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ABSTRACT

We give a unified form to various isoperimetric ine­
qualities of p-capacity type and we present an application
to a Muskat problem with prescribed flux.

1. INTRODUCTION

Let 1 < p < 00 be a real number, N a positive integer

and p' the conjugate of p: ..!- + 1. = 1. Let mI ee mz be
p p'

given bounded open sets in RN having respective bounda­
ries am¡= y¡, amz = yz and Lebesgue measures mi' m2•

We define the domain n = m2 \ mi' We denote by ~¡'~2 the
inner product of ~I and ~2 E RN

, by I~I the Euclidean norm
of ~ E RN

, by Jml the Lebesgue measure of a measurable
subset ro e R and by fiN the Lebesgue measure of the
unit ball of RN

Let ex be a function of L=(Q), positive almost every­

where with -.!.. = a-I
E C(Q). Let u E wl,p (n) be such

a
that

(1.1) ulrl = constant > u!rz = constant

and O' E U' (Q)N be a vector field which is divergence free
(in the sense of distributions):

(1.2) - div O' = O in n.

Furthemore, we assume that the pair (u, 0') satisfies the
inequality

(1.3) (J. Vu ~ alVulP a.e. in Q.

We will provide sorne examples of vector fields O' with
their underlying functions ex.

In this paper, we show that (u, 0') satisfies a general
isoperimetric inequality which brings in a function U of

wl,p (6) verifying

{
-diV L. = - diviíl.U = Oin6,

L'¡rl == constant > U!rz = constant,

with

• ñ = ro¿ I mi' where cq are the balls of RN centered
at theorigin and having the same measures as roí and yi =
aroí for i = 1 or 2,

• ~:<x) = (~U) (x) = a(x) ¡VU(x)IP-zVU(x) where a
is the spherical radially increasing rearrangement of ex on
ñ. We will give later on alrecise definition of this rear­
rangement introduced by . Alvino and G. Trombetti
[AITrl, AlTr2].

Remark 1. The constant values U¡_ and U¡_ are not
JI 12

necessarily the same as u
1

and u. .
"(1112

Remark 2. Indeed, the condition (1.1) can be re­
placed by

~YI = constant < U¡yz = constant

(set u' = -u and 0" = -0').

Our main tool is the theory of rearrangement of func­
tions of Sobolev type, introduced by G. Talenti [Ta].

We will present sorne applications of this general re­
sult to various problems of Mathematical Physics such as
the Muskat problem, a model arising from Oil Engineer­
ing.



50 Matemáticas: Gonoko Moussa Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1998; 92

2. EXAMPLES

We give in this section sorne examples of vector fields
O' with their corresponding functions o..

Let A : n ~ RNxN be a matrix with measurable coef­
ficients defined almost everywhere in n and

g : O x R x R N X R N -7 R N(x, S, ~, r¡) -7 g(x, S, ~, r¡)
a function defined for almost every x in Q and for any
(S, S' r¡) E R X R N

X R N
.

We assume that the function g and the matrix A are
related by the following hypothesis:

{

There exi~t~ il function~ a : n -7 IR, a E L- (Q), a > Oand J.. = a-l
E L- (n)

~uch thilt il.e. x E n, V'~ E IR, VE, E R N
, g(x, S, S. A{x) S) . t'? a{x) IsIP•

For V E Wl
•
p (n), we denote by Jl.v the function defined

for almost every x in n by

Jl.v(x) = g(x, v (x), Vv (x), A (x) Vv(x)).

We assume that u is a function of Wl,p (n) verifying

• - div JI.u = O in n (in the sense of distributions),

• ~rl = constant > ~r2= constant.

The vector field O' is then given by JI.u. We precise
hereafter sorne operators g:

1. We consider g(x, s,~, r¡) == g(x, r¡) satisfying the

condition g(x, r¡) . r¡ ~ p(x) 1r¡IP with p(x) > O. We choose
the matrix A(x) == a(x) Id with a(x) > O. We get

g(x, s' ~, A(x)~) . ~ == g(x. a(x)~) . ~

= atx) g(x, a(x)~) . a(x) ~ ~ p(x) (a(x)rgr,

We suppose .that the function a defined by
o.(x) = p(x) (a(x)y-J for almost every x E n, belongs to
L~(n) as well as 0.-1, The equation satisfied by u is

- div g(x, a(x) Vu(x)) = °in Q.

2. We choose a function

g(x, S, 1;, r¡) == p(x) (r¡.~)f-Jr¡ with p(x) > O and a matrix

A such that a.e. x E n, \f ~ E R N
, A(x) ~.~ ~ a(x)I~12 with

a(x) > O. Then, we have

In this case, we assume that the function

a(x) = p(x) (a(x))f is in L~(n) as well as its inverse. The
equation satisfied by u is

-div [P(x) (A(x)Vu(x). Vu(x))f-
I
A(x) VU(X)] = °in O.

We recover the operator of [Bol, B02, BoMosl, Bo"
Mos2, Mos].

3. Let g(x, S, ~, r¡) == g(x, S, ~) . ~ ~ CI~IP where e
is a real positive constant. Here a is a function defined by
o.(x) = e for x E n. The function u verifies the equation

- div g(x, u(x), Vu(x)) = Oin O.

This case has been studied by n. Diaz [Di].

3. ISOPERIMETRIC INEQUALI'fI:ES

First, we will prove a general isoperimetric inequality.
We recall that the pair (u, 0') is a solution of the problem
denoted by (P):

U E WI,P(O),

ulrl = constant > ul r2 = constant,

(p) O' E (11" (0)(

- div O' = °in O,

(J. Vu ~ alVulP a.e. in O

and the pair (U, L) is the solution of (p):

_¡U < W"'(iíi ¿ ~ JiU~ cijV(Jr'VU < (u'(nl)'.
(p) l.!¡r l = constant > l.!¡r2 = constant,

- div L = °in ñ.

The function <i is defined on

ñ by <i(x) = a*(,BNlxIN - Imd) where~N is the measure of

the unit ball of RN
, Jmd and Ixl are respectively the Leb­

esgue measure on R of mI and the Euclidean norm of the
vector oí, 0.* is the unidimensional increasing rearrange-

ment of a, defined on n* = [O, 101] by.o.*(O) = ess inf a,
a*0(1) :=: ess sup a, 0.* (s) = inf {a E Rla < al ~ s} for
s E (o, Inl), with la < al = Lebesgue measure of {x E n,
o.(x) < e}. Similarly, we define 0.* the unidimensional

decreasing rearrangement of a on 0* = [°,101] by

a*(s) = a *Onl - s) for s E [0,1011

Lemma 1. Under the conditions (1.1), (1. 2) and
(1.3), we have for almost every x E n

~rl ~ u(x) ~ ~r2 and fnO" Vu dx > O.
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Proof: Let liS show that for almost every x E n, we
have ~y, ~ u(x). Since a E (UJ

' (n)t'and ~ diva = °in
n in the sense of distributions, we get

(3.1) Lp··V'wdx == O, \;fw E W¡¡"P(Q).

We take as test function w,== (u - ~Ylt the positive

part of u - ~Yl' We have by (3.1) and then by (1.3),

O = i a.V(u - ~Yl) dx = fa.Vudx
n .. . + . lI>I~Yl

~ f a(x) IVul Pdx = f a(x) .Iv(u - ~y,) I
P

dx.
">111)'1 Jo.. +

Since a> 0, we deduce that w¡ = {u - ~Y1L =constant =
O in n. It holds u(x).:S: U\yl for almost every x E n. Simi-

larly, using the test function W2 = (~Y2 - uL = (u ~ ~Y2t
we show that for almost every x E n, ~Y2 S; u(x).

Let us show now that the quantity Ioa. Vu dx is posi­

tive. Assume that Ioa. Vu dx vanishes. Using the inequality
(1.3), we deduce easily that u is constant ineach connected
components of n. This is in contradiction with ~Yl > ~Y2'

The general isoperimettic inequality is given in the
following proposition.

Proposition Assume that (u, a) verifies (P). Let

C(u, a) = Lp" Vu dx.

Then, for al! real numbers O, O' satisfying
~Y2 S; e S; 8' S; ~Yl' the following isoperimetric inequality
holds

I ~(e) E:. - P' * -p'
~(e') (s + m¡)N (a) P (s - J1(e')) ds

with 11(0) = lu > el == measure of {x E n, u(x) > e},
-p'

l1(e') = lu > e'~ m, = I(Ol~ (aTp(s-Il(8')) indicates the
-P'

value of the function (u*)p at the point s - 11(0').

Proof: We follow L. Boukrim [Bo 1, B02] for the
proof of this proposition. By Lemma 1, any value of u is

in hr2' ~rl]. What follows is valid for almost every

-r E (~r2' ~rl). We set

( ) {

UifU:S;'r
Z, = 'r - u - 'r=

- 'rifu> 'r,

ifu:S; 'r

ifu> 'ro

Since u E Wl,p (n), we have vr E W¿'P(Q). Taking w =
v

T
in (3.1), it follows

¿-]
\Y,

f a· Vu dx + 1 f0" V'u dx,
u::;r U¡r¡ .,;- U¡Y2 .. u>'f

that is

fo" Vu dx = -r - ~r2 C(u, 0').
II~T ~rl - ~r2

In consequence, one has

(3.2)

-.!!:...f O'.V'udx=~f O'.Vudx= C(u,O')
d't lI>r d-r lI~r ~rl - ~r2

On the other hand, for h > O

[1 -P']-}.[1];< - uPdx - uVuPdx
- h L<II~r+J¡ h l<lI~r+J¡.1 1

[
l. -P']-}.[ 1 ];

S; -.updx - (J·Vudx.
h l<II~r+b h L"'~r+J¡

The first inequality aboye arises from the Holder ine­
quality and the second one comes from the condition (1.3).
Letting h tend to 0, one gets at the limit

d [d -P' J7[ d ]-!.- - f IVuldx S; - - fu P dx - - fO'·Vudx p.
d-r lI>r d-r lI>r d-r II>T

Using the relation (3.2), we are led to

(3.3)

[

-P' ]7[ ( ));_ ~. Su dx < ~ ~ uPdx e u, O'
d-r fJ I -. d-r Lr •• ~rl - ~r2 .
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Thanks to the isoperimetric inequality for the general­
ized perimeter of De Giorgi relative to n of the set {u>
't}, denoted by PQ (u > 't) [De] and a result of Fleming and
Rishel [FIRi], we have with J1.(-r) = lu > 'l'~

1

= PRN({U>'t} u rol) ~ Np ..c('.I.('t) + m1r--¡¡
NN

since the set {u > 't} does not meet Yz and its boundary
includes Y¡. Therefore, by (3.3)

Furthermore, thanks to the derivation formula (see
Rakotoson and Temam [RaTe])

d -1"

- ra l' dx = 'W'(J1.('l')) p'('l')
d'l' Ju>r

where 'W'(s) = (ex -;'t,(S)' that is, the relative rearrange-

-1"

ment of a l' with respect to u defined by J. Mossino and
R. Temam [MosTe], we obtain

(3.4)
1"

1 :5 N-l" f3N -~' [C(u, 0') Jp (,u('l') + m¡)!fi-P''W'(,u(7:)) (~,u'('l')).
!l¡r1 -u!r2

Integrating the inequality (3.4) between e and e', we
get

,[ C( ) J% Inl 1" (-1")_1" -1' u, O' ~-p' l'
:5N f3NN _ foX[I'(O'l'I'(Bl](s)(s+m¡)N a (s)ds.

!l¡rl u!r2 *.

According to a result of Rakotoson [Ra], the integral

is bounded aboYe by

1.01 L. _1" * -1"

= Jo %[O,I'(O)-I'(O')](s) (s+m¡ + J1.(e')) N (a) l' (s) ds

/i(0) 1", * -1"
= 1 (s+mIF-P(a) l' (s-J1.(e'))ds.

1'(0')

ConsequentJy

and this ends the proof of the propostion.

Applying this proposition with e =U¡r2 and e' =U¡rl'
one obtains the

Theorem 1. Assume that (u, (7) and (U, I,) verify

respectively (P) and (p). Set

C(uJ 0') = LO'· Vu dx and C(U,I) =

= L~>vu dx = l/x!VUlp dx =C(U).

Then one obtains the isoperimetric inequality

(U¡r, - U¡rJ
c(u, I)

Proof: Taking e = U¡r2 and e'=U¡rl in the Proposi­
tion, one gets

1"

_ < N-P'¡3 -1"[ C(u, 0'))-;;
U¡rl U¡r2 - N N

U¡r l - U¡r2

According to Lemma 1, the inequality u(x)::;; U¡r1 holds
for almost every x E n. In consequence, we have

J1.(U¡r l ) :=: O and J1.(U¡r2 ) S!O!. Qne gets the announced ine­
quality by bounding aboye the previous integral between O

and J1.(U¡r2 ) by the integral between O and 10~ The equality
in the theorem is classical.
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4. SOME APPLICATIONS

We denote by (p, a)-capacity of .o = (i)2 \ mI' the

quantity fn alVv( dx where v is the solutíon of - div

(a!V v1P-
2
Vv) = ° in n, V!'YI == 1 and ~r2 = O. We give

below sorne applications of Theorem 1.

4.1. The (p, a)-capacity problem

if p'

get

N
N -1 In consequence, taking the equivalents, we

'1 -p' L_p'+l L_p'+1 -p'
=== ml!f¡-p' -(A~)p +~11'0.-,,---N_-;,~-_m--,I_N __ (A;)p

n E...._ p'+l
N

We assume that ~¡i = C¡(i = 1 or 2) are given constants

with CI > C2• We consider the problem (p) with the same
constants U¡íl:=: Ci•. We obtain the isoperimetric inequality

-p

= NPf3/J;(c¡ -c2Y[C J-P·(a·f{(s-m¡) dSr.
With a = a!Vu!P-2Vu, CI = 1 and C2 == 0, we recover

the isoperimetric inequality for the (p, a)-capacity given in
[AITr2] and [Fe].

4.1.1. Application

Let an be a sequence of functíons defined on n such
that their unidimensional increasing rearrangement a; sat­
isfy

when n tends to infinity. Jf (a", u,,) verifies the problem
(P) of the (p, a)-capacity, then we have

fn a" .V~dx ~ oo.

Let's precise this application by assuming for instance

that a n takes two values: a" = A,: in .o;, withl.Q~1 = .!- and
n

a" = A,; > A~ in .o; = .Q \.0;.. Rence

[ ~ ]-p' p' 1 -p'+¡+(A,;)P (~)NP'+¡ -(m, +-;;y

N
if p'1= and

N-1

f"s-I(a:f:'(s-m¡)ds = (~f:'ln (1+_1)+(~f:'ln[~I]
1/11 nml m¡+-

n

'f' N d1 P 1= ---an
N-1

N
if p' = N -1 In this case, in order to let the following

integral

tend to zero, it is enough to take A; -7 00 and .!- (A,:)-;' -7 O.
n

We can choose for instance A; -700 whereas A,: -7 O but
. (1 )P~I (1 )P~2

with the condition A~» -;; (e.g. A~ = -;; if P ;::: 2).

4.2. The prescribed flux problem

We denote by Q(u, a) the quantity

Q(u, 0')= C(u, a)
~rl -~r2

Por regular open sets n, for regular u and suitable a,
the quantíty Q(u, a) is a physical parameter (see the re­
mark below). It is the total flux. For this reason, we also
call «flux» the quantity Q(u, a) without any regularity
assumptíon on n, u or a. Assume that u and U satisfy (P)

_ C(u, a)
and (p) as well as the condition u. ~ U. :=: Q =

Irl Ir2

= C(U, I) . The value Q > °is given but the values of
U¡rl-U¡r2

~rl' ~r2' U¡rl and U¡r2 remain undetermined. The Theorem
1 gives an optimal estimate for the variation of u, that is,
a precise comparaison of the quantitíes ~rl -~r2 and
L'¡rl - U¡r2:

p' "

!l¡rl- !l¡r2~ Q;N-P'f3N-;' i::>!f¡ -P'(a*f: (s -mI) ds':=: U¡rl- U!r2'

In particular, if ~r2 = U¡r2 == 0, one obtains an optimal

estimate for ~rl'
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4.2.1. Application

Let an be a sequence of functions defined on n such
that their unidimensional increasing rearrangements a;
satisfy

when n tends to infinity. Let (<Jn, un) be any solution of the
prescribed flux problem (P) and such that (un )[r2 = o. Then,
one has

(Un)lr l = ess suplun(x)1 ~ o.
xeQ

If there exists a such that for any n E N, one has an
~ a, then

and finally un ~ O in WI,p (n)and L~(n) (strongly).

Remark 3. Let n be the unitary outer normal to n at
'YI u 'Y2' We assume that n, u, a are regular enough in
order to define

Q'(a) = 1a·ndy
r l

(where dyis the measure on 'Y¡ u 'Y2) and in order to apply
the Green formula. It appears that the quantity Q'(cr) is in
fact Q(u, a). This equality is shown in

Lemma 2. We assume that n, u, a are regular
enough. Then we have

Proof: Let's remark that

l a. n dy = - 1a· n dy
r 2 r l

which is a straightJorward consequence of the Green for­
mula:

°=J. diva dx =r a .n dy.n Jrlvr2

This yields

C(U, a) == ~J. u diva dx + r ua· n dy = 1 ua· n dy.
n Jr¡Vr2 rlvr2

Afterwards, using the conditions on u on the boundary
ofn, we obtain

This leads to the formula of Lemma 2.

4.3. Theproblem of domains with given
(P, a)·capacity

We are given the boundary 'Y¡ =aoo¡ of a regular open
set oo¡, a real Q> O and a: RN

\ oo¡ ~ R+ a measurable
function which is bounded as well as its inverse. Assume
furthermore that a is rearrangebale in thesense

y s> 0, 3t .~ 0, la < ti ~ s

(see e.g. B. Simon [Si]). We consider the sphere i¡ = amI'
Thus we define the unidimensional rearrangement of a on
(O, +00) by

a'(s) = inf{t. mes{x e JRN\ mI. a(x) < t} ~ s}. Vs e]O, +""[

and a: JRN\ m¡ ~ JR+byx ~ a*(f3Nlxt -lmIl). There ex­
ists a unique sphere r 2 such that, denoting by n the annu"
lus with boundaries i¡and r 2, the (P,a )-capacity of n is
equal to Q: the measure M 2 of the ball bounded by r 2 is
the unique solution of the equation

If 002 is any domain containing strongly oo¡ (002 ::::> ::::> OO¡)
and such that the (P, a)-capacity of n = 002 \ 001 is equal
to Q, the Theorem 1 says that we have necessarily m2 ~

M 2. Indeed, by Theorem 1, we have

Since

(<X¡n)*(s) = inf{t. mes{x e 0, a(x) < t} ~s}, Vs e ]0, IOj[

and

mes{x eO, a(x) < t} .::;; mes{x e JRN\WI, a(x) < t},

we have, for s e [O, IOll

{t. mes{x 12 n. a(x) < t} <'= s} c. {to mes{x E IRN \w¡. a(x) < t}<'= s}.

Hence

In consequence, we have
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and

P

~ N-Pf3N;[rs-;'-P'(a*)-;' (s-m¡) dSY'

Finally, we get

and therefore M2 S; m2 necessarily.

5. APPLICATION TO A MUSKAT PROBLEM

5.1. Recall of the Muskatproblem and of previous
results

Let 1 < p < 00, a], a2 and k be positive real constants.
Let (01) (02 with (O] ce (02 be bounded open sets of RN

with regular boundaries 0(0] = y]> 0(02 = Y2' At time t = O
(initial time), we are given (O = (0(0), an open set with
regular boundary 0(0(0) ::: y(O) such that (O] ce (0(0) ce
(02' We set Q = (02 \ (01,Q](O) =(0(0) \ (01 andUz{O) =(02
\ m(O)' From this initial position (0(0), (O evolves with the
time t (we write (O = (O(t) for tbis dependance on time t):
its boundary o(O(t) = y(t) moves according to the normal
velocity

The notation ~ stands for Vx' v(x, t) where v(x, t) is
the unitary outer normal to Q¡(t) at y(t). We denote by (2)
the problem (21) + (Q2)' For p = 2, this problem is called
«Muskat problem» [EO, Mu]. It models the mining of oil
(fluid 2 occupying Qlt)) by injection of viscous water
(fluid 1 occupying Q¡(t)). The model suggested aboye (with
1 < p < 00) is a natural generalization of the Muskat one.
When p = 2 and N> 1, F. Abergel and J. Mossino [Ab"
Mos] have proved the existence ofregular solutions locally
in time of the Muskat problem by means of the method of
«normal variations». For p. = 2 and N = 2, F. Yi [Y] has
also given a proof of the existence and uniqueness of clas­
sical solution locally in time by the Newton iteration meth­
od. It is well known (see [Be]) that the stability or unsta­
bility of the interface y(t) corresponds respectively to the

condition on the mobility ratio M = 5. < 1 or > 1. A
az

mathematical interpretation of this stability condition can
be found in [Ab, AbMos]. When al < a2 (and 1 < p < 00),
L. Boukrim and J. Mossino [BoMosl, BoMos2] have giv­
en isoperimetric inequalities by comparison with an evolu­
tion problem with spherical symmetry defined from (2).
They have given an optimal estimate of the «critical time»,
that is, the time after which no regular solution may exist,
as well as an optimal estimate of the respective volumes of
the domains Q](t) and Qlt).

5.2. A MUSKAT PROBLEM WITH PRESCRIBED
FLUX

5.2.1. The most general statement

Let p, mI' COz and (0(0) as in section 5.1. Let ~ and S
be functions defined on R+ such tbat S is positive and ~

does not vanish and is of constant signo We assume that~s
E L](R+).

where ul (., t)= u] (t) and U2(., t) are defined respectively
in Q](t) = (O(t) \ (O] and in 02(t) = (02 \ m(t) and are the
solutions of tbe following equations:

(Qh

-div (a¡IVu¡(t)\P-2 Vu¡(t)) = O

-div(a2IVu2(t)!P-2VU2(t)) = O

u¡(t) = 1

u2 (t) ::: O

u¡ (t) = u2(t)

a¡IVu¡(t)\P-2 ~~ (t) = a2IVu2(t)IP-2 a;; (t)

in Q¡(t)

in Q2(t)

ony¡

on Y2

on y(t)

on y(t).

Let oand 11 be positive functions defined on (m]> m2)

with mi = measure of (Oi' (i = 1, 2), such that t and

J... E I!(m¡, m2)' Let al' a2 :Q x [m]> m2] -7 R+ be positive
81]

functionssuch tbat for any m E [m], m2]' a¡ (., m) and
1 .

--(-) are in C(Q) anda;., m

(5.1)

ess sup a¡ (x, m) ~ ess inf az(x, m).
xeil xeO

From the initial position (0(0), (O evolces with the time
t: we write (O = (O(t). We denote Q¡(t) = (O(t) \

m¡, Q2(t) = m2 \ m(t) and m(t) = Im(t)1 = measure of (O(t)
and we define

(5.2)

a(x, t) = a¡(x, t) = a¡(x, m(t)) ifx E Q¡(t), i = 1, 2.
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We consider the very general problem such that at any
time t, there exists a dornain oo(t) with oo¡ e:e: oo(t) e:e: 002

and a pair (u(t), O"(t)) E w¡,p(n) x (lf(Q)t satisfying

(5.3) - div d(t) = O, O"(t)· Vu(t) ~ a(t)IVu(tt in n, 2.b.

where v(t) = v(x, t) is the unitary outer normal to Q¡(t) at
"((t) and al., t) = alt) satisfy (accordingly with ult)

(5.6)

fn <y(t). Vu(t) dx == ~(t) 1](m(t)) u(t)lrl' :t m(t) = (f3~)(t)(81])(m(t)).

(1(¡) vv(x, t) = - f3(t) o(m(t)) O"¡(x, t)·v(x, t) =

= - f3(t) o(m(t)) 0"2(X, t)·v(x, t)

This general problem is actually a statement corning
from the problem that we set below and that we call
«Muskat problem with prescribed flux»: aoo(t) = ¡(t) moves
with the normal speed

dm(t) = f vv(x,t)dy= -f3(t)o(m(t))f O"¡(t)·v(t)dy
dt Jr(t) Jr(t)

= f3(t) o{m(t)) f O"¡(t)·n dy = (13';) (t) (01]) (m(t)).Jr¡

<I>(m) =
p

=[Ims~-P'(al*f:'(s-m¡, m)ds + f"s~-P'(a¡ *)~:'(s-m, m)ds]P'.
. m} . m

Theorem 2 Let pi verifying .!.. + ~ = 1 and f3N The
p p'

measure of the unit ball of RN
. Denote by te the critical

time of problem (:F) that is the maximal time of existence
of solution to (:F). Set

5.2.2. Isoperimetric inequlllities

We denote by en the statements (5.2.) to (5.6.). Our
isoperimetric inequalities arise from the following theorem
as a corollary of Theorem 1

(The penultimate equality comes from the integration
on Q¡(t) of - div a¡(t) = O.)

u(t) = O on Y2'

u(t) = undeterIDined constant on y¡,

- div <yj(t) = O. <y;(t)·Vu¡(t) <': a¡(t) !Vu;(tt in O¡(t). i = 1, 2,

u¡(t) = unknown constant on r¡,

(!l{2) ~(t) = Oon r2.
u¡(t) = U2(t) and <Y¡(t).v(t) = <Y2(t).v(t) onr(t),

1<Y¡(t)·n dr = ~(t) 1](m(t)).r¡

(5.4)

(5.5)

Here and in the following, we denote by n the normal
to Q at "{¡ u "(2' The last condition of (2<¿) involves the flux

f O"¡(t)·ndy: imposing this flux is related classically toJr¡

the faet that u¡(t) is an undetermined constant on "(¡.

Then, for any time t for which thereexists a solution to
{1} on [O, t] (hence for any t S te)' one has

Let us prove that for any regular solution of (~) + (2<¿)
, we have (5.6) and a(t) is divergence free in the sense of
distributions. (By regular solution, we mean that the Oreen
formula is valid.)

1. Proof of - div a(t) =O in V(Q) =space of distri­
butions on Q. Forany test function <p € 1J(Q) = C;(Q),

where l¡(or) = u¡(or)lr¡ and sgn (/3) is the sign of 13.

Proof: Let t be a time for which there exists a solution
to (1) on [0, t] and let 7: E [0, t]. By (5.2) we have a.(x, 7:)
= a¡ (x, m(t» for x E Qi (1:) and we set

Then Theorem 1 ensures that
2

= Lr (-div O"j(t)) pdx + f p(0"¡(t)'V(t)-0"2(t)'V(t)) dy =0.
;=1 Jn, r(t) (5.7)

2. Proof of (5.6)

2.ll.

2

J. O'(t)·Vu(t)dx = If., (-div O'¡(t))u¡(t) d~
n ;=1 I

where a.'(1:) is the increasing rearrangement of a.(., 1:). It
yields from (5.7) and (5.6) that
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• P

NPf3/h(rkr:)fl ~ ~('r:) 1](m('I:){r s~ P·(a*('t){:·(s-m¡)dI'Y.

By (5.6),

d:~'I:) == [3('1:) O(m('I:») g('I:) 1](mer»)

and the previous inequality becomes

(5.11)

tI,(t). VU(t) dx':=:

== ~(t) 1](m(t») U(t)lil' 1r tñ(t) == (f3';)(t)(01])(m(t»).

The problem (f) admits a unique solution and we have
the

P

Wf3/k(f¡(-r)y-1 S;, 13(1:) ;(m(1:» d~~1:) [r s~ P'(a'(1:»)-:'(s~ml) dsy
P

- sgn(f3) dm(1:) [fm
, f-p'( ')-p. ]-;'

- If3(1:)18(m(1:» ---¡:¡- m, S • a (1:) P(s-ml)ds .

Theorem 3, Let tñ(t) be the measure of m(t), fl(t) be
the undetermined value of V(t) on fl and t;, the critical
time for the symmetrized problem, that is, the time such
that f(t) touches fl (ifP < O) or f2 (ifP > O). The values

fc, tñ(t) and 1'1(t) are explicitly giiJen by

It follows from (5.1) that (1)

iff3 > 0,

if 13 < 0,

j
f(O) ds

f: (I~I<) (T) dT ~ ::, (1(s)

L(o) (01]) (s)

f.Jñ(t) di' Irt -
-(). () == (13';) (x) dx for °~ t ~ te'

m(O) 8.1] S O

(2)

dtñ('I:) == (13';) (x) (01]) (m(x))
dx

(3)

Wf3//¡(fl(t)r
l

== (<1>1]) (m(t») ';(t)forO ~ t~ fc.

(4) lf (J) admits a solution on [O, t], then one has

Proof:

This leads to

(ii) m(t) == m(t),

hence

(5.12)

(13';) (x) == sgn(f3) (1131';) ('1:) == (01]) (tñ('I:») d~~X).

1. Let fc be the critical time for the symmetrized

problem and 1: E [0, q We have

U(t) == undetermined constant on fl :=: ()ml,

(5.9)

(5.10)

P

[Cs~ P'(a*(x»)-:'(s-ml)dsY ~ <I>(m(x»).

We get finally

(5.8)

- div I,(t) == °in ñ with ¡(t) == a(t)IVU(t)IP-zVV(t),

We will estimate the unknown value of u(t) on y¡,
denoted r¡(t), and show that this estimate is optimal by
comparison of the problem (J) with an evolution problem

(f) with spherical symmetry defined from (!J). Clearly,

we obtain (f) by replacing oo¡, 00 == 00(0) and 002 respec­

tively by mI> m == m(O) and m2, the balls of RN centered at
the origin and having the same measures as oo¡, 00(0) and
002, We also replace a¡(., m) by its radially increasing rear-

rangement al, m) on ñ == m2 \ml . We denote by m(t), the

ball related to (f) at time t ;::: O. A priori the domain mIt)
is not the symmetrization of the domain oo(t) related to (J).
Its measure isdenoted by tñ(t). We set ñl(t) ==

m(t) \ mI' ñ2(t) == m2\m(t) and a(x, t) == ai(x, Im(t)I) if x
E ñ¡(t), i :=: 1, 2. Finally, in the statement of (J), (u(t),
(J(t)) is replaced by the pair (V(t), 'L(t)) where

I,(t) == a(t)IVU(t)Ip-2VU(t); More precisely the problem

(f) is

which, after integration between O and t, gives the inequal­
ity of the theorem above.
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that we integrate between °an 1c. We get the equality

(5.13)

f: (If3ls)(x) dx = sgn(f3) J;: (or¡)(~(x)) d~~X) dx =

fm{í;) ds
= sgn(f3) m(O) (or¡)(s)'

We obtain the announced equality by using the defini­
tion of the critical time for the symmetrized problem and
meO) = m(O).

2. Let t E Io, q From (5.12), we obtain, since meO)

::: m(O)

1"1(1) ds i'( )
-()() = sgn(f3) If3ls (x) dx.m(O) or¡ S o

3. From Theorem 1 and (5.11), we obtain as in the
proof of Theorem 2 for any t $ 1c

P

Wf3/~(f¡(t)r¡ = S(t) r¡(m(t)) [rs~ P'(a*f:'(s-m¡)dsY'

= S(t) r¡(m(t)) <1>((m(t)))

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1998; 92

if.~ < O. hence, using (5.13)

r'(If3ls) (x) dx $ sgn (13) fm{¡o) (~ d)S() = rí; (If3ls) (x) dxJo m(O) ur¡ S Jo

for any t ::; tc' Particularly, we have for t == tc'

That is to say that tc $ 1c and consequently, there exists
no regular solution after 1c.

(ii) We recall that for any t such that O ::; t$ min

(tc, Fc) = tc'

fm(l) ds J'
m(O) (or¡) (s) = sgn(f3) Jlf3ls) (x) dx,

fm(l) ds r'm(O) (or¡) (s) = sgn(f3) Jo (If3ls) (x) dx.

These two equalities and m(O) = m(O) give

f
m(l) ds fm(l) ds fm(l) ds

m(O) (or¡) (s) = m(O) (or¡) (s) = m(O) (or¡) (sr

In conclusion, One has m(t) = m(t) for any t ::; tc' This
proves that m(t) is the symmetrized domain oí w(t) for
any t ::; tc'

(iii) For any t ::; tc' we have

4. We assume that the problem (J) admits a solution
on [0, t].

(i) Let 1: E [0, t]. By the second relation of (5.6)

(r¡(t)Y-¡

(f¡(t)r¡

$ N-P f3N-: (<1>0) (m(t)) S(t)

N-P,BN-:(<I>o){m(t)) S(t)

N-Pf3N-: (<1>0) (m(t)) S(t)

we have for any t such that °::; t ::; tc'

i'( ) fm(l) ds
o 1,Bls ~x) dx = sgn(f3) m(O)(or¡)(s)'

Since ~ (1:) and dm(x) have the same signs, we are led
dt

to

f
m(l) ds fm2 ds fm{í;) ds
m(O) (or¡) (s) $ m(O) (or¡) (s) = m(o).(or¡) (s)

if ~ > O(the function t ~ m(t) is increasing). By the same
way, we have

f
m(l) ds fm, ds fm{í;) ds
m(O) (or¡) (s) ~ m(O) (or¡) (s) == m(O) (or¡) (s)

because m(t) = m(t) as it has just been proved. We deduce

immediately that r¡(t) ::; f¡(t) for any t ::; tc'

Remark that from this inequality, onealso has

c(u(t), (j(t)) = Jo(j(t).Vu(t) dx = r¡(t)r¡(m(t))s(t)

i=2

s; r¡(t)r¡(m(t))s(t) = C(U(t), I(t)) = ¿J.. tliIVU¡(ttdx
i=¡ 0,(1)

for any t ::; tc'

5.3. AN EXAMPLE OF MUSKAT PROBLEM
WITH PRESCRIBED FLUX

5.3.1. The problem

Let p, OJi, m(0), a¡(x, m), /3, g, 8 and r¡as in the section
5.2. For i = 1, 2 weconsider functions G¡ veryfing
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i) G¡: (x, m x) E O X [mi' m 2] X RN ---t G¡ (x, m, ~)
E R are Caratheodory functions (that is, measurable with
respect to x, continuous with respect to (m, 1;»,

ii) For almost every x E O, for any m E [mI> m 2], G¡
(x, m,.) is strictly convex and admits a gradient g/x, m,.),

iii) There exists el, e2, e4 > O and el E L¡(O) such
that a.e. x E: O, VI; E RN and Vm E [mi' m2]

c¡l~r ::; G¡(x, m, ~) ::; e21~IP +c((x),

Ig¡(x, m, ~)I S c4(1+1~IP-¡),

g¡(x, m, ~).~~ a¡(x, m)I~IP.

We set for i= 1, 2

O'¡(x, t) = g¡(x, m(t), Vu¡(t)).

Then, we have for u¡(t) E WI.P(O¡(t»

O'¡(x, t)·Vu¡(t) = g¡(x, m(t), Vu¡(t)).Vu¡(t)

~ a¡(x, m(t)) IVu¡(tt = a¡(t)IVu¡(tr

With such (Ji' we consider the statements (~), (~) of
the Muskat problem with prescribed flux.

Example: We set

1 P
G¡(x, m, ~) = -(A;(x, m)~'~)2

p

where A¡ = O x[ml> m2]---t RNxN are symmetric matrices
such that for any m E [mI> m 2], AJ, m) E L=(O)NxN and

W recover the operator of [BoMos2].

5.3.2. Existence of soIution for a given time t

For a given time t, we obtain the problem (~), with
Q(t) = ~(t) T](m(t))

-div g¡(x, m(t), Vu¡(t)) = Oin O¡ (t), i = 1, 2

u¡(t) = unknown constant on y¡,

Uz(t) = Oon Y2'

u¡(t) = Uz(t) on y(t),

g¡(x, m(t), Vu¡(t))·v(t) = g2(X, m(t), VUz(t))·v(t) on y(t),

i g¡(x, m(t), Vu¡(t))· n dy= Q(t).
r¡

We relate to (~) the minimization problem (~)

Inj{J(v), v E V} where

v = {v E wI.P(Q), v == Oon Y2' v1r¡ = undetermined constant}

and

J(v) = f G¡(x, m(t), Vv) dx + f G2(x, m(t), Vv) dx - Q(t) lllr¡'
~,W . ~d0

Then V is a dosed subspace of the reflexive Banach
space WI·p(O) (l < p < 00) with its usual norm. We equip

V with the «gradient» norm Ilvllv = IIVvlllf(n)' v E V. By the
Poincaré inequality, this narro is equivalent to the one
induced by Wl

•
p (O). Qne cheks that J is strictly convex,

continuous and coercive on V. There exists, in canse"
quence, a unique solution to the minimization problem
(~). This solution, denoted by u, is characterized by the
variational equation

J

UEY,

f g¡(x, m(t), V.U),VVdx+ f g2(X, m(t), Vu),Vvdx =
~W .. J~W
= ~(t) 1](m (t)) V¡rl' Vv E V.

Finally, using the Green fromula, we get forroally the
problem (~).
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