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ABSTRACT

It is proved that for any coechelon space & (V) of order
p, 1 £ p < oo, and any compact set K, the space of conti
nuous functions C(K, k,(V)) is bornological. This is a par-
tial solution of the problem of Schmets and Bierstedt on
bornologicity of LB-spaces of continuous functions. More-
over, if k,(V) is Montel, then C(X, kp( V)) is even the local
completion of C(K) ®, kp( V).

Grothendieck asked the still open question if every
regular LB-space is necessarily complete [Bi, p. 78], [PCB,
Problem 13.8.6]. In fact the problem is the key question
from the whole complex of related problems. Its positive
solution would imply answers to some other natural ques-
tions in the theory of LB-spaces.

Let us recall that the smallest locally complete space Y,
X ¢ Y ¢ X,is called the local completion (or the Mackey

completion) of a locally convex space X, where X denotes
the completion of X (see [PCB, 5.1.5 and 5.1.21]). It is
known that the local completion of each LB-space is a
regular LB-space [PCB, 6.2.8 and 7.3.3]. Thus the positive
solution of the Grothendieck problem would imply that:

(i) the local completion of each LB-space is equal to
its completion;

(ii) the completion of any LB-space must be an LB-
space [PCB, Problem 13.8.1].

Now, let E = ind  E, be any complete LB-space.
Clearly, the space F :=ind  C(K, E,)is an LB-space for
any compact K. It is known (see [Sch2, 1.7.2] or [Mu]) that

C(K, E) is the completion of F and F contains C(K) ®, E
as a locally dense subspace. Thus the positive solution to
the Grothendieck ploblem would imply:

(iii) C(K, E) is the local completion of F or, equiva-
lently, of C(K) ®, E;

(iv) C(K, E) is bornological ({[Schl, p. 103], comp.
[PCB, Problem 13.6.2]).

Up to now, it is not known if any of the statements
(i)}—(@v) is generally true.

The statement (iii) is trivially true if C(K,E) = F (i.e.,
E is a compactly regular L.B-space, see [PCB, Def. 8.5.32]).
It was proved in [DiDo2] that (iii) also holds if E is a
coechelon space k_(V) of order e and K is the one-point
compactification of the natural numbers. As far as the

author knows these are the only cases where (iii) has been
established.

Our main result (Th. 3.1) shows that (iii) holds if E is
an arbitrary Montel coechelon space k,(V) for any p, I <
p < oo, and for an arbitrary compact set K. The proof is
quite involved and somehow similar to that of [DiDo3]. It
leads to a criterion on the range of a continuous function
h: K — k,(V) which implies that & belongs to the o-th
Mackey derivative of F.

In the forthcoming paper [DD] J. C. Dfaz and the au-
thor prove that for an arbitrary compact set K the corres-
ponding space of weakly continuous E-valued functions is
the Mackey completion of the inductive limit of spaces of
weakly continuous E,-valued functions for E = ind, .y E, =
k. (V) if and only if A,(A) is distinguished for k. (V) =
A[{A); Analogon of the sufficiency part is proved there
also for the spaces of continuous functions.
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The question if (iv) is always true for any LB-space E
was posed by Bierstedt and Schmets [Schl, p.103]. Only
some partial solutions are known. If E is a Montel 1.B-
space, then C(K, E) is bornological for K either the one-
point or the Stone- Cech compactification of the natural
numbers (see [DiDo2, Th. 1}, [BiBo2, Th. 1.5 (b) (2)D.
Moreover, by [BoD, Obs. 9 (a)] (comp. [BiBo2, Prop.
29(b)] and [BDM, Cor. 11]), C(K, k,(V)) =~ L(4,(A), C(K))
is bornological for any Montel space k(V), I < p < o,
where k (V) ~ A (A, If K is the one—pomt compactifica-
tion of tfxe natural numbers and p = oo, then the same holds
even for non-Montel k_(V) [DiDo2, Cor. 4]. Of course, the
same holds if F is a compactly regular LB-space [Sch2,
Th. 1V.4.4] (see also [Me], [Bol], [BoS1] and [BoS2] ) .

We also show (Theorem 1.3) that C(K, k,(V)) is borno-
logical for any compact set K and any coechelon space

k,(V), 1 <p < eo. The proof is much more elementary than
the proof of Th. 3.1.

Let us remark that for coechelon spaces k(V) of order
0 both our results hold if only k,(V) is complete. Indeed,
by [Bi, Th. 4.7 and p. 103], completeness of k (V) implies
compact regularity.

Our notation and terminology is standard and follows
in general [J], [PCB] and [Bi]. We denote by E" the
Mackey derivative of E, i.e., the set of all local limit points

of E in the completion E. Inductively, we define Mackey
derivatives of higher order:

Eo) ( E(‘")) and EP := | JE® for limit ordinals B.

a<f

It is known that the local completion of E is equal to
UaE(“) where the union is taken over all countable ordi-
nals o.

By V we always denote a matrlx, (vy) with vy 2 v, >
0 for any i, k € N. Then for g, := ——, A = (a,) is a Kothe
Y,

ik
matrix. By coechelon space of order p we mean:

k(V) == ind lp((v,-k)ieN), where

b () ) = { s el o= (Zl v ] m},

where the latter space is equipped with the norm [, (for
p =oo we take [xf, = supen|xva) It is known that for 1
< p < oo the space k,(V) is always a complete LB-space

(even the inductive dual of some Frechet space), see [Bi,
2.9 and 2.10].

1. Bornological spaces of vector-valued continuous
functions. Let (a),.y be a sequence of positive numbers

and let 1 £ p <o, A subset D of the space of all sequences
is called an /,-ball with axes (@), iff

D={x=(x,~):2

ieN

P
X

SI} for p <o,

i

D= {x = (xi) > sup M < 1} forp = oo
ieN 4
Observe that the unit balls B, in steps of k,(V) are the
l,-balls with axes (a}k/" )ieN. Moreover, each /,-ball is poin-
twise closed in any coechelon space k,(V), | <p < e

Let us recall that a topology on a sequence space is
called locally solid if it has a O-neighbourhood basis con-
sisting of sets U such that if x € U, then every y smaller
than x with respect to the pointwise order also belongs to
U. In particular, each coechelon space k,(V), 1 <p < o, has
a locally solid tepology.

Lemma 1.1. Let 1 < p < oo and let b be a positive
number. ‘

(a) If D is the L,-ball with axes (a;), then bD is the [-
ball with axes (ba, )

(b) IfD,...D, are the l,-balls with axes (ay)ic k =
1,..., n, resp., then ZZ=]Dk c D, where D is the lp-ball

. " k
with axes (Zk=12 aik)iEN'

(c) If D is the l,-ball with axes (2:::1 W,-k) and C, are
the | -balls with axes (w,),.\y respectively, then there are
Junctions fi: D — Cy, k = I,..., n, continuous with respect

to any linear locally solid topology on lin (zz 1Ck) and
satzsfymg zk Jelx) = x for any x € D. In particular,

Proof. (a): Obvious.

(b): Letx = x; +..+ X, % = (X)ien € Dy. Then
1/p

" 1/p

n
n I4
SiZe )| < Sy ol
n i - P
N Z 2ay %=1 | ieN Z" 2a
j=1 j=1 ']

}Ez*"s 1.

k=1

ral”
s 2 ZkakaP
(c): Letx = (x;) € D, then we define

Wi X;

filx) - —ZE

ieN

Moreover, we get
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4

P

Z Wi X; 1 < 2 |‘xi| <1
n wP - n P -
ieN 2 W, ik ieN Zk lwik

et Y
and f(x) € C,. It is clear that |fk(x) —fk(y)| < |x-y],
which implies the required continuity.

Lemma 1.2. Let K be a compact set in an LB-space
E = ind,  E, having a weaker topology which makes the
unit balls B, of E, compact. Then for any sequence of
positive numbers (b)), there is m € N such that for any

x € K the set (x + ka=1b"B") M K is a neighbourhood of
x in K.

Proof. Since 2K is metrizable (see [Pf], [CaOrl] and
[CaOr2]), we may apply density type arguments of
Bierstedt and Bonet [DiDol, Th. 1.3] (comp. [BiBoll,

[BiBo2]). Thus 2:—1 bB, N 2K is a O-neighbourhood in
2K for some m € IN. Since there is a weaker topology
making B, compact, 3" bB, =" bB. Finally, there is
a 0-neighbourhood U in E such that

Un 2K c Y bB.

k=1

For x € K:
(x+U)nKc(x+(Un 2K) g(x + Zkak].
k=1

Theorem 1.3. For any 1 < p < oo, any matrix V as
above and any compact set K, the space C(K, k,(V)) is
bornological.

Proof. Let us take B, to be the unit ball in /,((vy)en)s
as noted above B, is the /,-ball with axes (a}{” ),-eN' We will
show that for any (b)), the bornivorous set

W= ibkC(K, B,)

meN k=1

contains the 0-neighbourhood

U := C(K, U iz"“kak}.

meN k=i

Let h € U, then WK) Uz::lz""‘kak. By Lem-
meN

ma 1.2, there are finitely many elements {#: i = I,..., [}

c K, n € N, and neighbourhoods W, of ¢; in K such that

1 n
W, = K and H(W) < A(t) + Y,27*"'bB,.

1 k=l

1

On the other hand

h) € 3 2B,

k=1

Thus, for m = max(m,,..., m, n) we have:

HK) € Y 2B,

k=1

By Lemma 1.1.(b),

iZ"‘kakg D,

k=1

where D is the /,-ball with axes (2:=1.bka"1k/ p )iEN. By Lemma

. 1.1 (c), there are continuous functions f,: D — b B, k =

1,..., m, such that z:;lfk(x) = x for any x € D. Finally,

h = 2:;1 fiohandf,oh e C(K, bB,) this completes the
proof.

2. Combinatorial preliminaries. In the proof of our
second main result we will use some combinatorial argu-
ments contained in [DiDo3]. For the sake of completeness
we give them also here.

We call a family T of finite sequences of natural num-
bers a tree if

(i) DeT
(ii) (ny...n) € T = (ny,...n ;) e T.
We call T a blooming tree if additionally

(iii) (ng,...n)) € T = (ny,..., n;, ) € T for each
le N;

(iv) for any infinite sequence (n,), .y < IN there is m
such that (n,,....n,) ¢ T.

A sequence of elements of the tree of the form:

(Rgsees )y (Rgoeislyy Ppgp)ees, (BgyeesPpsey)

is called a branch of the tree. The rank of a blooming tree
T will be the crucial notion used in the paper. If T = {J},
then rank(T) := 0, otherwise we define the rank as follows.
First we construct a new blooming tree T® equal to
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{(ngem) € Tl b)) : (Moo gy oo o) € THO{T:

It is easily seen that if T = {@}, then there is m such
that no sequence (ly,...,J,,) belongs to T. Thus the tree T is
bounded, i.e., all branches of T have length bounded by
some fixed m.

We have the whole family of blooming (!) trees de-
fined inductively:

7@ = (1®)" and 79 ;= (T for limit ordinals B.

a<f

It is known that the family strictly decreases to {}
and thus for every blooming tree T there exists a countable
ordinal number o such that 7 = {2} [DiDo3, Prop. 5 and
Cor. 6]. We define rank(7T) to be the minimal ordinal
number o such that T = {J}. Tt is easily seen, that if T,
< T,, then rank(T)) < rank(T}).

Proposition 2.1. The ordinal number rank (T) is ne-
ver a limit ordinal.

Proof. If rank(T) = sup, o, then there is n € IN such
that (1) ¢ T and, by (iii) and @i), T = {@}.

Lemma 2.2, Let T be a blooming tree and let
(Ao} & T, then rank (S) < o whenever

Proof. By the same argument as in the proof of Prop.
2.1, there is ¥ < o such that

(Mg A) £ T,

As easily seen

Since (4,,...,4,) & TP, there is n € N such that for
each

(Aqr:--»/lm» M) € T
we have [ < n. Thus S™ = {&} and rank(§) < y+ 1 < o

3. The completion and the local completion of
C(K) ®, kp( V) coincide in the Montel case. We will prove
the following main result:

Theorem 3.1. Let k(V), 1 < p < e, be a Montel
coechelon space and let K be an arbitrary compact set.
The space C(K, k,(V)) is the local completion of the space
indyery C(K, L((vip)iew)) o1, equivalently, of C(K) ®, k,(V).

Remark. Since the local completion of any LB-space is
an LB-space [PCB, 7.3.3 and 6.2.8], the above result gives

another proof of bornologicity of C(K, k,(V)) in case of
Montel k,(V).

The proof will be based on a sequence of lemmas.

Lemma 3.2. Let 1 < p < candlet C, D be the I,-
balls with axes (u;) and (w,) respectively. If there is a finite

set {yp...y,} © D such that D < Ulr=1y,+ C, then
AGVizj w2 w,

i

Proof. Let us assume that for each j there is i > j such
that w; > u;. Thus there are i,,....i,,, such that w, > (1 +
S)uil, for [ = I,..,r + I and some 6 > 0. Let P be the
projection on the linear span X of the unit vectors with
indices i,...,i,,; and let g, g be the gauge functionals of
P(D) and P(C) respectively. Clearly, (1 + 3)gp < g.. The
linear space Y = lin{P(y): [ = 1,...,r} is a proper closed
subspace of X. By the Riesz Lemma [Ds, p.2], there is a
vector x € P(D) such that its g,-distance from Y is bigger

)
than [1/(1*"2‘)]- Of course, the g-distance of x from Y is

bigger than (1+6)/(l+§) >1, which contradicts the as-
sumption P(D) ¢ U:=1P(y,)+P(C).

Lemma 3.3. Let I <p <coand let the l,-ball D with
axes (w;),.y be a compact subset of the coechelon space
k(V). Then for each sequence (b,) of positive numbers the
Jollowing holds:

dn, jVizj [Zbka},f‘”} 2w
k=1

Proof. Let us denote by B, the unit balls in the steps of
*k,(V). Then B, is the -ball with axes (a}k/” )ieN- By Lemma
1.2, there is »n and a finite set {y;,....y,} < D such that

D c Uy,.+ iz"‘kak.

j=t k=1

By Lemma 1.1 (b),

D < Uy]+ DO:

e

where D is the [,-ball with axes (2:;1 bkaz'llc/p)ieN- Applying
Lemma 3.2 we get the conclusion.

Now, we define a hierarchy of families of sequences of
positive numbers. Let us fix a matrix V = (v,) as usual
with a, = L. A sequence of positive numbers (w) € S,

Vik
iff there is k € N such that w; = o(a},{”) asi — oo. Let S,
be defined for all ordinal numbers o < B. If  is a limit



Mateméticas: Pawel Domanski

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1998; 92 65

ordinal, then S = Ua<BSa- Otherwise, B = o +1 and (w))
€ S if and only if the following condition holds:

JkVe>0  w = eay”+z, where(z) € S, dependson &.

It is easily seen that if (w)) € S, and u; < w, for every
i, then (u;) € S, as well.

Lemma 3.4. Let I < p<coandletw=(w)ybea
sequence of positive numbers. If the | -ball D with axes
(Wiiew is a compact subset of the coechelon space k,(V),
then there is a countable ordinal o such that (w;) € S,.

Proof. For any sequence w= (w;) of axes of a.compact
l,-ball we define a tree T,, as follows. For every sequence
of natural numbers (?»k)keN we say that (A,,...,.A,) € T, iff

n-1
Vidi 2 Y A a? < w.
k=1

It is easily seen that the relation (A,,....A,) € T,, does
not depend on A,. Thus, by Lemma 3.3, T,, is a blooming
tree. If the tree is bounded (i.e., rank(7,) = 1), then

Zl_l 1p

V() ey I Vi 2

In particular, if 2:_12,;’ < € then

HVizj w £ edl

We have proved that (w) € S,

Now, assume that for o < B, if rank(7,) € o, then w =
(w) € S,. We will show that if rank(T,) <  then w = (w,)
€ S,

p

If B is a limit ordinal, then (Prop. 2.1) rank(7,) < B,
i.e., there exists o < P such that rank(7,) < o and (w)) €
Sa S Sp

If B =0 + 1 and rank(7,) = B, then T{® is a bounded

tree. Let (A,),cpy satisfy zkem X' < & There is m not de-
pending on & such that

(Ao An) & T,

f (Aeoor 2 T T) € T, then

-1

I Vi >12/11a”” + Zn'] },{”

k=m-+1

\Y
3

We take g; := min (w,, Zm A ay? ) 5; = w;—gq;. Since

s; < w, for any i € N, the [ -ball with axes (s, is also
compact in k,(V). Clearly, if for (m),n, the sequence
(Apeers gy M- 71 does not belong to T, then

FHVvizj 2:11'1 ay’ = s,

k=m+1

We have proved that the tree T, of the sequence s = (s)
is contained in the tree

S = {(m)“ e ()'1: o s 71",+;,...,n,) eTw}_

By Lemma 2.2, rank(T,) < rank(S) < o and (s;) € S, by
the inductive hypothesis. We obtain w; = g; + s, where
g < ea)?, (s;) € S, hence (w,) € S,

Lemma 3.5. Let ] <p < oo and let K be a compact
set. If h: K — k(V) is a continuous function, with h(K)
contained in the lp -ball D with axes (w;) and (w;) € S,
then h € F'® (the o-th Mackey derivative), where

F o= ind (K, L((v),))-

Proof. If (w;) € Sy, then there is k such that w; = o(a;”)

and D is compact in [,((vy);c ) This means that the topolo-
gy of the latter space and the one of k,(V) coincide on D

and h e C (K, 1, (w),)) € F < F*.

Now, let us assume that the result holds for a0 < J.
Take (w;) € Sp. If B is a limit ordinal, then (w,) € S, for
some o < 3 and we are done.

Let B = o + 1, for some k € N and each € > 0

— p
W, = Eay

+ Z;

where (z;) € S, depends on €. Let C be the [,-ball with axes
(z). By Lemma 1.1 (c), there are continuous maps f: D —
€B,, g: D — C such that f (x) + g(x) = x for each x € D.
Clearly, g « h: K — C and, by the inductive hypothesis,
g o h e F' On the other hand, fo & (K) < €B,and h =
g o b+ foh We have shown that h € F©®D,

Proof of Theorem 3.1. If k (V) is a Montel space, then
the unit balls B, are compact. Smce they are /,-balls, then,
by Lemma 3.4, for each k there is a countable ordinal o,

such that (a;?) € S,. Now, if & : K — k(V) is conti-

nuous, then without loss of generality we may assume that
W(K) is contained in some B,. By Lemma 3.5, h € F®);
this completes the proof.
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