) and
the number of bugs undiscovered (as the software will be
released containing these bugs which could lead to future
costs). Among the many possible utility functions, and,
mainly for illustration purposes, we shall consider a utility
function of the following form (assuming that we have
already observed m failures):

- ¢ Z(T) = cs(N=m=-Z(T))
4)

T
U(T’ 0’ tm+l”"’ th) = €y T

max

where Z(T) is the number of bugs discovered in the further
test period, and 8 are the relevant model parameters, 8(N,
¢) for IM and 8= (N, A, B) for Littlewood. T"* represents
the maximum possible test period after which it would be
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considered worthless to release the software. Typically, we
should expect that ¢, < ¢; as costs of correcting bugs pre-
release are liable to be much less than costs of correction
after release; we might even set ¢, = 0. The constant term
¢, is assumed positive and large enough to ensure that the
utility function is always positive. The use of the constant
term is unnecessary from the utility viewpoint, since it
does not alter the optimal test time, but it is necessary for
the approach we use later in Section 5. Other utility func-
tions could include, for example, discount factors, oppor-
tunity costs, nonlinear terms in 7, or the expected reliabi-
lity of the code after testing See Singpurwalla (18) for
further examples.

We wish to maximise in 7 the expected utility which
is given by

J'U(T, 0, tyarsos ) (O s 1) F(Ematoes tW}0s t1res 1) Ayl d®
(5)

For the M model, the posterior expected utility can be
evaluated exactly which is

= T T (c, +c3) E[Z(T) |data] — c;E[N |data] + c3m
with
(N=m)A"™" 1 _(aim) ~(or+m)
w=ma (Wt T
N —m) [v (v+T) ]

E[Z(T) |data] =

j-m

where
v=B+(N+1)mi - Zit,.
and E(N]data) is as in Section 2.1.

Under Littlewood's model we may approximate the
expected utility from the Gibbs sampler output as

% i u(T, N9, 49, 80)

i=r

In the following example we illustrate our methods for
estimation of the number of faults remaining in software
after testing and for choosing a final test period.

4. EXAMPLE

We consider software failure data taken from Table 2
in Littlewood [13]. Littlewood gives execution times in
hundredths of seconds (cs) between failures. 86 failure ti-
mes are recorded, with the total time to the last failure
being 103334 cs and the time between the last two failures
being 3902 cs.

For this problem, we assume that we observe all those
data. The first question of interest is, given prior distribu-
tions, what is the posterior estimate of the number N of
bugs initially in the software? Table I gives posterior esti-
mates of N for both the JM and Littlewood models under
optimistic and pessimistic priors for N. (Relatively) weak
prior distributions were used for the remaining parameters
of both models. Gibbs samples of 5000 iterations to burn
in and 10000 in equilibrium were used for the Littlewood
model.

Table 1 illustrates that the posterior mean number of
bugs in the software initially is sensitive to the prior under
both models. Sensitivity to the prior is not unexpected here
as, for example, a Poisson(50) prior puts virtually no weig-
ht on values of N much above 100 and a Poisson(200)
prior puts virtually all weight in the range (150, 250). This
suggests that the we need to think very carefully about the
prior settings when using either of these two models. Table
I also illustrates that the JM model is somewhat more
optimistic than the Litlewood model. Such results have
been observed elsewhere, see e.g. (13).

Prior Mean Posterior Mean

JM Littlewood
50 91 (3) 113 (6)
100 104 (1) 147 (9)
200 194 (15) 230 (14)

Table 1. Posterior mean (and standard deviation) estimates
of N given different priors.

Assume that given the observed data, we now have to
decide whether or not further testing is necessary. In Figu-
re I, me illustrate how the optimal further test times for
the JM and Littlewood models vary with different values
for the parameter ¢, in the utility function in Equation 4.
In all cases, we have assumed an initially optimistic prior
for N, with mean 50, and the parameter T"* set at 500000
cs. The remaining utility function parameters are fixed at
¢, = 0 and ¢; = 0.04, respectively. Optimal test times were
estimated by evaluating the expected utility over a grid of
t values and choosing the test time in the grid with maxi-
mum utility.

The results shown by Figure 1 appear paradoxical at
first. Littlewood's model predicts that a greater number of
errors are left in the program than those predicted by the
JM model, hence we would expect that further test times
would be longer for Littlewood's than for JM's. Note howe-
ver, that JM treats each fault in the code as being of the
same size (@), whereas Littlewood may be interpreted as
treating the faults as being of variable sizes, see (12). Thus,
under Littlewood, some of the faults assumed left in the
program are likely to be very small and difficult to find,
even in the maximum test period and further testing to find
these faults will be unprofitable.
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Clearly, the model used has a great influence on the
optimal length of testing to be undertaken. This calls for
using model uncertainty methods within decision making,
see Draper (6) for some ideas.

500.000

400.000

300.000 1

1me

release t

200.000+4

100.000 4

0.0 0.5 1.0 L5 2.0 25
€y

Figure 1. Optimal further test times under different values
of ¢;.

5. A MODIFICATION

In Section 3, we looked at estimating utility for possi-
ble test times 7. We illustrate here how we can use a
method of Bielza, Muller and Rios Insua (2), to estimate
the optimal testing time T%". The approach described here
is a hybrid algorithm; in (2) a Gibbs sampling approach is
introduced, whereas in Virto, Rios Insua and Martin (2) a
Metropolis approach is presented.

We use an augmented probability method, which, for
the purposes of sampling, treats the utility function as a
«probability». This is the reason why we ensured that the
utility function defined in Section 3 was always positive.
Briefly, we proceed as follows. Define A(T, 6, t,,,1..... ty)
> 0 to be a probability density proportional to the inte-
grand in (5). Then, we can simulate realisations from A(-)
using the following algorithm.

1. Set initial values 69, 7© ; = 0.
2. Generalte *Y from fGt,,....1,,).

3. Generate the remaining failures ¢,,,,.., fy from
ftt 1, 1]0FD, 1, 1),

4. Generate a new test time T° from a probing dis-
tribution g(T]Y")).

S. Accept the candidate with probability
U<Tcand, 9i+l’ t) g(T(l)
U(T(i)’ g+t t) g(Tcand

peand )
Tl ))

p =min<l,

and set 7D = 79 Otherwise set 76D = 71,
6. [=1i+]1, goto 2.

Given this algorithm, it can be shown (see[2]) that the
mode of the sample of test times generated is the optimal
test time 7% The mode may be estimated from the sample
by inspection of a histogram of the test times generated.
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Figure 2. Histogram of test times.

Note that although we have outlined the algorithm for
use after data (t,,...,¢,) have been observed, it could equa-
1ly well be used to perform a full preposterior analysis, i.e.
to estimate an optimal length of one-stage testing based on
the original prior distribution alone.

We now use one of the situations given in the Example
in order to illustrate the algorithm outlined above. Speci-
fically, consider a situation where the optimal test time is
0, for example with utility parameters (¢; = 1, ¢, = 0 and
¢; = 0.04). A histogram of the test times T generated by the
algorithm is given in Figure 2.

We can see that the histogram is unimodal at 0, indi-
cating that it is optimal to release the software immediate-
ly. This agrees with the results in Figure 2.

In this specific case, somewhat more iterations were
needed to reach equilibrium than with the simpler Gibbs
samplers described earlier. Bielza et al. (2) describe cases
in which this novel approach may be more efficiente.

6. DISCUSSION

We have illustrated the use of modern Bayesian simu-
lation methods to make inferences about the Littlewood
and Jelinski Moranda models for software failure and to
assess the optimal time for further software testing given
these models. We have illustrated that inference for both
models is somewhat sensitive to the prior and that the
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Jelinski-Moranda model is somewhat more confident than
the Littlewood model.

The issue of sensitivity is important and suggests that
we might also consider hierarchical prior models to give
less informative priors. One possibility is examined (for
IM) by Rodrigues, (17).

We have also illustrated various approaches to solve
the decision making issue of how much more testing time
should be considered.

Many other software reliability models and utility func-
tions could be considered within our framework. Moreover,
various other decision making problems may be conside-
red, such as multistage testing problems. These will the
object of further work.
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