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ABSTRACT

A pre-Radon measure Jl in a topological space X is
inner regular when X is weakly metacompact, when X is
paralindelOf and Jl has a concassage of LindelOf sets and
when X is metalindelM and Jl has a concassage of separa­
ble sets.

RESUMEN

Una medida pre-Radon Jl en un espacio topológico X
es interiormente regular cuando X es débilmente metacom­
pacto, cuando X es paralindelOf y Jl tiene un concassage de
conjuntos LindelOf y cuando X es metalindelOf y Jl tiene
un concassage de conjuntos separables.

1. INTRODUCTION AND PRELIMINARIES

Let X be a topological space. By YI :Jj 1(, and '13 we
shall denote, respectively, the families of all open, closed,
compact closed and Borel subsets of X.

A nonempty fami1y .9L of subsets of X is called directed
upwards if for each A, B in .9l. there is e in .91. such that
A U B e C. If .9L is directed upwards and Ao = U A, we
write .9L tAo' '

A family .91. of subsets of X is called point-finite (re­
spectively, point-countable) if each point x E X belongs
only to finite (resp. countable) many sets of .9L. The fami1y
.9L is called locally countable if each point x E X has an
open neigborhood which meets only countably many sets
of .9L.

The space X is called metacompact (resp. metalindelof)
if each open cover of X has a point-finite (resp. point­
countable) open refinement. X is called weakly metacom­
pact if each open cover of X has an open refinement which
is a countable union of point-finite families. X is called

paralindelOf if each open cover of X has a locally count­
able open refinement.

A Borel measure in X is a measure on '13. The support
of a Borel measure Jl in X is the set of all x E X such that
Jl(V) > O for each open neighborhood V of x. We shall
denote by sUPP Jl the support ofJl. Clearly, supp Jl is a
closed subset of X.

If Jl is a Borel measure in X, a set B E '13 is called

a) Jl-outer regular if Jl(B) =inf {Jl(G): B e G E (j};

b) Jl-inner regular if Jl(E) =sup {Jl(F): B ::::> F E .'J};

c) Jl-compact if for each open cover 'l1 of B and
each e > O there is a finite subfamily 'I! of 'l1 such that
Jl(B - U '0 < e.

The concept of Jl-compact set is introduced by B. Ro­
dríguez-Salinas in [5]. For a extensive treatment of Jl-com·
pact sets we refer to [3].

A Borel measure Jl in X is called

A) outer regular if each B E '13 is jl-outer regular;

B) inner regular if each B E '13 is Jl-inner regular;

C) locally finite if each .x E X has a neigborhood V
such that Jl(V) < + oo.

D) 't-additive if sup {Jl(G): G E Yo}:::: Jl(Go) for each
(jo e (j with (jo t Go'

Let !Jibe a subfamily of :r. A Borel measure Jl in X is
called

(a) a Riesz measure oi type (Ji) when it is outer reg­
ular, each H E !Ji is a Jl-compact set with Jl(H) >
O and
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Il(G) =sup {1l(H): G :J H E .'Ji}

for eaeh G E (j.

(~) a pre-Radon measure when it is loeally finite,
't-additive and outer regular, and eaeh G E (j with
Il(G) < +00 is Il-inner regular.

The pre-Radon measures are introdueed by L Amemi­
ya, S. Okada and Y. Okazaki in [1].

Sinee eaeh Riesz measure of type (Ji) is 't-additive,
eaeh loeally finite Riesz measure of type (Ji) is a pre­
Radon measure.

P. Prinz establishes in [4] that a Riesz measure 11 in a
Hausdorff spaee X (i. e. a Riesz measure of type (10 in X)
is inner regular when X is metaeompaet (resp. paralindel­
6f) and when X is metalindel6f and 11 has aeoneassage of
separable sets. In [2] we introduce the Riesz measures of
type (Ji) and we generalize the Prinz's results to this c1ass
of measures. In this paper we extend these results to pre­
Radon measures.

2. THE RESULTS

Definition 2.1. Let 11 be a Borel measure in X. A
concassage of 11 is a disjoint family {FiLE! of c10sed sub­
sets of X of finite measure whieh satisfies the following
properties:

a) supp /lF; = F¡ for eaeh i E I;

b) X - UF¡ is a loeally negligible sel.
¡El

e) /l(B) "" L/l(BnF¡) foreaehBE 'Bwith Il(B) < +00.
¡El

Theorem 2.2. Each pre-Radon measure /l in X has a
concassage.

Proo! See [1, Theorem 6.1].

Lemma 2.3. Let 11 be a pre-Radon measure in X. Jf
B "" v;:::'¡ B

II
with B II E 'B and Il(Bn) < +00 for each n E N,

then B is /l-inner regular.

Proo! Let E > O. For eaeh n E N there is Gn E (j with
Bn e Gn and Il(Gn - Bn) < El 2, and there is G,; E (j with

Gil - B
II

e G;¡ and /l(G;.) < el 2. Moreover, there is Fn E

!Twith Fn e Gn and Il(Fn) > Il(Gn) - e/2. Let En = Fn- G;,.
Then En E .r. En e Bn and

/l(EII ) "" /l(F,.)' - f1(G~ n F,.)

> /l(GII ) - /l(G;.) ~ el2

> /l(GII ) ~ e

> /l(B,,) - e.

Thus, eaeh Bn is J.l-inner regular. We shall prove that B
is also Il-inner regular.

Replacing Bn by U:~¡13¡ if neeessary, we may assume
that Bn e Bn+1 for eaeh n E N. Then Il(B) = lim Il(B ) and

• n
smee

/l(BII ) "" sup{f1(F): BII :) FE !F}

::s; sup{f1(F): B:) FE !F}

for eaeh n E N, takint limits we obtain

Corollary 2.4. Let /l be a pre-Radon measure in X.
Jf /l is a-finite, then /l is inner regular.

Theorem 2.5. Let /l be a pre-Radon measure in X
and let {F¡hEI a concassage of f.L Then /l is inner regular
whenever one of the following conditions is satisfied:

a) X is weakly metacompact;

b) X is paralindelof and F¡ is LindelOffor each i E I.

e) X is metalindelOf and F¡ is separable for each i E

I.

Proo! Since 11 is 't-additive, we may assume that the
support of 11 is the whole spaee, i. e.,

(1) /l(G) > Ofor 0 '# G E (j.

Let B E 'B and let (jo be the family of all open subsets of
X with finite measure. By Lernma 2.3 we may assume that

(2) B - U:¡Gil '# 0 for eaeh sequenee (Gn) e (jo'

Sinee 11 is loeally finite, there is an open refinement JI.

of (jo sueh that .9l. "" U;:.9l.; with .9l.¡ point-finite for eaeh i
E N in case (a), .9l. is loeally eountable in case (b) and .9l.
is point-eountable in case (e). By Zorn's lemma, there is a
maximal subset F of B sueh that

(3) eard (F n U) $; 1 for eaeh U E ..9L

This set F is uneountable for otherwise, since JI. is
point-eountable, the fami1y JI.' = {U E JI.: U n F::;:. 0} is
eountable and, by (2), do not a eover of B, henee we can
add a point x E B ~ U JI.' to F sueh that

eard «F U {x}) n U) $; 1

for eaeh U E JI., whieh eontradiets the maximality of F.
Moreover, F is c1osed; indeed, if a ~ F there is U E JI. sueh
that a E U and F n U = 0 or F n U = {b} with b ::;:. a;
it follows that
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a € U e X - F or a € U - {b} e X-F.

We shal1 prove that ~(F) = +oo.

Later we shal1 see that for each G € (jo the family

5\; = {U € Jf.:~(U n G) > O}

is countable. Hence, in vief of (1), the fami1y {U E jI: U
n G ':F 0} is also countable for each G E (jo' Since F is
uncountable, from (3) it fol1ows that F is not contained in
an open set of finite measure, hence

~(F) = inf {~(G): F e G E (j} = +09.

(a) Assume that jI =U~.9l.¡ with.9l.¡ point-finite for
1=1

eaeh i E N and assume that 5\; is uneountable for sorne G
E (jo' Then

AG,; = {U E A¡: ~(U n G) > O}

is uneountable for some i EN. Sinee

51.e.¡ = U:1{u € jI¡: J.l.(U n G) ~ l/k},

there is k E N sueh that the family {U € JI¡: ~(U n G) ~
1/k} is uneountable, and we can find a sequenee of distinet
Un E J'I¡, sueh that J.l.(Un n G) ~ 1/ k for each n E N. It
fol1ows that

~(1im SUp Un) ¿ Il.(lim SUp (Un n G))

~ lim SUp ~(Un n G) ~ 1/ k,

henee lim SUp Un :¡t 0 whieh contradiets the faet that J'I¡ is
point-finite. Thus 5\; is countable.

(b) Assume that jI is local1y eountable and that F¡ is
a Linde16f set for each i E I. Eaeh point of X has an open
neighborhood which meets only countably many sets of .9l;
furthermore, for each i E 1, a sequence of these neighbor­
hoods is a cover of F¡, henee the family

is countable. Mol'eovel', eaeh G E (jo meets only eountably
many sets of {F¡}¡Ei' lndeed, sinee

L,u(Gn F;)= ,u(G) < + 00,

iel

there is a eountable subfamily J of 1 sueh that~(G n F¡)
= O for each i lif J, and as supp ,uF, = F;, we have G n F¡
= 0 for eaeh i lif J. On the other hand, if G E Go, U E jI

and ~(U n G) > O, then thel'e is i € 1 such that Un G n
F¡ :¡t 0 fol' otherwise,

,u(U n G) = L',u(u n G n F;) = o.
iel

Thus, for eaeh U E 5\; thel'e is i E 1 sueh that U E J'I¡
and G n F¡ :¡t 0, henee 51.e e UjI¡ and 5\; is countable.

tel

(e) Assume that jI is point-countable and that F; is
separable for eaeh i € I. Fol' every i € 1 there is a count­
able set A¡ with A; = F; and if U E jI and Un F¡ ':F 0,
there is x E UnA;. Thus x E A; and U is an openneigh­
borhood of x, henee U n A; ':F 0. This proves that J'I¡ is
eontained in the fami1y

{U E Jf.: U n A¡ ':F 0}

which is eountable because jI is point-countable and A¡ is
eountable. Hence J'I¡ is eountable for each i E 1 and the
pl'oof is finished as in (b).
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