REGULARITY OF PRE-RADON MEASURES

J. Fernández Novoa

Departamento de Matemáticas Fundamentales. Facultad de Ciencias. UNED. C/ Senda del Rey, s/n. 28040 Madrid.

Presentado por P. Jiménez Guerra, 14 de enero de 1998. Aceptado el 3 de marzo de 1998

ABSTRACT

A pre-Radon measure μ in a topological space X is inner regular when X is weakly metacompact, when X is paralindelöf and μ has a concassage of Lindelöf sets and when X is metalindelöf and μ has a concassage of separable sets.

RESUMEN

Una medida pre-Radon μ en un espacio topológico X es interiormente regular cuando X es débilmente metacompacto, cuando X es paralindelöf y μ tiene un concassage de conjuntos Lindelöf y cuando X es metalindelöf y μ tiene un concassage de conjuntos separables.

1. INTRODUCTION AND PRELIMINARIES

Let X be a topological space. By G, \mathcal{F} , \mathcal{K} , and \mathcal{B} we shall denote, respectively, the families of all open, closed, compact closed and Borel subsets of X.

A nonempty family $\mathcal A$ of subsets of X is called *directed upwards* if for each A, B in $\mathcal A$ there is C in $\mathcal A$ such that $A \cup B \subset C$. If $\mathcal A$ is directed upwards and $A_o = \cup A$, we write $\mathcal A \uparrow A_o$.

A family \mathcal{A} of subsets of X is called *point-finite* (respectively, *point-countable*) if each point $x \in X$ belongs only to finite (resp. countable) many sets of \mathcal{A} . The family \mathcal{A} is called *locally countable* if each point $x \in X$ has an open neighborhood which meets only countably many sets of \mathcal{A} .

The space X is called metacompact (resp. $metalindel\"{o}f$) if each open cover of X has a point-finite (resp. point-countable) open refinement. X is called metalindem metalind

paralindelöf if each open cover of X has a locally countable open refinement.

A Borel measure in X is a measure on \mathcal{B} . The support of a Borel measure μ in X is the set of all $x \in X$ such that $\mu(V) > 0$ for each open neighborhood V of x. We shall denote by supp μ the support of μ . Clearly, supp μ is a closed subset of X.

If μ is a Borel measure in X, a set $B \in \mathcal{B}$ is called

- a) μ -outer regular if $\mu(B) = \inf \{ \mu(G) : B \subset G \in G \};$
- b) μ -inner regular if $\mu(B) = \sup \{\mu(F) : B \supset F \in \mathcal{F}\};$
- c) μ -compact if for each open cover $\mathcal U$ of B and each $\varepsilon > 0$ there is a finite subfamily $\mathcal V$ of $\mathcal U$ such that $\mu(B \cup \mathcal V) < \varepsilon$.

The concept of μ -compact set is introduced by B. Rodríguez-Salinas in [5]. For a extensive treatment of μ -compact sets we refer to [3].

A Borel measure μ in X is called

- A) outer regular if each $B \in \mathcal{B}$ is μ -outer regular;
- B) inner regular if each $B \in \mathcal{B}$ is μ -inner regular;
- C) locally finite if each $x \in X$ has a neighborhood V such that $\mu(V) < + \infty$.
- D) τ -additive if sup $\{\mu(G): G \in \mathcal{G}_o\} = \mu(G_o)$ for each $G_o \subset G$ with $G_o \uparrow G_o$.

Let $\mathcal H$ be a subfamily of $\mathcal F$. A Borel measure μ in X is called

(a) a Riesz measure of type (\mathcal{H}) when it is outer regular, each $H \in \mathcal{H}$ is a μ -compact set with $\mu(H) > 0$ and

$$\mu(G) = \sup \{ \mu(H) : G \supset H \in \mathcal{H} \}$$

for each $G \in G$.

(β) a pre-Radon measure when it is locally finite, τ -additive and outer regular, and each $G \in \mathcal{G}$ with $\mu(G) < +\infty$ is μ -inner regular.

The pre-Radon measures are introduced by I. Amemiya, S. Okada and Y. Okazaki in [1].

Since each Riesz measure of type (\mathcal{H}) is τ -additive, each locally finite Riesz measure of type (\mathcal{H}) is a pre-Radon measure.

P. Prinz establishes in [4] that a Riesz measure μ in a Hausdorff space X (i. e. a Riesz measure of type (K) in X) is inner regular when X is metacompact (resp. paralindelöf) and when X is metalindelöf and μ has a concassage of separable sets. In [2] we introduce the Riesz measures of type (H) and we generalize the Prinz's results to this class of measures. In this paper we extend these results to pre-Radon measures.

2. THE RESULTS

Definition 2.1. Let μ be a Borel measure in X. A concassage of μ is a disjoint family $\{F_i\}_{i\in I}$ of closed subsets of X of finite measure which satisfies the following properties:

- a) supp $\mu_E = F_i$ for each $i \in I$;
- b) $X \bigcup_{i \in I} F_i$ is a locally negligible set.
- c) $\mu(B) = \sum_{i \in I} \mu(B \cap F_i)$ for each $B \in \mathcal{B}$ with $\mu(B) < +\infty$.

Theorem 2.2. Each pre-Radon measure μ in X has a concassage.

Proof. See [1, Theorem 6.1].

Lemma 2.3. Let μ be a pre-Radon measure in X. If $B = \bigcup_{n=1}^{+\infty} B_n$ with $B_n \in \mathcal{B}$ and $\mu(B_n) < +\infty$ for each $n \in \mathbb{N}$, then B is μ -inner regular.

Proof. Let $\varepsilon > 0$. For each $n \in \mathbb{N}$ there is $G_n \in \mathcal{G}$ with $B_n \subset G_n$ and $\mu(G_n - B_n) < \varepsilon / 2$, and there is $G_n \in \mathcal{G}$ with $G_n - B_n \subset G_n'$ and $\mu(G_n') < \varepsilon / 2$. Moreover, there is $F_n \in \mathcal{F}$ with $F_n \subset G_n$ and $\mu(F_n) > \mu(G_n) - \varepsilon / 2$. Let $E_n = F_n - G_n'$. Then $E_n \in \mathcal{F}$, $E_n \subset B_n$ and

$$\mu(E_n) = \mu(F_n) - \mu(G_n \cap F_n)$$

$$> \mu(G_n) - \mu(G_n) - \varepsilon/2$$

$$> \mu(G_n) - \varepsilon$$

$$> \mu(B_n) - \varepsilon.$$

Thus, each B_n is μ -inner regular. We shall prove that B is also μ -inner regular.

Replacing B_n by $\bigcup_{i=1}^n B_i$ if necessary, we may assume that $B_n \subset B_{n+1}$ for each $n \in \mathbb{N}$. Then $\mu(B) = \lim \mu(B_n)$ and since

$$\mu(B_n) = \sup\{\mu(F) \colon B_n \supset F \in \mathcal{F}\}$$

$$\leq \sup\{\mu(F) \colon B \supset F \in \mathcal{F}\}$$

for each $n \in \mathbb{N}$, takint limits we obtain

$$\mu(B) \leq \sup \{ \mu(F) \colon B \supset F \in \mathcal{F} \} \leq \mu(B).$$

Corollary 2.4. Let μ be a pre-Radon measure in X. If μ is σ -finite, then μ is inner regular.

Theorem 2.5. Let μ be a pre-Radon measure in X and let $\{F_i\}_{i\in I}$ a concassage of μ . Then μ is inner regular whenever one of the following conditions is satisfied:

- a) X is weakly metacompact;
- b) X is paralindelöf and F_i is Lindelöf for each $i \in I$.
- c) X is metalindelöf and F_i is separable for each $i \in I$.

Proof. Since μ is τ -additive, we may assume that the support of μ is the whole space, i. e.,

(1)
$$\mu(G) > 0$$
 for $\emptyset \neq G \in G$.

Let $B \in \mathcal{B}$ and let \mathcal{G}_0 be the family of all open subsets of X with finite measure. By Lemma 2.3 we may assume that

(2)
$$B - \bigcup_{n=1}^{+\infty} G_n \neq \emptyset$$
 for each sequence $(G_n) \subset \mathcal{G}_0$.

Since μ is locally finite, there is an open refinement \mathcal{A} of \mathcal{G}_0 such that $\mathcal{A} = \bigcup_{i=1}^{+\infty} \mathcal{A}_i$ with \mathcal{A}_i point-finite for each $i \in \mathbb{N}$ in case (a), \mathcal{A} is locally countable in case (b) and \mathcal{A} is point-countable in case (c). By Zorn's lemma, there is a maximal subset F of B such that

(3) card
$$(F \cap U) \le 1$$
 for each $U \in \mathcal{A}$.

This set F is uncountable for otherwise, since \mathcal{A} is point-countable, the family $\mathcal{A}' = \{U \in \mathcal{A}: U \cap F \neq \emptyset\}$ is countable and, by (2), do not a cover of B, hence we can add a point $x \in B - \cup \mathcal{A}'$ to F such that

card
$$((F \cup \{x\}) \cap U) \le 1$$

for each $U \in \mathcal{A}$, which contradicts the maximality of F. Moreover, F is closed; indeed, if $a \notin F$ there is $U \in \mathcal{A}$ such that $a \in U$ and $F \cap U = \emptyset$ or $F \cap U = \{b\}$ with $b \neq a$; it follows that

$$a \in U \subset X - F$$
 or $a \in U - \{b\} \subset X - F$.

We shall prove that $\mu(F) = +\infty$.

Later we shall see that for each $G \in \mathcal{G}_0$ the family

$$\mathcal{A}_G = \{ U \in \mathcal{A}: \mu(U \cap G) > 0 \}$$

is countable. Hence, in vief of (1), the family $\{U \in \mathcal{A}: U \cap G \neq \emptyset\}$ is also countable for each $G \in \mathcal{G}_0$. Since F is uncountable, from (3) it follows that F is not contained in an open set of finite measure, hence

$$\mu(F) = \inf \{ \mu(G) : F \subset G \in G \} = +\infty.$$

(a) Assume that $\mathcal{A} = \bigcup_{i=1}^{+\infty} \mathcal{A}_i$ with \mathcal{A}_i point-finite for each $i \in \mathbb{N}$ and assume that \mathcal{A}_G is uncountable for some $G \in \mathcal{G}_0$. Then

$$A_{G,i} = \{ U \in A_i: \mu(U \cap G) > 0 \}$$

is uncountable for some $i \in \mathbb{N}$. Since

$$\mathcal{A}_{G,i} = \bigcup_{k=1}^{+\infty} \{ U \in \mathcal{A}_i : \mu(U \cap G) \ge 1/k \},$$

there is $k \in \mathbb{N}$ such that the family $\{U \in \mathcal{A}_i : \mu(U \cap G) \geq 1/k\}$ is uncountable, and we can find a sequence of distinct $U_n \in \mathcal{A}_i$, such that $\mu(U_n \cap G) \geq 1/k$ for each $n \in \mathbb{N}$. It follows that

$$\mu(\limsup U_n) \ge \mu(\limsup (U_n \cap G))$$

$$\geq \lim \sup \mu(U_n \cap G) \geq 1/k$$
,

hence $\limsup U_n \neq \emptyset$ which contradicts the fact that \mathcal{A}_i is point-finite. Thus \mathcal{A}_G is countable.

(b) Assume that \mathcal{A} is locally countable and that F_i is a Lindelöf set for each $i \in I$. Each point of X has an open neighborhood which meets only countably many sets of \mathcal{A} ; furthermore, for each $i \in I$, a sequence of these neighborhoods is a cover of F_i , hence the family

$$\mathcal{A}_{\mathbf{i}} = \{U \in \mathcal{A}: U \cap \mathbf{F}_{\mathbf{i}} \neq \emptyset\}$$

is countable. Moreover, each $G \in \mathcal{G}_0$ meets only countably many sets of $\{F_i\}_{i \in I}$. Indeed, since

$$\sum_{i=1} \mu(G \cap F_i) = \mu(G) < +\infty,$$

there is a countable subfamily J of I such that $\mu(G \cap F_i) = 0$ for each $i \notin J$, and as supp $\mu_F = F_i$, we have $G \cap F_i = \emptyset$ for each $i \notin J$. On the other hand, if $G \in G_o$, $U \in \mathcal{A}$ and $\mu(U \cap G) > 0$, then there is $i \in I$ such that $U \cap G \cap F_i \neq \emptyset$ for otherwise,

$$\mu(U \cap G) = \sum_{i \in I} \mu(U \cap G \cap F_i) = 0.$$

Thus, for each $U \in \mathcal{A}_G$ there is $i \in I$ such that $U \in \mathcal{A}_i$ and $G \cap F_i \neq \emptyset$, hence $\mathcal{A}_G \subset \bigcup_{i \in I} \mathcal{A}_i$ and \mathcal{A}_G is countable.

(c) Assume that \mathcal{A} is point-countable and that F_i is separable for each $i \in I$. For every $i \in I$ there is a countable set A_i with $\overline{A_i} = F_i$ and if $U \in \mathcal{A}$ and $U \cap F_i \neq \emptyset$, there is $x \in U \cap \overline{A_i}$. Thus $x \in \overline{A_i}$ and U is an open neighborhood of x, hence $U \cap A_i \neq \emptyset$. This proves that \mathcal{A}_i is contained in the family

$$\{U \in \mathcal{A}: U \cap A_i \neq \emptyset\}$$

which is countable because \mathcal{A} is point-countable and A_i is countable. Hence \mathcal{A}_i is countable for each $i \in I$ and the proof is finished as in (b).

REFERENCES

- Amemiya, I., Okada, S. & Okazaki, Y. (1978). Pre-Radon measures on topological spaces. Kodai Math. J. I, 101-132.
- Fernández Novoa, J. (1998). Generalized Riesz Measures: Atti del Seminario Matematico e Fisico dell' Universita di Modena, XLVI, 139-148.
- Jiménez Guerra, P. & Rodríguez-Salinas, B. (1979). Medidas de Radon de tipo (H) en espacios topológicos arbitrarios. Mem. R. Acad. Ci. Madrid.
- Prinz. P. (1986). Regularity of Riesz measures. Proc. Amer. Math. Soc. 96 (2), 330-334.
- Rodríguez-Salinas, B. (1973). Teoría de la medida sobre los espacios topológicos no localmente compactos. Rev. Mat. Hisp. Amer. 33, 178-192 and 257-274.

SERIE «GALERÍA PRESIDENTES» REAL ACADEMIA DE CIENCIAS

D. José Solano de la Metalinares, Marqúes del Socorro II Presidente 1866-1882

Nació en Madrid el 8 de mayo de 1802. Fue nombrado Académico fundador por Real Decreto de 4 de marzo de 1847 y Presidente interino por Real Orden de 5 de marzo, cargo que ocupó hasta el 8 de marzo del año siguiente en que se designaron en propiedad los cargos académicos, siendo entonces designado Vicepresidente, hasta el 11 de junio de 1866 en que pasó a ocupar la presidencia de la Academia hasta su fallecimiento ocurrido el 9 de febrero de 1882.