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ABSTRACT

In this note we obtain some strong barrelledness prop-
erties concerning the simple function space generated by
the hereditary ring Z of all subsets of density zero of IN.

RESUMEN

En esta nota obtenemos algunas propiedades de fuerte
tonelacién relativas al espacio de las funciones simples
generado por el anillo hereditario 2 de todos los subcon-
juntos de densidad cero de IN.

1. PRELIMINARIES

If % is a ring of subsets of a set £, we denote by ba
(R) the linear space over the field K of the real or complex
numbers consisting of all those bounded finitely additive
scalar measures on %, This is a Banach space when it is
provided with the supremum-norm

lu| = sup {lu (E)|: E &}

for each it € ba (R). A ring R of subsets of a set Q is said
to have the Nikodym Property, or Property (N), if given
any subset {4, : i € I} of ba (®) such that sup {[,u, (B)| :
ie l} < o for each E € R, then sup, || < . As it is
well-known, this is equivalent to the barrelledness of the

linear space I7{R) of all scalar K-simple functions
equipped with the supremum-norm

Il = sup {|f(w): w e @}
for each fe I7(R).

It has been recently shown in [4] that the hereditary
ring Z consisting of all those subsets of N with density

zero has Property (N). Let us recall that a subset A of N
is said to be of density zero if

i |An {1, .., 0}

n—see n

= 0.

Following [4] Z (1,) will stand for the subspace of [, for
1 < p < oo, consisting of all those sequences whose support
is a set of density zero.

The proof in {4], extended in [5] to the ideal % of all
M-zero sets of any strongly nonatomic submeasure 1 de-
fined on a c-algebra of sets, works on ba (2) and it is
strongly based upon the following property of the scalar
series that it seems to be originally due to Auerbach [1].

Lemma 1.1. Let & = (§) be a scalar sequence. If
ZﬂeA|§,,l converges for each A € 2, then x € 1,.

The argument given in [5] uses an extension of Auer-
bach's result given in [11] and works in ba (Z), although
is easier than the original proof. In this note we obtain
some strong barrelledness properties of the normed space
I7(2) beyond the barrelledness, working directly on the
algebraic and topological structure of [;’(Z). Naturally this
have consequences in the boundedness Nikodym theorem,
as one can deduce from 7.3.2. and 7.3.3. of [9].

2. RESULTS

In order to set up the techniques we will use in this
paper we start reviewing the proof of the barrelledness of
I5{z), to do so we will need three previous results. The
proof of the first of them is partially inspired in [3, Lemma
2].

Lemma 2.1. Let K be a ring of subsets of Q which is
not an algebra. If 4 denotes the algebra generated by the
ring R, then I5(z) is a closed hyperplane of I (4).
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Proof. It is obvious that [;(a) = [7(R) ® ({xa})
since 2= R0 {Q - E:Ee R} Let us see that [;’(R),
where the closure is taken in [ (), coincides with I3 (R).
Solet f= Z:;la,x& € Ig(R), f= 0, where {E,, ..., E,}
is a partition on £ by elements of 4, g,e K for 1 <i<n,
with B, E;= ¢ and g, #g;if i # . Set £:= min {|a- - |

:lsi<j<n}and choose g_z bixr, € 5 (R),

where Fe:&andbehb¢0forl<]<m with F;
N F; = q)andb ¢b1fz¢], such that |f - g]] la| for

each ke {1, .., n} witha, #0, and ||f - g|| < E' We are

going to prove that if @, # 0 and J;:= {1 <j<m:F; r

E, # ¢}, then E, = Uje,i F,. This shows that E; € R and
establishes the theorem.

Note in first place that if F; N E; # ¢ for some j € {1,
..., m}, then F, C E. Indeed, given any w € Fj then

ij - a,.| < £ since F; " E; # ¢, so if there would be some
t € F; ~ E; then F; would meet some E, with k # i, ie.
b

;= a,.| < g and then we would have

la; — a| < Ia | Ib - akl < g, a contradiction. On

the other hand, assume that there is some w € E; ~ U F,

then obviously g(w) = 0 and consequjélntly
la < |If - &l <

|a;, which is again a contradiction. ®

Lemma 2.2. Each barrel T in I3(Z) absorbs the set
of the characteristic functions of the finite subsets of .

Proof. We proceed by contradiction. Assume there is a
barrel T in [7(z) which does not absorb the set
F= {xr: F ¢ N, Ffinite}. Let F| € Fsuch that xz & T.
Let {P,, P,} be a partition of the set {ne N :n>max F}
such thatif me P, thenm + 1 € P, for 1 <4, j<2, z;&
J. Obviously, T cannot absorb the characteristic functions
of all finite subsets either of P, or of P,. Assume for ex-
ample that T does not absorb the set {y: F < P,, F finite}.
Then there exists a finite set F, ¢ P, such that y. ¢ 27.
Now if {P;, Pz} is a partition of {n € P, : n > max F,}
such that if m e P thenm + 2 € P, for 1 <4 j<2,i
# j, reasoning as above one shows that T does not absorb
for example the set {xF :Fc B F ﬁnite}, and so there is
finite set F, < P, such that y. ¢ 3T.

Proceeding by recurrence one finds a sequence {F, : n

e N} of finite subsets of IN such that U,»=, F; € 2 and

oo

xr € nT. But setting E = U, F, if 2% stands for the o-
algebra for all subsets of E, obviously [ (ZE ) is a barrelled
space. Hence T absorbs the closed unit ball of 15(25), and

consequently there is some m € IN such that y, € mT, a
contradiction. W

Lemma 2.3. ([4, Lemma 1]) For every sequence {A,
s n € N} of infinite sets in Z there exist finite sets F, <

A, n € N, such that U,-l (Ay~ F,) € 2.

Theorem 2.4. [7(2) is barrelled.

Proof. Let 4 denote the algebra of subsets of IN gen-
erated by the ring Z. Assume that [7(4) is not barrelled
and let T be a barrel in [;(4) which is not a neighborhood
of the origien in Iy’ (4). As I[;(2) is a closed one-codimen-
sional subspace of [5'(4) by virtue of Lemma 2.1, T cannot

absorb the closed unit ball of /7(z) and thus there exists
some A, € Zsuch that y, ¢ T.

Since [7(2*) is barrelled, T absorbs its closed unit
ball, and hence T does not absorb the unit ball of the space
Io(2 (N = A)). So, there is some A, € 2 with A, N 4,

= ¢, such that y, ¢ 27. Again, as 15“(2"1) is barrelled,
T cannot absorb the closed unit ball of l(‘;"(Z N (N - 4
U 4,)), and so on.

Consequently we obtain by recurrence a sequence {A,

: n e N} of pairwise disjoint sets of density cero such that
¥a: & nT for each n € N. But, according to Lemma 2.3,
for each i € N there is a finite set F; ¢ A; such that

U,-=1(A,~ — F;) € z. Hence, by putting E = UH (4 - F)
it follows that I7'(2*) is barrelled and, consequently, there
is some ¢ € N with y, . € ¢qT for each i € N. But, on
the other hand, according to Lemma 2.2 there is some p €
N such that . e gT for each i € IN. Therefore, setting m
> p + g, one has that

XA, = Xa,-£, T Xr, € mT,
a contradiction. B

Let us recall the definitions of some well known strong
barrelledness properties [see for instance [9]]. A locally
convex space is said to be suprabarrelled or barrelled of
class 1 if given an increasing sequence of linear subspaces
covering E there is one of them which is barrelled and
dense in E. Given n € NN, a locally convex space E is
called barrelled of class n [barrelled of calls 0 = barrelled]
if given an increasing sequence of linear subspaces cover-
ing E there is one of them which is barrelled of class n —
1 and dense in E. A locally convex space is said to be
barrelled of class & if E barrelled of class n for each n
M. More general: if o + 1 is a succesor ordinal, a locally
convex space E is said to be barrelled of class o + 1 [12]
if given an increasing sequence of vector subspaces of E
covering E, one of them is dense and barrelled of class @,
and if oo > 1 is a limit ordinal a locally convex space E is
said to be barrelled of class o if E is barrelled of class B
for each § < o. Following [2] a web in a set € is a family
W = { Ty By 1y € N} of subsets of  such that

el

Q:U,,,=.C‘,,, and for np,..., n; € N then

i
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Cori = U,,i+1=1 Cuumee A strand of W is a sequence of
subsets {C, ,..., , }; where {n;} is sequence in N. Accord-
ing to [8] a web of a locally convex space is said to be
linear if it is formed by linear subspaces
{Es.m : i, m,..., ni € N} of E such that E, ¢ E,. and
Epona © Enmant Tor all i, ny,..., n; € N. Baireled spac-
es [8] are defined as those locally convex spaces E such
that each linear web in E contains a strand formed by
barrelled and dense subspaces. It has been shown in {13]
that baireled spaces, called superbarrelled therein, are pre-
cisely the barrelled spaces of class R .

For the next lemma let {E, : n € N} be an increasing
sequence of linear subspaces of [;(Z), T, a barrel in E,, B,
the closure of T, in /7(Z) and —denoting by (B,) the

n

linear span of B,— let H, := ﬂ,,,z,, (B,) for each n € N.

Lemma 2.5. There exists a positive integer p such
that

{xr: F c N, F finite} ¢ H,.

Proof. Assume {y,: F c N, F finite} ¢ H, for each
n € N. Then there is a finite set F, in IN such that
xr ¢ H, Then, as in the proof of Lemma 2.2, let {P}, P,}
be a partition of {n € N : n > max F,} such that if m &
P, thenm + 1 € Pj,forlSi,jSZ,izﬁj.

Clearly, none of the H, can contain the characteristic
functions of the finite subsets of P, or of P,. So we may

assume for example that no H, contains the set {xp (1 F g
P, F finite} for each n > 1. So there exists a finite set
F, c P, such that y. ¢ H,. Then, let {P;, Pz} be a par-
tition of {n € P, : n > max F,} such that if m € P} them
m+2e P, for1<ij<2,i#j Reasoning as above one
shows that no H, > 2 absorbs for example the set
{xF:F c P, Fﬁnite}, and here there is a finite set

F, c P, such that y. ¢ H,.

Proceeding by recurrence one obtains a sequence {F,:
n € N} of pairwise disjoint finite subsets of IN such that
U,~=1 F: € z and xr, e.H,. Then, setting M = UH F;, as
Iy (2’" ) is suprabarrelled and the sequence {H,:n e N}
is increasing and covers [y(Z), there is a positive integer
p such that H, N Iy (2“ ) is a dense and barrelled subspace

of l(;“’(2M). Thus (B,) N I (2“) is barrelled and dense in
Iy (2“) for each m = p. But, as may be easily shown, the
barrelledness of (B,) n Iy (2’” ) implies that it must be
closed in [ (2’" ) Hence (B,) 2 I (2“ ) and consequent-
ly B,, absorbs the closed unit ball of I (2") for each m 2
p- Thus xr e H, a contradiction. M

Theorem 2.6. 5 (2) is a suprabarrelled space.

Proof. Let A denote the algebra of subsets of N gen-
erated by the ring Z. Assuming /5 (4) is not suprabarrel-
led there exists an increasing sequence {E,: n € N} of
dense linear subspaces of [ () covering /5 () such taht
no E, is barrelled. Thus, for each positive integer n let T,
be a barrel in E, which is not a neighborhood of the origin
in E, and denote by B, its closure in [J (). Then define
H, as in the previous lemma.

According to Lemma 2.5 there is not loss of generality
by assuming that

{xr: F ¢ N, Ffinite} c H,

for each n-e N. Then, as [7(2) is a closed one-condimen-
sional subspace of [7(4) by virtue of Lemma 2.1, no H,
contains the closed unit ball of /;'(2) and thus there exists
some A, € Z such that y, e H,. So, since [7(2*) is su-
prabarrelled, reasoning as in the last part of the proof of
the previous lemma, there is some positive integer n, > 1
such that H, contains the closed unit ball of [ (2"‘) for
each m 2 n,. Consequently no H,, with m 2 n, contains the
closed unit ball of /7(z n (N - A,)). Hence, there is some
A, e Zwith A N A, = 0, suchthat y, ¢ H,. Again, as
Iy (2"2) is suprabarrelled, no H,, with m = n, contains the
closed unit ball of I7(z n (N - 4 U Az)), and so on.
Then, proceeding by recurrence, we obtain a sequence {4;
;i€ N} of pairwise disjoint sets of density cero such that
X4 € H, for each i ¢ N, with n; = 1. But, according to
Lemma 2.3, for each i € IN there is a finite set F;, ¢ A,

such that U,»=, (A — F)) € z. Hence, setting M = U,-=.

(A = F), as Iy (2“ ) is suprabarrelled, there must exists
some p € N such that y,_r € H, foreachie N. There-
fore one has that

Xa, = Xa-r,t Xr, € H,,,,,
a contradiction. W

For the next lemma consider the following linear sub-
spaces of I;’(z). Given a positive integer p let {E,,l,...,,,,
M, ..n, € N, 1 <5 < p} be a p-net of linear subspaces
of I§7(z), i.e., let {E,,l iy € N} be an increasing sequence
of subspaces of [;7(Zz) covering [5’(z)and for 1 < s < plet
{En,,..,,n, in, € N} be an increasing sequence of linear sub-
spaces of E, ,, covering E, .. Let T, , be a barrel in
E, ., denote by B, , itsclosurein [;(Z)and set Z

By el Hypnllyy -

Zyny = <B,,w,,,,> for each (ny, ..., n,) € INP. Then, follow-

ing either the proof of Theorem 8.4.5. or the preliminaries
of Lemma 9.3.3 of [9], define inductively the following
subspaces:

Hymflp

Hn....‘.n,, = ﬂ {Z,, m= n,,},

Loven Bpogs 1E°°
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and fors=p-~1,p~-2 .. 1

Zow = U{H, . meN)

and

n. N n { Mo erflsog 1L fm2 ns}

It is plain that for 1 < s < p one has E, , ¢ H, ..,
hence the increasing sequence {H, tn € N} covers

E for l <s<p

r—

sty

Lemma 2.7. There exists some n € N such that
{xr: F c N, Ffinite} ¢ H,.

Proof. Reasoning by contradiction let us assume that
{xr: F ¢ N, Ffinite} ¢ H,

for each n € N. Since {H, : n € N} is an increasing
sequence of linear subspaces of [ (Z) covering g (2)
there exists a sequence of pairwise disjoint finite sets {F,
:ne N} ¢ Nsuch that U2, F, ez and xy ¢ H, for each
ne N

Setting M = U,,=1 F,, since Iy (2") is barrelled of
class p there is some m) € N such that H, N[5 (2”) is

dense in [§ (2“ ) and barrelled of class p — 1 for each n,

2 my. So, reasoning as in the proof of Lemma 9.3.3 of [9],
we may obtain p — 1 functions m, (n,), ..., m, (Ngy oo n,
;) such that H, , NIy (2“ ) is a dense barrelled subspace
of i5 (2") for ny 2 my, ny 2 my (), ..., n, 2 my, (ny, ooy 1y

1)- Therefore B, , Iy (2") is a nelghborhood of the
w Nl ( M) for ny 2 my, ny 2 my(ny), ..., m,
2 m, g, e n, _;). Going backwards, this 1mphes that
{xr: Fc N, Fﬁmte} H, for each n; > m,. Hence
Xr, € H, for each n 2 m,, a contradiction. W

origin in H

Ny

Theorem 2.8. I (2) is a barrelled space of class p.

Proof. Assuming ;7 (2) is not a barrelled space of class
p, there exists a p-net { e n, € N, 1 €5 S p} of
linear subspaces of [i (Z) such that no space E, , is
barrelled. If T, , denotes a barrel in E, Wthh is not
a nelghborhood of the origin in E, , . let B,..., be the
closure of T, ,in E, ,,and, forl <s <p define Z,

. ll ..... Nhsenslly
and H

-y

as above.

sl

According to the previous lemma there is not loss of
generality assuming hat

{xr: F c N, Ffinite} < H

for each n € IN. Then, using the fact that [ (ZE) is a
barrelled space of class p for each E € Z, an appropriate
modification of the argument used in the proof of Theorem
2.6 allows us to obtain a sequence {A i € N} of subsets
of IN of density zero and a strictly increasing sequence of
positive integers (n;) such that y, ¢ H, for each i € N.
So, using Lemma 2.3, for each { € N there is a finite set

F; < A, such that U,-=1 (A = F;) € z. Hence, setting

13

M= Ui=l (4 - Fi) e z, as 7 (2") is barrelled of class
p there exists some j € IN such that y,_r € H, for each
i € N. So we get the contradiction y, € H,. W

Corollary 2.9.
Ry,

Iy (z) is a barrelled space of class

Proof. This is an obvious consequence of the previous
theorem. M

Theorem 2.10. Z(l)) is a barrelled space of class R,
for 1 £ p < oo,

Proof. Consider the linear map
T:15(2)®,1, - 2(l,) defined by T(x,® &) = ¢, where
(,=¢,ifne "Aand € =0 otherwise, for each A € Z and
each € ll Then, if B 2., denotes the closed unit ball
of I7(2) ®, I, and Bz, represents the unit ball of z (1),
one may easxly prove that T B.., Conse—
quently T is an onto, continuous “and 6pen mgggpmg, and
hence z(l,) is a quotient of [y (2) ®, I,. As ], is a Ba-
nach space, and according to Theorem 27 lD (z) is a
barrelled space of class ¥, it follows form Proposition
4.3.1 of [9] that Iy (Z) ®, I, is barrelled of class X,
Since the class of the barrelled spaces of class R is closed
under the formation of separated quotients, this shows that
z (l ) is also a barrelled space of class X, W

Remark 2.1. Further investigations. If (€, %) is a
measurable space it its well known [7] that the space I (X)
is barrelled of class R, a result that has recently been
improved by the second author [10] by showing that /7 ()
is in fact a baireled [= superbarrelled in [13]] space. So it
is natural to wonder whether I7° (2) is a baireled space or
not. However, it seems that the techniques used in this
paper are not strong enough to show that I3’ (2) is baireled,
a property whose study has been suggested by Professor B.
Rodriguez-Salinas. So we must postpone the answer to this
question to a further research.
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