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ABSTRACT

It is proved that for any coechelon space kiV) of order
p, 1 ~ p ~ 00, and any compact set K, the space of conti
nuous functions C(K, kiV)) is bornological. This is a par
tial solution of the problem of Schmets and Bierstedt on
bornologicity of LB-spaces of continuous functions. More
over, if kpCV) is Montel, then C(K, kpCV)) is even the local
completion of C(K) ®e kpCV).

Grothendieck asked the still open question if every
regular LB-space is necessarily complete [Bi, p. 78], [PCB,
Problem 13.8.6]. In fact the problem is the key question
from the whole complex of related problems. Its positive
solution would imply answers to sorne other natural ques
tions in the theory of LB-spaces.

Let us recall that the smallest locally complete space y,

X ~ Y ~ X, is called the local completion (or the Mackey

completion) of a locally convex space X, where X denotes
the completion of X (see [PCB, 5.1.5 and 5.1.21]). It is
known that the local completion of each LB-space is a
regular LB-space [PCB, 6.2.8 and 7.3.3]. Thus the positive
solution of the Grothendieck problem would imply that:

(i) the local completion of each LB-space is equal to
its completion;

(ii) the completion ofany LB-space must be an LB
space [PCB, Problem 13.8.1].

Now, let E = indneN En be any complete LB"space.
Clearly, the space F := indneN C(K, En) is an LB-space for
any compact K. It is known (see [Sch2, 1.7.2] or [Mu]) that

C(K, E) is the completion of F and Fcontains C(K) ®e E
as a locally dense subspace. Thus thepositive solution to
the Grothendieck ploblem would imply:

(iii) C(K, E)is the local completion of F or, equiva
lently, of C(K) ®e E;

(iv) C(K, E) is bornological ([Schl, p. 103], comp.
[PCB, Problem 13.6.2]).

Up to now, it is not known ifany of the statements
(i)~(iv) is generally true.

The statement (iii) is trivially true if C(K,E) = F (i.e.,
E is a compactly regular LB-space, see [PCB, Def. 8.5.32]).
It was proved in [DiDo2] that (iii) also holds if E is a
coechelon space kJV) üf order 00 and K is the one-point
compactification of the natural numbers. As far as the
author knows these are the only cases where (iii) has been
established.

Our main result (Th. 3.1) shows that (iii) holds if E is
an arbitrary Montelcoechelon space kiV) for any p, 1 ~

p ~ 00, and for an arbitrary compact set K. The proof is
quite involved and somehow similar to that of [DiDo3]. It
leads to a criterion on the range of acontinuous function
h: K ~ kiV) which implies that h belongs to the (X-th
Mackey derivative of F.

In the forthcoming paper [DD] J. C. Díaz and the au"
thor prove that for an arbitrary compact set K the corres
ponding space of weakly continuous E-valued functions is
the Mackey completion of the inductive limit of spaces of
weakly continuous En-valued functions for E =indneN En =
k~(V) if and only if A¡(A) is distinguished for k~(V) =
A¡(A)j. Analogon of the sufficiency part is proved there
also for the spaces of continuous functions.
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academic year 95/96.
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The question if (iv) is always true for any LB-space E
was posed by Bierstedt and Schmets [Schl, p.103J. Only
sorne partial solutions are known. If E is a Montel LB
space, then C(K, E) is bornological for K either the one~

point or the Stone- Cech compactification of the natural
numbers (see [DiD02, Th. 1], [BiB02, Th. 1.5 (b) (2)]).
Moreover, by [BoD, Obs. 9 (a)J (comp. [BiB02, Prop.
2.9(b)] and [BDM, Cor. 11]), C(K, kiV)) ~ Li:AiA), C(K))
is bornological for any Montel space kiV), 1 ~ p S; 00,

where kpCV) ~ A-q(A)i" If K is the one-point compactifica
tion of the natural numbers and p= pO, then the same holds
even for non-Montel kjV) [DiD02, Coro 4]. Of course, the
same holds if E is a compactly regular LB-space [Sch2,
Th. IV.4.4J (see also [MeJ, [Bol], IBoSIJ and [BoS2] ) .

We also show (Theorem 1.3) that C(K, kiV)) is borno
logieal for any compaet set K and any coechelon space
kiV), 1 ::; p ::; oo. The proof is mueh more elementary than
the proof of Th. 3.1.

Let liS remark that for coeehelon spaces kriV) of order
O both our results hold if only koCV) is complete. Indeed,
by lBi, Th. 4.7 and p. 103J, completeness of kiV) implies
compact regularity.

Our notation and terminology is standard and follows
in general [JJ, [PCB] and [Bi]. We denote by Fil) the
Mackey derivative of E, i.e., the set of alllocallimit points

of E in the completion E. Inductively, we define Mackey
derivatives of higher order:

E(a+l) := (E(a)t and E(/J):= UeCa) for1imit ordinals II
a<p

It is known that the local completion of E is equal to
UaE(a) where the union is taken over all countable ordi
nals a.

By V we always denote a matrix, (V¡k) with V¡k;;:: Vik+1>

Ofor any i, k E N. Then for aik := ..l, A= (a ik) is a Kiithe
Vik

matrix. By coechelon space 01 order p we mean:

where the latter space is equipped with the narro IHlk (for
p= 00 we take Ilxllk := SUPiENlxilvik)' It is known that for 1
::;; P ::;; 00 the space kiV) is always a complete LB-space
(even the inductive dual of sorne Freehet space), see [Bi,
2.9 and 2.IOJ.

1. Bornological spaces of vector-valued continuous
functions. Let (a¡)ieN be a sequence of positive numbers

and let 1 ::;; P ::;; oo. A subset D of the space of all sequences
is called an lp-ball with axes (a¡)ieN iff

D={X=(Xi): ~.I::r ::;;l} for p<~,

D;:::: {x = (x;) : Sup IXiI ::;; l} for p = oo.
ieN Q¡

Observe that the unit balls Bk in steps of kiV) are the

lp-balls with axes (aJfP)iEN' Moreover, each lp-ball is poin
twise closed in any coechelon space kiV), 1 :s; p :s; oo.

Let us reeall that a topology on a sequence space is
called locally solid if it has a O-neighbourhood basis con
sisting of sets U such that if x E U, then every y smaller
than x with respect to the pointwise order also belongs to
U. In particular, eaeh eoeehelon space kiV), 1 ::;; p ::;; 00, has
a locally solid topology.

Lemma 1.1. Let 1 ::;; P ::;; 00 and let b be a positive
number.

(a) liD is the lp-ball with axes (a), then bD is the lp
ball with axes (ba).

(b) II D¡,.oo,Dn are the lp-balls with axes (aik)ieN' k;::::

1,00" n, resp., then I..:=1 Dk ~ D, where D is the lp-ball

with axes (I..:=¡2k
aik)iEN'

(e) II D is the lp-ball with axes (I..:=1 Wik ) and Ck are

the lp-balls with axes (w¡JieN respectively, then there are
functions Ik: D -7 Ck, k ;:::: l,oo., n, continuous with respect

to any linear locally solid topology on lin (I..:=1 Ck) and

satisfying I..:=l h (x) = x lor any x E D. In particular,
,",,"

D ~ L.,¡k=l Ck•

Proo! (a): Obvious.

(e): Let x = (x) E D, then we define

Moreover, we get
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h(t¡) E })-k-1bkBk •

k=l
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and fix) E Ck• It is clear that IA(x) ~A(y)1 :::;Ix~yl,

which implies the required eontinuity.

Lemma 1.2. Let K be a compact set in an LB-space
E :::: indm=N En having a weaker topology which makes the
unit balls Bn of En compacto Then for any sequence of
positive numbers (bkheN there is mE N such that for any

x EK the set (x + :¿:=lbkBk) n K is a neighbourhood of

x in K.

Proo! Sinee 2K is metrizable (see [Pf], ICaOrl] and
[CaOr2]), we may apply density type arguments of
Bierstedt and Bonet [DiDol, Th. 1.3] (comp. [BiBol],

[BiB02]). Thus :¿:=l bkBk n 2K is a O-neighbourhood in
2K for sorne m E N. Since there is a weaker topology

making Bkeompaet, :¿:lbkBk :::: :¿:=l bkBk • Finally, there is
a O-neighbourhood U in E sueh that

U n 2K G; i)kBk'
k=l

For x E K:

Theorem 1.3. For any 1 :::; p ::;; 00, any matrix V as
above and any compact set K, the space C(K, kpCV))· is
bornological.

Proo! Let us take Bk to be the unit ball in 1/(vik)iEN),

as noted aboye Bk is the lp-ball with axes (ai:P)¡EN' We will
show that for any (bk)kEN the bornivorous set

w::::: Ui)kC(K, Bk )

mEN k=l

eontains the O-neighbourhood

Let h E U, then h(K)G; U:¿:~12-k-lbkBk' By Lem-
meN

ma 1.2, there are finitely many elements {ti: i :::: 1,... , l}
G; K, n E N, and neighbourhoods Wi of ti in K sueh that

1 nUw; :::: K and h(W;) G; h(t;) + :¿2-k-1bkBk.
;=1 k=l

On the other hand

Thus, for m :::: max(ml''''' mI! n) we have:

h(K) .~ i)-kbkBk.
k=l

By Lemma l.l.(b),

I,2-kbkBkG; D,
k=l

where D is the lp-ball with axes (:¿:=lbkai?LN' By Lemrna

1.1 (e), there are continuous functions A' D ~ b~k' k::::
1, ..., m, sueh that :¿:lA(x) :::: x for any x ED. Finally,

h :::: :¿:/k oh andfk o h E C(K, bkBk); this completes the
proof.

2. Combinatorial preliminaries. In the proof of our
seeond main result we will use sorne eombinatorial argu
ments contained in [DiD03]. For the sake of completeness
we give them also here.

We call a family T of finite sequenees of natural num
bers a tree if

(i) 0 E T;

We call T a blooming tree if additionally

(Uí) (no,· ..,nJ E T => (no, ..., nH 1) E T for eaeh
1 E N;

(iv) for any infinite sequence (n¡)ieN G; N there is m
sueh that (no, ... ,nm) e: T.

A sequenee of elements of the tree of the forro:

is ealled a branch of the tree. The rank of a blooming tree
T will be the crucial notion used in the paper. If T:::: {0},
then rank(T) ::::: 0, otherwise we define the rank as follows.
First we construct a new blooming tree TI) equal to
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{(no, ...,nk) E T:Vm3(lk, ...,lk+m):(no,...,nk_1, Ik, ...,lk+m)ET}v{0}.

It is easíly seen that if TI) == {0}, then there is m such
that no sequence (lo, ...,lm) belongs to T. Thus the tree T is
bounded, i.e., aH branches of T have length bounded by
sorne fixed m.

We have the whole family of blooming (!) trees de
fined inductively:

T(a+l):== (T(alt and T(/3):= nT(a) for limit ordinals /3.
a</3

It is known that the family strictly decreases to {0}
and thus for every blooming tree T there existsa countable
ordinal number ex. such that Ta) == {0} [DiD03, Prop. 5 and
Coro 6]. We define rank(T) to be the minimal ordinal
number a such that T(a) == {0}. It is easily seen, that if T¡
~ T2, then rank(T¡) :::;; rank(T2).

Proposition 2.1. The ordinal number rank (T) is ne
ver a limit ordinal.

Proo! If rank(T) == sUPn IXn, then there is n E N such
that (1) É Tan) and, by (iii) and (ii), Tan) = {0}.

Lemma 2.2. Let T be a blooming tree and let
(Al, ... ,A,,) É Ta), then rank (S) :::;; a, whenever

Proo! By the same argument as in the proof of Prop.
2.1, there is y < a such that

Aseasily seen

Since (Ab ... ,Am) É T1+1), there is n E N such that for
each

we have 1:::;; n. Thus S('Y+l) == {0} and rank(S) :::;; y+ 1 :::;; a.

3. The completion and the local completionof
C(K) <8Je kiV) coincide in the Montel case. We will prove
the foHowing main result:

Theorem 3.1. Let kiV), 1 :::;; p :::;; 00, be a Montel
coechelon space and let K be an arbitrary compact seto
The space C(K, kiV)) is the local completion of the space
indkEN C(K, IpC(v¡k)iEN)) or, equivalently, of C(K) ®e kiV).

Remark. Since the local completion of any LB-space is
an LB-space [PCB, 7.3.3 and 6.2.8], the aboye result gives

another proof of bornologicity of C(K, kiV)) in case of
Montel kiV).

The proof will be based on a sequence of lemmas.

Lemma 3.2. Let 1 :::;; p:::;; 00 and let C, D be the lp-.
balls with axes (u¡) and (w¡) respective/y. lf there is a finite

set {Yl""'Yr} ~ D such that D ~ U;=IY¡ + C, then

::Ji Vi .~ i U¡ ~ W¡.

Proo! Let us assume that fOf eachi there is i > j such
that w¡ > u¡. Thus there are i¡, ... ,ir+l such that wi¡ > (1 +
O)u¡¡, for 1 == l, ... ,r + 1 and sorne O > O. Let P be the
projection on the linear span X of the unit vectors with
indices il, ...,ir+l and let qD' qc be thegauge functionals of
P(D) andP(C) respectively. Clearly, (1 + O)qD:::;; qc' The
linear space Y== lin{P(y¡): 1 = 1, ... ,r} is a proper closed
subspace of X. By the Riesz Lemma [Ds, p.2], there is a
vector XE P(D) such that its qD-distance from Y is bigger

than (1{1 +%)). Of course, the qcdistance of x from Y is

bigger than (1+8)/(1+%) >1, which contradicts the as

sumption P(D) ~ U;=l p(y¡) + P(C).

Lemma 3.3. Let 1 ::; p ::; 00 and let the lp-ball D with
axes (W¡)iEN be a compact subset of the coechelon space
kpCV). Thenfor each sequence (b¡) of positive numbers the
following holds:

Proo! Let us denote by Bn the unit balls in the steps of

kiV). Then Bk is the Ip-baH withaxes (ai{ptN' By Lemma
1.2, there is n and a finite. set {Yl, ... ,Yr} ~ D such that

D .~ ÚYj + 'i22-kbkBk.
j=¡ k=l

By Lemma 1.1 (b),

r

D ~ UYj+ Do,
j=l

where Do is the Ip~baH with axes (I,:=¡ bkai? )¡EN' Applying

Lemma 3.2 we get the conclusion.

Now, we define a hierarchy of families of sequences of
positive numbers. Let us fix a matrix V:::: (V¡k) as usual

with (l¡k = ~. A sequence of positive numbers (W¡) E SI
v¡k

iff there is k E N such that W¡ = o(ai{P) as i ~ oo. Let Sa
be defined for aH ordinal numbers a < ~. If ~ is a limit
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31)' Vz' >_ j' ~ -1 l/p >L 1]k a¡k - Si'
k=m+l
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3kVe> O W¡ =: e.a;[P +Z¡, where (z¡) E Sa depends on e. We have proved that the tree Ts of the sequence s =: (s¡)
is contained in the tree

It is easily seen that if (w¡) E Su and u¡ ::; W¡ for every
i, then (u¡) E Su as well.

Lemma 3.4. Let 1 ::;; p ::;; 00 and let W =: (w¡)¡EN be a
sequenee of positive numbers. Jf the Ip-ball D with axes
(w¡)¡EN is a eompaet subset of the eoeehelon spaee kpCV),
then there is a eountable ordinal (X sueh that (W¡) ESa'

Proof For any sequence w=: (w¡) ofaxes of a compact
Ip-ball we define a tree Tw as follows. For every sequence
of natural numbers (AkhEN we say that O"I> ... ,An) E Tw iff

/1-1
,>-/':::J' > .~ ,~I l/p
vj:.JZ _} L/l.k a¡k < W¡.

k=1

It is easily seen that the relation (A¡, ... ,An) E Tw does
not depend on An. Thus, by Lemma 3.3, Tw is a blooming
tree. If the tree is bounded (i.e., rank(Tw) == 1), then

n

3n V(Ák)kEN 3j Vi .~ j LÁ;;I a;[p ~ w¡.
k=l

In particular, if L~=IÁ;;I < e, then

We have proved that (W¡) E S]'

Now, assume that for a < ~, if rank(Tw) ::;; a, then W =:

(W¡) E Su' We will show that if rank(Tw) ::;;.~ then W =: (w¡)
E Sil'

If ~ is a limit ordinal, then (Prop. 2.1) rank(Tw) < ~,

i.e., there exists a < ~ such that rank(Tw) ::;; a and (W) E

Su ~ Sil'

If ~ =: a + 1 and rank(Tw) =: ~, then TJal is a bounded

tree. Let (ÁkhE N satisfy LkEN Á;;l < e. There is m not de
pending on E such that

m 1-1
:::J' ,>-/. > .~ 1-1 l/p ~ -1 l/p >
:Jj vz - j ..t ../l.k a¡k + "'-- 1]k a¡k - W¡.

k=l k=m+l

W k ._. ( ~m 1-1 l/p) .- s·e ta e q¡ .- mm W¡, "'--k=l/),k a¡k ,s¡.- W¡ -q¡. mce

s¡ ::;; W¡ for any i E N, the I -ball with axes (s) is also
compact in kpCV). Clearly, il for (ThhEN' the sequence
(Á]> ... ,Ám> 17m+]> ... ,17¡) does not belong to Tw ' then

By Lemma 2.2, rank(Ts) ::;; rank(S) ::;; a and (s¡) E Sa by
the inductive hypothesis. We obtain w¡ =: q¡ + Si' where
q¡ ::;; e.a;~P, (s¡) ESa' hence (w;) E Sf3'

Lemma 3.5. Let 1 :5 P ~ 00 and let K be a eompaet
seto Jf h: K ~ kpCV) is a eontinuous funetion, with h(K)
eontained in the Ip-ball D with axes (w¡) and (w¡) E SOl
then h Epa) (the a-th Maekey derivative), where

Proof If (W¡) E SI' then there is k such that W¡ =: o(a;[p)
and D is compact in IpC(V¡k)¡EN) This means that the topolo
gy of the latter space and the one of kpCV) coincide on D

and h E e (K, lp ((Vik)¡EN)) ~ F k F(l).

Now, let us assume that the result holds for a < ~.

Take (W¡)E Sil' If ~ is a limit ordinal, then (w) E Su for
sorne a < .~ and we are done.

Let ~ =: a + 1, for sorne k E N and each e > O

W¡ == ea;[p + Z¡,

where (z) E Sudepends on C. Let e be the Ip-ball with axes
(Z¡). By Lemma 1.1 (c), there are continuous maps f D ~
cBk, g: D ~ C such thatf (x) + g(x) =: x for each x E D.
Clearly, g o h: K ~ e and, by the inductive hypothesis,
g o h E pUl. On the ather hand, f o h (K) k cBkand h =:

g o h + f o h. We have shown that h E pu+l).

Proof of Theorem 3.1. If kpCV) is a Montel space, then
the unit balls Bk are compacto Since they are Ip-balls, then,
by Lemma 3.4, for each k there is a cauntable ordinal ak

such that (a;[PtN ESa,· Now, if h : K ~ kp(V) is conti
nuous, then without loss of generality we may assume that
h(K) is contained in sOrne Bk• By Lemma 3.5, h E puk );

this completes the proof.
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