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ABSTRACT

In this note we obtainsome strong barre11edness prop~

erties concerning the simple function space generated by
the hereditary ring Z of a11 subsets of density zero of N.

RESUMEN

En esta nota obtenemos algunas propiedades de fuerte
tonelación relativas al espacio de las funciones simples
generado por el anillo hereditario Z de todos los subcon­
juntos de densidad cero de N.

1. PRELIMINARIES

If 2( is a ring of subsets of a set n, we denote by ba
(2() the linear space over the field ]K of the real or complex
numbers consisting of a11 those bounded finitely additive
scalar measures on '1? This is a Banach space when it is
provided with the supremum-norm

Il,lIll = sup {I,lI (E)I : E E 2?..}

for each .u E ba (2(). A ring 2(of subsets of a set n is said
to have the Nikodym Property, or Property (N), if given
any subset {Pi: i E n of ba (2() such that sup {I,lI; (E)I :
i E 1} < 00 for each E E 2?., tbenSUPiElll,lIdl < oo. As it is
we11-known, tbis is equivalent to the barre11edness of the
linear space l;;'(2?..) of a11 scalar .1<;-simple functions
equipped with the supremum~norm

I!JII = sup {lf(w)1 : w E n}

for eacb f E l;;' (2?..).

It bas been recently shown in [4] that the hereditary
ring Z consisting of a11 tbose subsets of N witb density

zero has Property (N). Let us reca11 tbat a subset A of N
is said to be of density zero if

lim lA í) {1, OO" n}1 = O.
11.-700 n

Fo11owing [4] Z (lp) will stand for tbe subspace of lp' for
1 :::; p :::; O<J, consisting of a11 tbose sequences wbose support
is a set of density zero.

The proof in [4], extended in [5] to tbe ideal 2( of a11
1')-zero sets of any strongly nonatomic submeasure 1') de­
fined on a cr-algebra of sets, works on ba (Z) and it is
strongly based upon tbe fo11owing property of the scalar
series tbat it seems to be origina11y due to Auerbacb [1].

Lemma 1.1. Let g = (gn) be a scalar sequence. Jf

¿"EA1;"I converges for each A E Z, then x E ll'

The argument given in [5] uses an extension of Auer­
bacb's result given in [11] and works in ba (Z), altbough
is easier tban tbe original proof. In tbis note we obtain
sorne strong barre11edness properties of the normed space
l;;'(Z) beyond tbe barre11edness, working directly on tbe
algebraic and topological structure of l;;' (z). Natura11y tbis
bave consequences in the boundedness Nikodym theorem,
as one can deduce from 7.3.2. and 7.3.3. of [9].

2. RESULTS

In arder to set up the tecbniques we will use in tbis
paper we start reviewing the proof of tbe barre11edness of
l;;' (Z), to do so we will need tbree previous results. Tbe
proof of the first of tbem is partia11y inspired in [3, Lemma
2].

LeJIlJIla 2.1. Le! 2(be a ring of subsets ofn which is
not an algebra. Jf ..91. denotes the algebra generated by the
ring !R" then l;;'(Z) is a closed hyperplane of l;;' (..91.).
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Proaf It is obvious that 1;(.91.) = I;(!l() Et> ({Xn}),
since .91. = !l( u {Q - E: E E !l(}. Let us see that I;{!l(),
where the cIosure is taken in 1;(.91.), coincides with 1; (!l().
So let f = L;~lajXE, E 1; (!l(), f f:. O, where {EJ, ... , En}
is a partition on Q by elernents of JI, a i E ]K for 1 ::;; i ::;; n,

with E¡ n Ej = <1> and a¡ :1= aj if i:j:. j. Set e:= rnin {Ial - ajl

: 1:::; i <j:::; n}and choose g = L~~¡bjXFj E 1; (!l(),
where Fj E !l(and bj E ]K, bj :1= 0, for 1 ::;; j ::; m, with Fi

n Fj = <1> and bi :j:. bj if i :j:. j, such that Ilf - gil < lakl for

each k E {1, ... , n} with ak:l= O, and Ilf - gil < f. We are
2

going to prove that if a¡ :j:. O and Jj := {l :::; j :::; m: Fj í'

El f:. </>}, then Ei = Uje], Fj • This shows that Ei E !l( and
establishes the theorern.

Note in first place that if Fj n Ei :j:. <1> for sorne j E {l,
m}, then Fjk El' Indeed, given any W E Fj then

Ibj - aiI < ~ since Fj n E¡ :j:. <1>, so if there would be sorne

t E Fj - Ei then Fj would rneet sorne Ek with k :1= i, i.e.

Ibj - ad < f, and then we would have
2

lal - akJ :::;Iaj - bjl + Ibj - akl < e, a contradiction. On

the other ha~d, assume that there is sorne W E Ei - Uje], Fj •

then obvlOusly g(w) = O and consequently
lad :::; Ilf - gil < lad, which is again a contradiction.•

Lemma 2.2. Each barrel T in I;(Z) absarbs the set
al the characteristic functians of the finite subsets 01 N.

Proaf We proceed by contradiction. Assurne there is a
barrel T in I;(Z) which does not absorb the set
;r = {XF:F k N, Ffinite}. Let F I E :Fsuch that XF ~ T.
Let {PJ' P2} be a partition of the set {nE N : n > m~x FI }
such that if m E Pi' then m + 1 E Pj , for 1 ::;; i, j ::;; 2, i :j:.

j. Obviously, T cannot absorb the characteristic functions
of all finite subsets either of PJ or of P2• Assurne for ex­
ample that T does not absorb the set {XF: F k p¡, F finite}.
Then there exists a finite set F2 k p¡ such that XI", ~ 2T.

Now if {p;, p~} is a partition of {n E PJ : n> rnax Fz}
such that if m E F; then m + 2 E P~, for 1 ::;; i, j ::;; 2, i
:j:. j, reasoning as aboye one shows that T does not absorb
for exarnple the set {XF: F k P,:, F finite}, and so there is
finite set F3 <;;;; P; such that XI", ~ 3T.

Proceeding by recurrence one finds a sequence {Fn : n

E N} of finite subsets of N such that U:¡ Fi E Z and

XI", ¡¡; nT. But setting E = U:I FI , if 2E stands for the ()'­
algebra for all subsets of E, obviously 1;(2E

) is a barrelled

space. Hence T absorbs the cIosed unit ball of 1; (2 E), and
consequently there is sorne m E N such that Xr;, E mT, a
contradiction.•

Lemma 2.3. ([4, Lemrna 1]) For every sequence {A n

: n E N} of infinite sets in Z there exist linite sets Fn k

An, n E N, such that U~=¡ (A II - FII ) E Z.

Theorem 2.4. lo (Z) is barrelled.

Proof Let .91. denote the algebra of subsets of N gen­
erated by the ring Z. Assurne that 1; (.9l.) is not barrelled
and let Tbe a barrel in l;(.9l.) which is not a neighborhood
of the origien in 1;(.9l.). As I;(Z) is a closed one-codirnen­
sional subspace of 1;(.9l.) by virtue of Lernma 2.1, T cannot
absorb the cIosed unit ball of l;(Z) and thus there exists
sorne Al E Z such that XA, ¡¡; T.

Since 1;(2 A
¡ ) is barrelled, T absorbs its cIosed unit

ball, and hence T does not absorb the unit ball of the space
10(Z n (N ~ Al))' So, there is sorne Az E Z with A2 í) Al

= <1>, such that XA, ¡¡; 2T. Again, as lo (2 A, ) is barrelled,

T cannot absorb the cIosed unit ball of I;(Z n (N - Al

U A2 )), and so on.

Consequently we obtain by recurrence a sequence {A n

: n E N} of pairwise disjoint sets of density cero such that
XAII ¡¡; nT for each n E N. But, according to Lernma 2.3,
for each i E N there is a finite set Fi k Ai such that

U:I(A - F¡) E Z. Hence, by putting E = U:J (A - F¡)
it follows that 10(2 E

) is barrelled and, consequently, there
is sorne q E N with XA,-F¡ E qT for each i E N. But, on
the other hand, according to Lemrna 2.2 there is sorne p E

N such that XI", E qT for each i E N. Therefore, setting m
;;:: p + q, one has that

XA", = XA",-F", + XF", E mT,

a contradiction.•

Let us recall the definitions of some well known strong
barrelledness properties [see for instance [9]]. A locally
convex space is said to be suprabarrelled or barrelled of
cIass 1 if given an increasing sequence of linear subspaces
covering E there is one of them which is barrelled and
dense in E. Given n E N, a locally convex space E is
called barrelled of class n [barrelled of calls O=barrelled]
if given an increasing sequence of linear subspaces cover­
ing E there is one of them which is barrelled of cIass n ­
1 and dense in E. A locally convex space is said to be
barrelled of cIass ~o if E barrelled of cIass n for each n E

N. More general: if a + 1 is a succesor ordinal, a locally
convex space E is said to be barrelled of class a + 1 [12]
if given an increasing sequence of vector subspaces of E
covering E, one of them is dense and barrelled of class a,
and if a > 1 is a limit ordinal a locally convex space E is
said to be barrelled of class a if E is barrelled of class ~

for each .~ < a. Following [2] a web in a set Q is a family
'W = {CIl, .....II¡: i, n¡, ... , ni E N} of subsets of Q such that

Q = U:=¡ CII, and for nI'"'' ni E N then
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C", ..... ,,' == U:+1=, C,,',...."i."'+'. A strand of 'W is a sequence of
subsets .{ C" ,... , ".}; where {n;} is sequence in N. Accord­
ing to [8] ~ web' of a locally convex space is said to be
linear if it is formed by linear subspaces
{E,,' ,,' : i, m, ... , n¡ E N} of E such that E,,, k E",+, and
E,,' /li,"i+'k E""_''''i.''i+'+l for all i, nI"'" n¡ E N. Baireled spac-
es [8J are defined as those locally convex spaces E such
that each linear web in E contains a strand formed by
barrelled and dense subspaces. It has been shown in [13]
that baireled spaces, called superbarrelled therein, are pre­
cisely the barrelled spaces of class ~ l'

For the next lemma let {E" : n E N} be an increasing
sequence of linear subspaces of l¡;' (Z), T" a barrel in E", B"
the closure of T" in 1¡;'(Z) and -denoting by (B,,) the

linear span of B,,~ let H" :== nm~" (Bn¡) for each n E N.

Lemma 2.5. There exists a positive integer p such
that

{XF: F k N, F finite} k Hp •

Proof. Assume {XF: F k N, F finite} ~ H" foreach
n E N. Then there is a finite set F I in N such that
XF, ..: HI. Then, as in the proof of Lemma 2.2, let {Pi' P2 }

be a partition of {n E N : n > max F¡} such that if m E

Pi' then m + 1 E Pj , for 1 :::; i, j :::; 2, i =f. j.

Clearly, none of the H" can contain the characteristic
functions of the finite subsets of PI or of P2• So we may
assume for example that no HIl contains the set {XF: F k

PI' F finite} for each n > 1. So there exists a finite set

Fz k PI such that XF, ..: Hz. Then, let {p;, p~} be a par­

tition of {n E PI: n> max F2 } such that if m E P; them
m + 2 E Pj, for 1 :::; i, j s2, i :;t:j. Reasoning as aboye one
shows that no H" > 2 absorbs for example the set
{XF : F k P;, F finite}, and here there is a finite set

F3 k P; such that XF,": H3 •

Proceeding by recurrence one obtains a sequence {F" :
n E N} of pairwise disjoint finite subsets of N such that

U:, F¡ E Z and XF,..:B". Then, setting M == U:1 F¡, as
l(~ (2 M

) is suprabarrelled and the sequence {H" : n E N}
is increasing and covers l¡;' (Z), there is a positive integer
p such that Hp n 1¡;'(2M

) is a dense and barrelled subspace

of 1¡;'(2M
). Thus (Bn¡) n r; (2 M ) is barrelled and dense in

1;; (2 M
) for each m.2:: p. But, as may be easily shown, the

barrelledness of (Bn¡) n l¡;' (2 M
) implies that it must be

closed in r; (2M
). Hence (Bm ) ;;¿ l¡;' (2 M

), and consequent·

ly Bm absorbs the closed unit ball of r¡; (2 M
) for each m 2::

p. Thus XF, E Hp• a contradiction.•

Theorem 2.6. l¡;' (z) is a suprabarreUed space.

Proof. Let JI denote the algebra of subsets of N gen­
erated by the ring Z. Assuming l¡;' (5l) is not suprabarrel­
led there exists an increasing sequence {E" : n E N} of
dense linear subspaces of l¡;' (5l) covering l¡;' (5l) such taht
no E" is barrelled. Thus, for each positive integer n let T"
be a barrel in E" which is not a neighborhood of the origin
in E" and denote by BIl its closure in l¡;' (5l). Then define
H" as in the previous lemma.

According to Lemma 2.5 there is not loss of generality
by assuming that

for each n E N. Then, as 1¡;'(Z) is a closed one-condimen­
sional subspace of 1¡;'(5l) by virtue of Lemma 2.1, no HIl

contains the c10sed unit ball of l¡;' (z) and thus there exists
sorne Al E Z such that XA, ..: H l • So, since 1¡;'(2A,) is su­
prabarrelled, reasoning as in the last part of the proof of
the previous lemma, there is sorne positive integer n2 > 1
such that Hm contains the closed unit ball of l¡;' (2A,) for
each m 2:: n2• Consequently no Hm with m 2: n2 contains the
closed unit ball of 1¡;'(Z n (N ~ Al))' Hence, there is sorne
A2 E Z with A, n Az == 0, such that XA, ..: H",. Again, as
1¡;'(2 A

,) is suprabarrelled, no H m with m 2:: n2 contains the

closed unit ball of 1¡;'(Z n (N - Al U Az)), and so on.
Then, proceeding by recurrence, we obtain a sequence {A¡
: i E N} of pairwise disjoint sets of density cero such that
XA

i
..: H"i for each i E N, with ni == 1. But, according to

Lemma 2.3, for each i E N there is a finite set F¡ k A¡

such that U:, (A; ~ F¡) E Z. Hence, setting M == U:,
(A; - F¡), as l¡;' (2 M

) is suprabarrelled, there must exists

sorne p E N such that XAi-Fi EH", foreach i E N. There­
fore one has that

a contradiction.•

For the next lemma consider the following linear sub­
spaces of 1¡;'(Z). Given a positive integer p let{E" , ... ,,, :

I ,

ni' ... , n, E N, 1 :::; s :::; p} be a p-net of linear subspaces

of 1¡;'(Z), Le., let {E", : n, E N} be an increasing sequence

of subspaces of 1¡;'(Z) covering l¡;' (Z) and for 1 < s :::; p let
{E", .....", : n, E N} be an increasing sequence of linear sub­

spaces of E"""",_, covering ~" ..... ",_,' Let 1;" ....,", be a barre! in

E"" ,,,, denote by B", .....", its closure in l¡;' (z) and set 2"" ....,,1' ==

2", ", == (B", .....",,) for each (ni' ... , nI') E NI'. Then, follow-
ing either the proof of Theorem 8.4.5. or the preliminaries
of Lemma 9.3.3 of [9], define inductively the following
subspaces:

H", .....",' == n {2",..... "1'-" n¡ : m 2:: np },
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and for s ::: p - 1, p - 2, oo., 1

ZIlI •.•.• II, ::: U {HIII ....II'.nJ: m E N}

and

It is plain that for 1 :::; s :::; pone has EIII .....II, ~ HIII .....II,'

henee the inereasing sequenee {H
III

.....II': ns E N} eovers
EIII .....II'.1 for 1 < s :::; p.

Lemma 2.7. There exists some n E N such that

{XF: F ~ N, Ffinite} ~ HII •

Proo! Reasoning by eontradietion let us assume that

{XF: F ~ N, Ffinite} g;;,HII

for eaeh n E N. Since {Hn : n E N} is an inereasing
sequenee of linear subspaees of l; (Z) eovering l; (Z)
there exists a sequenee of pairwise disjoint finite sets {Fn

: n E N} ~ N sueh that U;=i F" E Z and X¡;;, (1.: HII for eaeh
n E N.

Setting M = U:¡ FII , sinee l; (2 M
) is barrelled of

c1ass p there is sorne mI E N sueh that H
III

n l; (2 M
) is

dense in l; (2 M
) and barrelled of c1ass p - 1 for eaeh nI

~ mI' So, reasoning as in the proof of Lemma 9.3.3 of [9],
we may obtain p - 1 funetions m'). (nI)' ... , mp (nI> oo., np•

¡) sueh that H
III

.....II'. n Z; (2 M
) is a dense barrelled subspaee

of l; (2 M
) for nI ~ mI' n'). ~ m2 (nI)' oo., np ~ mp (nI' ... , nl'_

¡). Therefore B
III

.....II'. n l; (2 M
) is a neighborhood of the

.. . l~ ( M) f > > ()ongm m Hlllo....llp n o 2 or nI - mI> n2 - m2 nI ' oo., np

~ mp (nI' oo., np_l )' Going baekwards, this implies that
{XF: F ~ N, Ffinite} k HIII for eaeh nI ~ mI' Henee
XF" E HII for eaeh n .~ mI' a eontradietion.•

Theorem 2.8. l; (z) is a barrelled space oj class p.

Proo! Assuming Z; (Z) is not a barrelled space of c1ass
p, there exists a p-net {EIlIo....II': ni 'oo., ns E N, 1 :s; s:s; p} of

linear subspaees of l; (z) sueh thatno spaee EIII .....III• is
barrelled. If T

III
....

llp
denotes a barrel in E

III
.....

llp
which is not

a neighborhood of the origin in E
III

.....
llp

, let B
III

.....
llp

be the
elosure of TIII ....II,. in EIII ..... llp , and, for 1 :::; s :s; p, define ZIlI .....II,

and HIII .....II' as aboye.

Aeeording to the previous lemma there is not loss of
generality assuming hat

{XF: F ~ N, Ffinite} ~ HII

foreaeh n E N. Then, using the faet that Z; (2 E
) is a

barrelled spaee of class p for eaeh E E Z, an appropriate
modification of the argument used in the proof of Theorem
2.6 allows us to obtain a sequenee {A¡: i E N} of subsets
of N of density zero and a strietly inereasing sequenee of
positive integers (n) sueh that XA; (1.: HII; for each i E N.
So, using Lemma 2.3, for eaeh i E N there is a finite set

F¡ ~ A¡ such that U:i (A - F¡) E Z. Hence,setting

M = U:i (A - F¡) E Z, as Z; (2 M
) is barrelled of c1ass

p there exists some j E N such that XA;-F; E Hllj for eaeh
i E N. So we get the eontradietion XA

j
E H llj ••

Corollary 2.9. Z; (z) is a barrelled space oj class
~o.

Proo! This is an obvious eonsequenee of the previous
theorem.•

Theorem 2.10. Z(Zp) is a barrelled space oj class ~ o
for 1 :::; P :::; oo.

Proof Consider the linear map
T: l;(Z)®"lp --7 Z(Zt) defined by T(XA®;) = s' where
I;n ::: Sn if n E A and l"n ::: O otherwise, for eaeh A E Z and
eaeh S E L¡r Then, if B¡;(Z)®.lp denotes the ~losed unit ball
of L;(Z) ®" ~p and BZ(lp) represents theumt ball of Z (!p)'
one may easrly prove that T (Bl-(z)® 1 ) = BZ{tp)' Conse­
quently T is an onto, eontinuous and'6pen mapping, and
henee Z(Zp) is a quotie~t of Z; (z) ®" Zp. As Lp isa.Ba­
naeh spaee, and aecordmg to Theorem 2.7, Z; (Z) IS a
barrelled spaee of class ~ o' it follows form Proposition
4.3.1 of [9] that Z; (Z) ®" Zp is barrelled of c1ass ~ o.
Sinee the elass of the barrelled spaees of class ~ o is closed
under the formation of separated quotients, this shows that
Z fLp ) is also a barrelled spaee of class ~ o' •

Remark 2.1. Further investigations. If (0., :2,) is a
measurable spaee it its well known [7] that the space Z(~ (Z)
is barrelled of class ~o' a result that has recently been
improved by the second author (10] by showing that Z(~ (Z)
is in faet a baireled [::: superbarrelled in [13]] spaee. So it
is natural to wonder whether Z; (Z) is a baireled spaee or
nol. However, it seems that the teehniques used in this
paper are not strong enough to show that l; (z) is baireled,
a property whose study has been suggested by Professor B.
Rodríguez-Salinas. So we must postpone the answer to this
question to a further research.
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