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ABSTRACT

We give a unified form to various isoperimetric ine-
qualities of p-capacity type and we present an application
to a Muskat problem with prescribed flux.

1. INTRODUCTION

Let 1 < p < o= be a real number, N a positive integer

and p' the conjugate of p: L + i = 1. Let w, cc w, be

given bounded open sets in RY having respective bounda-
ries dw, = y,, dw, = y, and Lebesgue measures m;, m,.
We define the domain Q = ®,\ @, We denote by &,-E, the
inner product of &, and £, € RY, by |¢| the Euclidean norm
of & € RY, by |w| the Lebesgue measure of a measurable
subset @ = R" and by f, the Lebesgue measure of the
unit ball of RY

Let o be a function of L™(£2), positive almost every-

1 _ ”
where with = e [7(Q). Let u € W' (Q) be such
that

(1.1) Uy = constant > Wy = constant

and 6 € 7' (Q)" be a vector field which is divergence free
(in the sense of distributions):

(1.2) —-divo=0in Q.

Furthemore, we assume that the pair (i, ©) satisfies the
inequality

(1.3) o0-Vu 2 oVl ae inQ.

We will provide some examples of vector fields o with
their underlying functions o.

In this paper, we show that (v, o) satisfies a general
isoperimetric inequality which brings in a function U of

wp (fl) verifying

{—div Y = —-dvAU=0inQ,
U]71 = constant > Uli'l = constant,

with

« Q=a@/ 5’";, where @ are the balls of RY centered
at the origin and having the same measures as @, and ¥,=
d@, fori=1or2,

« (%) = (AU) (x) = 6(x) VU VU(x) where &
is the spherical radially increasing rearrangement of o on

Q. We will give later on a precise definition of this rear-
rangement introduced by A. Alvino and G. Trombetti

[AlTr1, AlTr2].

Remark 1. The constant values le and UH2 are not
necessarily the same as u_and Uy,
]’Yl Y2

Remark 2. Indeed, the condition (1.1) can be re-
placed by

uh,] = constant < Uyp = constant
(set u' = —u and ¢’ = —0).

Our main tool is the theory of rearrangement of func-
tions of Sobolev type, introduced by G. Talenti [Ta].

We will present some applications of this general re-
sult to various problems of Mathematical Physics such as
the Muskat problem, a model arising from Oil Engineer-

ing.
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2. EXAMPLES

We give in this section some examples of vector fields
¢ with their corresponding functions o.

Let A : Q — R™ be a matrix with measurable coef-
ficients defined almost everywhere in Q and

g QAXxRXxR"xRY - RV (x, L &n) » gx {Em)
a function defined for almost every x in Q and for any
(& &mn) e RxR" xR

We assume that the function g and the matrix A are
related by the following hypothesis:

There exists a functions o : @ = R, o & L™ (Q), o > 0.and é =o' el (Q

suchthatae.x € Q Ve R, V& € RY, g(x, § & A(x) &) - & = ofx) [g]".

For v e W'? (Q), we denote by Av the function defined
for almost every x in Q by

(x) = glx, v (x), Vv (x), A (x) Vv(x)).
We assume that u is a function of W!? (Q) verifying
< Au e (L Q)
e —div 4u = 0 in Q (in the sense of distributions),

* i, = constant > i, = constant.

The vector field ¢ is then given by Au. We precise
hereafter some operators g:

1. We consider g(x, { & m) = g(x, n) satisfying the
condition g(x, n) - M = p(x) " with p(x) > 0. We choose

the matrix A(x) = a(x) Id with a(x} > 0. We get
gx G EAX)E) - & =glx ax)8) - &

= ?le g(x a(x) &) - ax) & 2 p(x) (alx))""|g-

We suppose .that the function o defined by
a(x) = p(x) (a(x))" ' for almost every x € L, belongs to
L=(Q) as well as o', The equation satisfied by u is

- div g(x, a(x) Vu(x)) = 0inQ.

2. We choose a function

gx L& M) = plx) (n.g)f"'n with p(x) > 0 and a matrix

Asuchthatae. xe Q, VE e R, A(x) £-& > a(x) [¢f with
a(x) > 0. Then, we have

oln § & AG) )£ = p(x) (AGR)E-£)2 > p(x) (al) T

In this case, we assume that the function
afx) = p(x) (a(x))g is in L™(L2) as well as its inverse. The
equation satisfied by u is

—div [p(x) (A(x) Vu(x)- Vu(x))g_lA(x) Vu(x):| =0inQ

We recover the operator of [Bol, Bo2, BoMosl, Bo-
Mos2, Mos].

3. Let g(x L&) =g(x § &) &2 Cf where C
is a real positive constant. Here & is a function defined by
ox) = C for x € Q. The function u verifies the equation

—div g(x, u(x), Vu(x)) = 0in Q.

This case has been studied by J.I. Diaz [Di].

3. ISOPERIMETRIC INEQUALITIES

First, we will prove a general isoperimetric inequality.
We recall that the pair (¢, ©) is a solution of the problem
denoted by (P):

u e W(Q)

ulﬂ = constant > “|72 = constant,
(®) 1o e (' (@)",

—divo = 0in Q,

6-Vu 2 ofVil’ ae.inQ

and the pair (U, X)) is the solution of (Ef’):

Uew”(G) 3 = AU = avupivu e (@),
(5?) U|”7‘ = constant > U]72 = constant,

~divy = 0inQ

The function 57 is defined on
Qby &(x) = a*(ﬁlelN'— lwnl) where By is the measure of
the unit ball of R”, |w| and |x| are respectively the Leb-

esgue measure on R" of @, and the Euclidean norm of the
vector Ox, o is the unidimensional increasing rearrange-

ment of a, defined on Q° = [0, []] by o(0) = ess inf o,
o’(jQ)) = ess sup o, o* (s) = inf {0 € R, o < ] = s} for
s e (0,]Q]) with |o < 6] = Lebesgue measure of {x € Q,
o(x) < 0}. Similarly, we define o. the unidimensional
decreasing rearrangement of o on Q' = [0, |of] by
aus) = o’(|Q - s) fors e [0, |}

Lemma 1. Under the conditions (1.1), (1.2) and
(1.3), we have for almost every x € £

ty, 2 u(x) 2 y,, and J.QG-Vudx > 0.
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Proof: Let us show that for almost every x € Q, we
have w4, 2 u(x). Since 6 € (I (Q))"and — div 6 =0 in
Q in the sense of distributions, we get

@G.1) jgo-vW dx = 0, Vw e W (Q)

We take as test function w; = (u - “lvl),,’ the positive
part of # — 1. We have by (3.1) and then by (1.3),

0= [ o-V(u—u,)de= [o-Vuds

u>i,

14
dx.

> [ e = [[o|Fla - u,),

Since o > 0, we deduce that w; = (u - "171)+ = constant =
0 in Q. It holds u(x) < Uy for almost every x € Q. Simi-

larly, using the test function w, = (”172 - u)+ = (u - um)_,

we show that for almost every x € Q u,, < u(x)

Let us show now that the quantity JQG'VM dx is posi-

tive. Assume that JQG -Vu dx vanishes. Using the inequality
(1.3), we deduce easily that u is constant in each connected
components of €. This is in contradiction with #, > #,,.

The general isoperimetric inequality is given in the
following proposition.

Proposition Assume that (u, ©) verifies (P). Let

Cly, 6)= LG~Vu dx.

Then, for all real numbers 0, 0' satisfying
Uy S0 20" < u,, the following isoperimetric inequality
holds

4
" 2
' - 0< N7 [———-—C(“’ G)J
U ™y

J‘ﬁgg?) (s + ml)%—p'(a*):;"i (s — pu(8)) ds

with (6) = |u > 6| = measure of {x € Q, u(x) > 6},
-

we) =lu> 6} m= o} (oc') 7 (s—p(0") indicates the

value of the function (og*):nL at the point s — (@',

Proof: We follow L. Boukrim [Bol, Bo2] for the
proof of this proposition. By Lemma 1, any value of u is

in [”172' u]y,]. What follows is valid for almost every

T € (u]yz, ”171)~ We set

uifu < 7

z,=r—(u—r)_={

Tifu > 1,

1 1
- ——— ifu <
U=y, Zem Wy (u um)(“lrl—“{ﬁ T—um‘] fus=7
Ui Uz Tl i IR
Up ~ Y2

ifu>1

Since u € W' (Q), we have v, € Wr?(Q). Taking w =
v, in (3.1), it follows

O=LG~Vv1dx=[ 1 }
A

T2

o-Vudx + o-Vudx,
< —
HET Iﬁ’y‘ btlyz u>T

that is

T—
o Vuds = — 2 ()

usT u]'yl — u]rz

In consequence, one has

(3.2)
_4 o-Vudx = 4 o-Vudx = M.
dt Jwt drt Just ulyl — u]yz

On the other hand, for 2 > 0

-1 1

1 J Vi) dx = 1 o’ o’ Vi dx
h Jrcustih

h T<u<THh

- L

1

1 2 7 1 " i
=fa? d| |~ [ ofvuf de
h Jr<uscen h Jrcusz+n

IA

1

1
2y ™
1 of dx [l 6~Vudx}".

h draseen h Jr<usrn

IA

The first inequality above arises from the Holder ine-
quality and the second one comes from the condition (1.3).
Letting 4 tend to 0, one gets at the limit

1
. e 1
put P —
A vddx < |- L a7 dx [— 2 O'-Vudx]p.
dt Jdwr dt et dr dwr

Using the relation (3.2), we are led to

(3.3)

1 1

BT ’
__‘_I_J' IVu!de\i——-‘—l— apdx}p_c(_bﬂp.
dt et dr Jwet Uy, — Uy
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Thanks to the isoperimetric inequality for the general-
ized perimeter of De Giorgi relative to Q of the set {u >
T}, denoted by P, (u > 1) [De] and a result of Fleming and
Rishel [FIRi], we have with u(z) = |u > 1}

4 J [Vildx = Py(u>1) =

=B, ({u>t} U G,) 2 NBN%(}L(T) + ml)"%

since the set {u > T} does not meet v, and its boundary
includes v,. Therefore, by (3.3)

Il L d ¢ Z T cwo) )
NByw (u(t) + m) ¥ < {— — | ? dx} (—-—] .
( ) dtr Yt ”171 = Uy,

Furthermore, thanks to the derivation formula (see
Rakotoson and Temam [RaTe])

d
— | ” dx w{u(t
dr Jet (,LL( )) ( )
-r
where W'(s) = (a 4 ] (s) that is, the relative rearrange-
- *u
ment of ¢ 7 ‘with respect to u defined by J. Mossino and
R. Temam [MosTel], we obtain

3.4

r

1< N BE (C(“—“)J (1) + m)¥ "W (u(e)) (- ()

U1 = U2

Integrating the inequality (3.4) between 6 and 0', we
get

- Clu, o )J%
6 - < N7B~
(”17! Ty

_[:( (r) + m;) w'(u(v)) (~p'(z)) de

< N7Byw [ Clu, G)J lgl)([uw) ,‘(9)] (5+ml) 7 P.(aT] (s) ds.

Uy Uy | 0

According to a result of Rakotoson [Ra], the integral

ol v, % )
Jo juior, woy(8) (s+m)¥ 7| @ ? | (5) ds

is bounded above by

fﬂl(xlu(e)u 0 ¢ +mx) ) (S)[ ] (s) ds

*

i| 2y
= jo Xpo ter-aory() (s + (@))% 7 ()7 (s) ds

= J(s)(s+m‘)N '“*):’f—’(s*#(e')) s

Consequently
»

6 -6< N_p'ﬁN_Tp’[M]pJﬂ(e)(s+m1)%“”'(a*):ﬁli(s_

w(6) ds,
Yyt ~ U2 )

and this ends the proof of the propostion.

Applying this proposition with @ =, and @' =,
one obtains the

Theorem 1. Assume that (u, ©) and (U, %) verify
respectively (‘) and (f’) Set

c(y, 6) = jﬂa.vudmnd &, 3) =
= [ZVUax = [ aVup ax=E)

Then one obtains the isoperimetric inequality

L2

sl om0 e ma] -

Clu, o)
P
- (Ulf._ U]y'z)
U, 3)
with m; = |o] (i = 1, 2).
Proof: Taking 6 = u,, and €'= u,, in the Proposi-

tion, one gets

2

. Clu, o )J
= Uy S NTBy W | ———
U~ 1 ["171 s

K(&IZZ))(S +my )% e '(a*):;i' (s - u(uh(l )) ds.

According to Lemma 1, the inequality u(x) < u,, holds
for almost every x € Q. In consequence, we have
:“(“111) = 0 and “(”172) < |Q| One gets the announced ine-
quality by bounding above the previous integral between 0

and '”(”172) by the integral between 0 and |Q] The equality
in the theorem is classical.
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4. SOME APPLICATIONS

We denote by (p, o)-capacity of Q = w,\ @, the
quantity J.QO!|Vv]pdx where v is the solution of — div

(a]Vv]” —ZVU) =01in Q, v, =1 and Y, = 0. We give
below some applications of Theorem 1.

4.1. The (p, o)-capacity problem

We assume that u,, = C(i = 1or2) are given constants

with C; > C,. We consider the problem (i’) with the same
constants U= C, We obtain the isoperimetric inequality

I
Jg-Vuax =cu o) 2 &u. ) = [.dvufax

= NpﬁN-)%(Cl —Cz)p|:.[::g‘y%'l7'(a')_—::(s—”l«l) ds} i .

With ¢ = e[V’ Vu, C,= 1 and C, = 0, we recover
the isoperimetric inequality for the (p, ®)-capacity given in
[AlTr2] and {Fe].

4.1.1. Application
Let o, be a sequence of functions defined on Q such

that their unidimensional increasing rearrangement ¢, sat-
isfy

fmz s% _p'(a:)_Tpl(s —m)ds =0

'y

when n tends to infinity. If (o, u,) verifies the problem
(P of the (p, a)-capacity, then we have

Lo‘,, Vu,dx — oo,

Let's precise this application by assuming for instance
Q.

. . 1
that a,, takes two values: o, = A, in Q! with = —and

o, = A>> AlinQ? = Q\Q!. Hence
4 m Eepy e 1 %;P'+l 2
(Zpoa) [ (@ -myas= (47| (ms 1) g

n

+ (A,?)::;|:(mz )1';1_"’ b —(ml +%)%~P'+1:|

if p' =
get

Vo1 In consequence, taking the equivalents, we

J”k s%_p'(a,’:)—?p'(s -m)ds =

"y

)_Tpl + %%—;’jl —mu%_"url (Aj)—_f-'
N— p’+1

[ @) oo = - ol 22 Yy

m R m

if p' = N1l In this case, in order to let the following

integral

iy P, « =7

J sV p([x,,)P (s—my) ds
., 2 1 1 i

tend to zero, it is enough to take A — oo and ;(A,,) r =0

We can choose for instance A? — « whereas Al —0 but

. (LY L (1Y
with the condition A4, >> " (e.g. A= . if p22).

4.2. The prescribed flux problem

We denote by Q(u, ©) the quantity

O, 0)= _C_(M.
u1‘yl - u]yZ

For regular open sets Q, for regular u and suitable o,
the quantity Qu, G) is a physical parameter (see the re-
mark below). It is the total flux. For this reason, we also
call «flux» the quantity Q(u, ©) without any regularity
assumption on £, u or ¢. Assume that u and U satisfy (P)

B Clu, o)
and (LP) ‘as well as the condition — =0-=
u]yl ”|yz
= ———-———5([]’ 3) . The value Q > 0 is given but the values of
71~ Y2

Wi Uy U;,;l and U, remain undetermined. The Theorem
1 gives an optimal estimate for the variation of y, that is,
a precise comparaison of the quantities #, —4,, and

U= U

71

B pm Lep,
Upy = Uy S Qpanﬁ”Tj s* ((x ) P (s—m)ds = Un=Y

- ({23

In particular, if Uy = Ulfz = 0, one obtains an optimal

estimate for U,
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4.2.1. Application

Let o, be a sequence of functions defined on £ such

that their unidimensional increasing rearrangements o,
satisfy

[
my

when #n tends to infinity. Let (6,, 4,) be any solution of the

prescribed flux problem () and such that (s, )[,,2 0. Then,
one has

(s m)ds - 0

(ta )y = €85 sup ()] — .
xeQ

If there exists o such that for any n € N, one has o,
2 o, then

af Vuldx < [ aVul < [ o, Vidr = 0w, — 0

i
and finally u, — 0 in WEP (Q) and L™(Q) (strongly).
Remark 3. Let n be the unitary outer normal to Q at

Vi Y Y,. We assume that Q, u, o are regular enough in
order to define

Q'(o) = fylc-n dy

(where dyis the measure on y; U ¥,) and in order to apply
the Green formula. It appears that the quantity Q'(c) is in
fact Q(u, o). This equality is shown in

Lemma 2. We assume that L, u, ¢ are regular
enough. Then we have

Cl, 0) = (—thy2) Q'(0)
Proof: Let's remark that
J.yzc-ndy = ‘J;,O"”d?’

which is a straightforward consequence of the Green for-
mula:

= fndiv odx = Llwzo-n dy.
This yields

Clu, o) = -Ludiv odx + Lluﬂuo—.ndy = j

uc-ndy.
yiuy2 '}/

Afterwards, using the conditions on u on the boundary
of 2, we obtain

Llwzu ondy = (“171 —u]ﬂ) 0'(o).

This leads to the formula of Lemma 2.

4.3. The problem of domains with given
(p, o)-capacity

We are given the boundary v = 80)1 of a regular open
set ®;, a real Q > 0 and o: RY\®, > R* a measurable
function which is bounded as well as its inverse. Assume
furthermore that o is rearrangebale in the sense

Vs>0, 20 ja<qzs

(see e.g. B. Simon [Si]). We consider the sphere 7, = ad,.
Thus we define the unidimensional rearrangement of o on
(0, +0) by
a'(s) = inf{t, mes{x € R"\ @, a(x) < 1} 2 s}, Vs €0, +oo
and & : R"\ @ — R*byx — a*(ﬁN|x|" —|a)1|). There ex-
ists a unique sphere I, such that, denoting by ¢5 the annu-
lus with boundaries ¥, and I',, the (p, . )-capacity of ¢5 is

equal to Q: the measure M, of the ball bounded by T, is
the unique solution of the equation

N‘DﬁNN|:J ’ %_p (a*):ﬂz(s—ml)ds] =0

If », is any domain containing strongly ©; (00, > > ®,)
and such that the (p, o)-capacity of Q = @, \ @, is equal
to O, the Theorem 1 says that we have necessarily m, =
M,. Indeed, by Theorem 1, we have

, >
g =V {f L" [(%)*}%(s—mods}”'.
Since
() () = inf]s, mes{x e @ a(x) < 1} 25} Vs <o Q]
and
mes{x € Q, a(x) < 1} < mes{x ¢ R"\@,, a(x) < ¢},
we have, for s € [0, |Q]}
[ mesfx € @ alx) < 1} 2 s} < {o mesfx € RM\@, alx) < ¢} 2 5},

Hence

Vse o ol a'(s) < (o) )

In consequence, we have



Matematicas: Gonoko Moussa

Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp), 1998; 92 55

é = N"’ﬂN%D‘r s%p'(a*)%(s—ml) cisJ7

and

R I R

m

Finally, we get

JMZS%_pl(a*) , (s—m)ds < Jmls%_p'(a*)%(s—ml)ds

my

and therefore M, < m, necessarily.
5. APPLICATION TO A MUSKAT PROBLEM

5.1. Recall of the Muskat problem and of previous
results

Let 1 < p < =, a;, a, and k be positive real constants.
Let ®;, ®, with ®, cc ®, be bounded open sets of R
with regular boundaries d®,; = v;, 0w, = Y,. At time ¢ =0
(initial time), we are given ® = ®(0), an open set with
regular boundary dw(0) = Y¥(0) such that ®; cc ®(0) cc
®,. We set Q = m, \ @, ©,(0) = 0(0) \ ®, and Q,(0) = w,
\ @ From this initial position ®(0), ® evolves with the
time ¢ (we write ® = @(¢) for this dependance on time #):
its boundary dw(z) = y(f) moves according to the normal
velocity

(D

v,(x, 1)

— kafViu (e, Vi, vz, ) = —ka T A %"VL (x 1)

~kay |V (1, t)Ip_Zqu(x, 0)v(x, 1) = —kay|Viy(x, t)|P_2%(x, f)

where u; (., £) = u; () and u,(., 1) are defined respectively

in Q) = o) \ @; and in Q1) = ®,\ w(f) and are the
solutions of the following equations:

[div (aIIVu1 (t)lp_2 Vi, (t)) =0 inQ,(r)
_div«(a2|Vu2(t)|p—2Vu2(t)) =0 in ©,(r)
w(t) =1 ony,
(@, lu(r) = 0 ony,
w(r) = uz(t)a ; on Y(r)
alqul(t)lp_z—a%l(t) = aZIVuz(t)lp_Z%(t) on y(¢).

The notation 9 stands for V,.v(x, r) where v(x, t) is
the unitary outer normal to Q,(z) at (). We denote by (Q)
the problem (Q,) + (Q,). For p = 2, this problem is called
«Muskat problem» [EQO, Mu]. It models the mining of oil
(fluid 2 occupying £,(t)) by injection of viscous water
(fluid 1 occupying £,(¢)). The model suggested above (with
1 < p < o) is a natural generalization of the Muskat one.
When p =2 and N> 1, F. Abergel and J. Mossino [Ab-
Mos] have proved the existence of regular solutions locally
in time of the Muskat problem by means of the method of
«normal variations». For p'= 2 and N = 2, F. Yi [Y] has
also given a proof of the existence and uniqueness of clas-
sical solution locally in time by the Newton iteration meth-
od. It is well known (see [Be]) that the stability or unsta-
bility of the interface y(t) corresponds respectively to the

condition on the mobility ratio M = 4 <lor>1 A

&

mathematical interpretation of this stability condition can
be found in [Ab, AbMos]. When a; < g, (and 1 < p < ),
L. Boukrim and J. Mossino [BoMos1, BoMos2] have giv-
en isoperimetric inequalities by comparison with an evolu-
tion problem with spherical symmetry defined from (Q).
They have given an optimal estimate of the «critical time»,
that is, the time after which no regular solution may exist,
as well as an optimal estimate of the respective volumes of
the domains £,(t) and Q,(¢).

5.2. A MUSKAT PROBLEM WITH PRESCRIBED
FLUX

5.2.1. The most general statement

Let p, o, @, and ®(0) as in section 5.1. Let B and §
be functions defined on R* such that & is positive and P
does not vanish and is of constant sign. We assume that &

e LY(RY.
Let 8 and 1 be positive functions defined on (m,, m,)

1
with m; = measure of ®, ({ = 1, 2), such that 5 and

% € L'(m, m,). Let a, a, :Q X [my, m,] — R* be positive
Ui
functions such that for any m € [m;, my], a; (., m) and

1
m are in L™(€2) and

(5.1)

ess sup a;(x, m) < essinf a,(x, m)
xeQ

xeQd

From the initial position ®(0), ® evolces with the time
t: we write ® = of). We denote Q,(t) = o(r) \
o, (1) = @\ o(f)andm(r) = |o(r)| = measure of a(?)
and we define

5.2)

afx 1) = ax, 1) = afx, m(t))ifx € Q) i=12
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We consider the very general problem such that at any
time ¢, there exists a domain (¢} with ®, c< 0(f) cc ®,

and a pair (u(t), o(f)) € W"(Q) x (L”'(Q))N satisfying

(5.3) —div o(t) = 0, o(t)- Vu(t) 2 a()Vu(?) inQ,
(5.4) u(t) = 0 ony,

(5.5) u(f) = undetermined constant on 7,

(5.6)

[0 Vule) e = &) m(s) (8, ) = (BEOT)om(e)

This general problem is actually a statement coming
from the problem that we set below and that we call
«Muskat problem with prescribed flux»: dw(z) = (¢) moves
with the normal speed

(R) (5 1) = = B() 8(m(e) o3 1)-v( ) =
= —B(t) 8(m(r)) 0:(x, £)-v(x, 1)

where v(t) = v(x, t) is the unitary outer normal to Q,(t} at
Y(t) and Gf., t) = ot) satisfy (accordingly with u,t))

—div o,(f) =0, 6;(t) Vut) 2 () [Va(e) inQ(e), i = 1,2,
u(f) = unknown constant on 7,
(R;) {w(r) = Oony,,
u(t) = uy(t) and 6,(£) - v(t) = 0,(1)-v(t) on (1),
[ oi(0)-ndr = &0 n(om().

Here and in the following, we denote by n the normal
to Q at 7y, U 7,. The last condition of (&,) involves the flux

J;lo-l(t)'ndy . imposing this flux is related classically to
the fact that u,(z) is an undetermined constant on 7;.

Let us prove that for any regular solution of (%) + (%&,)
, we have (5.6) and G(t) is divergence free in the sense of
distributions. (By regular solution, we mean that the Green
formula is valid.)

1. Proof of — div 6(t) = 0 in D'(2) = space of distri-
butions on Q. For -any test function ¢ € D(Q) = C7(Q),

LG(t)-V(pdx = jﬂ o.(f)- Vodx + “‘on‘z(t)-V(pdx =

= Z j ~div o,(¢)) @ dx + j £)-v()— 0(t) - v(#)) dy = O.

2. Proof of (5.6)

2.a.

j o(t)- Vu(t)dx = 2 j ~ div 0,(1)) (1) dx

* J;(’)ul(t) (01(0)v(1) = o2() W(2) dy + ul(t)lﬂ J‘ycxrl(l‘)m dy
- ul(t)|,lfygn(t)-n dy = &) n(m(2)) w(0),.

2.b.

D) = [0l dy = -BG) 8m() [ 0i(0)(0) dy

= B(t) 8(m() [ o(1)-n dy = (BE) (1) (Bn) (m(1)}

(The penultimate equality comes from the integration
on Q,(H) of — div 6,(¢) = 0.)

5.2.2. Isoperimetric inequalities

We denote by (%) the statements (5.2.) to (5.6.). Our
isoperimetric inequalities arise from the following theorem
as a corollary of Theorem 1

Theorem 2 Let p’ verifying 1 + i’ = 1 and By The

P 14
measure of the unit ball of RY. Denote by t, the critical
time of problem () that is the maximal time of existence
of solution to (). Set

D(m) =

2

m Py =p 1, J - =p :
= U sy p(al *)'pl(s—-ml, m)ds + J s¥ p(a,l *)xf(s—m, m) dsjlp.

Then, for any time t for which there exists a solution to
() on [0, t] (hence for any t <t)), one has

m(t) cI)

(0

N7B [ (1) |B() o < sn(p) [j 2 ds}

where Ti(7) = un(T)iyl and sgn (B) is the sign of .

Proof: Let t be a time for which there exists a solution
to (F)on [0, f] and let T € [0, £]. By (5.2) we have o(x, 1)
= a; (x, m(t)) for x € Q, () and we set

Cux) o@)) = [ olx ©)-Vul(x 7)dr, Ti(r) = w(z),,

Then Theorem 1 ensures that

(5.7)

P

o) FleofFu-ma]

C(u(z), o(r)) <N7B N:’T{Im, s%

where o"(1) is the increasing rearrangement of o, T). It
yields from (5.7) and (5.6) that

ot 24
P

(')
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~ [v
~To

NPﬁN%(l'}(T))"‘I < &) 11(m(1'))|:.[nI ( (‘I:)) (s ml)ds:| .

By (5.6),

dm(z’) = B(r) 8(m(7)) &(t) n(m(r))

and the previous inequality becomes

MA@ < 1 dm(7) [

('r) 8(m(r)) dr [Im

sz s;_.P ((x (‘L‘)) (s my) ds}i

|

_ _sen(B)  dm(r) | v
- Gl 0 I e F-my ]

It follows from (5.1) that

s |

[L"fs%'”( 7 (- ml)ds} < 0(m(r)).

We get finally

N BN (L) 1B < sen(B) S (n(z) '4“'2“(:‘)

which, after integration between 0 and ¢, gives the inequal-
ity of the theorem above.

We will estimate the unknown value of u(z) on v,
denoted I')(z), and show that this estimate is optimal by
comparison of the problem (%) with an evolution problem

(ff) with spherical symmetry defined from (¥) Clearly,
we obtain (’}’) by replacing ®;, ® = ®w(0) and ®, respec-
tively by &, & = @(0) and ,, the balls of RY centered at

the origin and having the same measures as ®;, ®(0) and
o,. We also replace a., m) by its radially increasing rear-
rangement G(, m)onQ = @, \Z")_l. We denote by @(t), the
ball related to (i’) at time ¢ > 0. A priori the domain @(?)
is not the symmetrization of the domain ®(z) related to (7).
Its measure is denoted by si(r) We set Q(r) =
B(F) \ @y, (1) = G,\G(r) and G(x, 1) = a(x, |o(e |) if x
e Q) i = 1, 2. Finally, in the statement of (F, (u(2),
o(t)) is replaced by the pair (U(tr), 2(t)) where
() = a@)|vu(e)” ZVU(t),' More precisely the problem
(i) is
(5.8)
—div 2(r) = 0in Qwith 3() = &@|VU(r)| " VU(),
5.9 U(r) = Oon ¥, = dd,,

(5.10) U(t) = undetermined constant on §, = d@,,

(5.11)
[20)-vu() ax =

= &0 () Uy, S1ie) = (BEYO(E(().

The problem (f ) admits a unique solution and we have
the

Theorem 3. Let ri(r) be the measure of ar), I:I(t) be

the undetermined value of U(t) on ¥, and §, the critical
time for the symmetrized problem, that is, the time such
that ¥(t) touches ¥, (if B < 0) or 7, (if B > 0). The values

i, m(t) and T,(t) are explicitly given by

M
m(0) ds
_ds . 0
J. (lﬁlf) )dr = J""‘ (517) (s) ifB <
J O
m(0) (8n) (s) ,
03]
I ) ds j (BE) (z) dr for 0 < 1 <F.

() () (s)

3)

N(EO) = (@n) (7)) &) for 0 <
(4) If (%) admits a solution on [0, t], then one has
(i) t <7 (hencet, <F)
(i) m(r) = (e
(iii)  T,() < Ti(2)
Proof:

1. Let 7 be the critical time for the symmetrized
problem and T € [0, t"c} We have

20 — (8e) () o) (o)

hence
(5.12)

1 dr(t)
on) ((x)) de

(B8) (r) = sgn(B) (BE) (z) = (

This leads to
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sgn(B)  dimi(r)
186) ) = ooy Gite)) ~ar

that we integrate between 0 an 7. We get the equality
(5.13)

- - i1 dir)
.[0 (lﬂ |§)(r) dr = sgn(p) JO W . dr =

,;'I(x'c) ds
= sgn(p) _L,(O) (8n)(s)

We obtain the announced equality by using the defini-
tion of the critical time for the symmetrized problem and
m(0) = #(0).

2. Lette [O, Ec] From (5.12), we obtain, since m(0)
= 1i(0)
it d. !
Lo = = o) o=

3. From Theorem 1 and (5.11), we obtain as in the
proof of Theorem 2 for any ;<7

= e

NBA(E) " = &0 o) [J S (o) (5m) ds]

= &(r) n(ra()) ®(((2)))

4. We assume that the problem (7} admits a solution
on [0, t].

(i) Lett € [0, f]. By the second relation of (5.6)

(BE)x) = sen(B)(|BlE)=) 1 dnlt)

~ @n)m(2) dr

we have for any ¢ such that 0 S ¢ <z,

ﬂ(|ﬁ]<’§)€r) dt = sgn(p) L':'((;; (5_:;;(?) .

Since B (1) and dm(T) have the same signs, we are led
dt

to

m(r)  ds mo o ds _ pilk) ds
jm@ ome) Jmm (om) (s) L@ (on) (s)

if B > 0 (the function ¢ — #i(¢) is increasing). By the same
way, we have

J'm(r) ds S Jvnn ds i) ds
m0) (617) (s) ~ “m)(617) (s) ~ m@) (1) (s)

if § < 0. hence, using (5.13)

J,06k) e < sen 6) [ s = [ 088 @)

for any ¢ < . Particularly, we have for ¢t = ¢,
[ (82 ar < [ (BE)Cz) d.

That is to say that ¢, <£. and consequently, there exists
no regular solution after 7,

(ii) We recall that for any ¢ such that 0 < ¢ < min
(0 7) = b
J‘rﬁ(f) ds
(0) (6m) (s)

Lo = ==o(A) [168) ).

= sgn(B) [ (BE) (¢) d=

These two equalities and m(0) = (0) give
J-rﬁ(r) ds J-m(t) ds _ jm{r) ds
w0, (En) (5) ~ 0)(om) () 390 (am) ()

In conclusion, one has rmi(t) = m(¢) for any ¢ < t. This
proves that @(r) is the symmetrized domain of w(r) for
any t <t

(iii) For any ¢ < ¢, we have

(n(t))"'_‘1 < N7 Byw (®6) (m(2)) &)
B = vepa(@s) (i) &
= NPByw(D8) (m(t)) &¢)

because m(t) = m(r) as it has just been proved. We deduce
immediately that T}(r) < I(¢) for any < t..

Remark that from this inequality, one also has

() o(t)) = [ o(t) Vu(t) dx = Ty(e)n(m()E()

< fim(m())&) = EUE), () = 2 Jo oy @VUE) dx

for any t < ¢,

5.3. AN EXAMPLE OF MUSKAT PROBLEM
WITH PRESCRIBED FLUX

5.3.1. The problem

Let p, @, @(0), afx, m), B, & & and M as in the section
5.2. For i = 1, 2 we consider functions G; veryfing
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)y G;: (xmx)eQx[ml,mz]xR - G;(x, m, &)
€ R are Caratheodory functions (that is, measurable with
respect to x, continuous with respect to (m, &)),

ii) For almost every x € Q, for any m € [m;, m,], G,
(x, m,.) is strictly convex and admits a gradient g(x, m,.),

iii) There exists ¢, ¢% ¢* > 0 and ¢} e I(Q) such
that a.e. x € Q, V€ e RY and Vm e [m,, m,)

1[5]” <G x m, é 2|§|P+c3()c)
|( ﬂ—CGHW?
(x, m, &)-E2a(x, m)g.

We set for i = 1, 2
o,(x 1) = g(x m(z), Vur)).
Then, we have for u(f) € WIP(Q,(1))
oi(x 1) Vu(t) = glx m(t), Vu(t))-Vu(r)
2 ax, m(t)) V) = (Vi)

With such o, we consider the statements (%), (®,) of
the Muskat problem with prescribed flux.

Example: We set

2
2

Gi(x, m, &) = %(A,.(x, m)E-£)

where A, = Q x[m,, m,] — R are symmetric matrices
such that for any m € [m;, m,], A,(., m) € LM and

ae.x € Q VE e RYA(x, m)-E>alx m)|§|2

W recover the operator of [BoMos2].

5.3.2. Existence of solution for a given time ¢

For a given time ¢, we obtain the problem (%), with

Q(1) = &(t) n(m(t))

(—div g,(x, m(r), V() = 0inQ, (1) i = 1, 2

u,(f) = unknown constant on ¥,

w(t) = 0ony,

(R Yut) = wa(s) on ()

&(x m(e), Vi ())-v(e) = g(x mlt), Vi (£))-v(z) on ¥(2),
k jﬂ gi(x m(), Vu())-ndy = 0(2).

We relate to (%;) the minimization problem (#M,) :
Inf{J(v), v € V} where

V= {v = W"”(Q), v = 0on7v, Y = undetermined constant}

J0) = [, Gl m(e) Vv)dx + j Gal, m{t), Vv) dx = O(1) wye

Then V is a closed subspace of the reflexive Banach
space W'P(Q) (1 < p < o) with its usual norm. We equip
V with the «gradient» norm [v], = ||V1)||Lp(g), v € V. By the
Poincaré 1nequahty, this norm is equlvalent to the one
induced by W'P (Q). One cheks that J is stnctly convex,
continuous and coercive on V. There exists, in conse-
quence, a unique solution to the minimization problem
(). This solution, denoted by u, is characterized by the
variational equation

ueV,
J.Q!(t) gl(x, m(z), Vu) Vodx+ jnz(:) gz(

= &) n(m () v, Yv € V.

x, m(t), Vu)-Vvdx =

Finally, using the Green fromula, we get formally the
problem (&,).
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