Rev.R.Acad.Cienc.Exact.Fis.Nat. (Esp) Vol. 92, N.^o 1, pp 21-25, 1998 Matemáticas

ON THE IDEAL OF ALL SUBSETS ON ℕ **OF DENSITY ZERO**

(barrelled space/density zero)

J.C. FERRANDO and M. LÓPEZ PELLICER*

Departamento de Estadística y Matemática Aplicada. Universidad Miguel Hernández. Avda. Ferrocarril, s/n. - 03202 Elche (Alicante). * Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, ETSIA. Apartado 22012. 46071 Valencia.

Presentado por Manuel López Pellicer, 19 de julio de 1997. Aceptado el 14 de enero de 1998.

ABSTRACT

In this note we obtain some strong barrelledness properties concerning the simple function space generated by the hereditary ring Z of all subsets of density zero of \mathbb{N} .

RESUMEN

En esta nota obtenemos algunas propiedades de fuerte tonelación relativas al espacio de las funciones simples generado por el anillo hereditario Z de todos los subconjuntos de densidad cero de \mathbb{N} .

1. PRELIMINARIES

If \mathcal{R} is a ring of subsets of a set Ω , we denote by ba(\mathcal{R}) the linear space over the field \mathbb{K} of the real or complex numbers consisting of all those bounded finitely additive scalar measures on \mathcal{R} . This is a Banach space when it is provided with the supremum-norm

$$\|\mu\| = \sup \{|\mu(E)| : E \in \mathcal{R}\}$$

for each $\mu \in ba$ (\mathcal{R}). A ring \mathcal{R} of subsets of a set Ω is said to have the Nikodym Property, or Property (N), if given any subset { $\mu_i : i \in I$ } of ba (\mathcal{R}) such that sup { $|\mu_i(E)| :$ $i \in I$ } < ∞ for each $E \in \mathcal{R}$, then $\sup_{i \in I} ||\mu_i|| < \infty$. As it is well-known, this is equivalent to the barrelledness of the linear space $l_0^{\infty}(\mathcal{R})$ of all scalar \mathcal{R} -simple functions equipped with the supremum-norm

$$||f|| = \sup \{|f(w)| : w \in \Omega\}$$

for each $f \in l_0^{\infty}(\mathcal{R})$.

It has been recently shown in [4] that the hereditary ring Z consisting of all those subsets of \mathbb{N} with density

zero has Property (N). Let us recall that a subset A of \mathbb{N} is said to be of density zero if

$$\lim_{n\to\infty}\frac{|A\cap\{1,\ldots,n\}|}{n}=0.$$

Following [4] $\mathbb{Z}(l_p)$ will stand for the subspace of l_p , for $1 \le p \le \infty$, consisting of all those sequences whose support is a set of density zero.

The proof in [4], extended in [5] to the ideal \mathcal{R} of all η -zero sets of any strongly nonatomic submeasure η defined on a σ -algebra of sets, works on ba (Z) and it is strongly based upon the following property of the scalar series that it seems to be originally due to Auerbach [1].

Lemma 1.1. Let $\xi = (\xi_n)$ be a scalar sequence. If $\sum_{n \in A} |\xi_n|$ converges for each $A \in \mathbb{Z}$, then $x \in l_p$.

The argument given in [5] uses an extension of Auerbach's result given in [11] and works in ba (Z), although is easier than the original proof. In this note we obtain some strong barrelledness properties of the normed space $l_0^{\infty}(Z)$ beyond the barrelledness, working directly on the algebraic and topological structure of $l_0^{\infty}(Z)$. Naturally this have consequences in the boundedness Nikodym theorem, as one can deduce from 7.3.2. and 7.3.3. of [9].

2. RESULTS

In order to set up the techniques we will use in this paper we start reviewing the proof of the barrelledness of $l_0^{\infty}(\mathbb{Z})$, to do so we will need three previous results. The proof of the first of them is partially inspired in [3, Lemma 2].

Lemma 2.1. Let \mathcal{R} be a ring of subsets of Ω which is not an algebra. If \mathcal{A} denotes the algebra generated by the ring \mathcal{R} , then $l_0^{\infty}(\mathcal{Z})$ is a closed hyperplane of $l_0^{\infty}(\mathcal{A})$.

^{*} Subvencionado por el Proyecto PB94-0535 (DGICYT) y por el Proyecto 003/034 (OPVI).

Proof. It is obvious that $l_0^{\infty}(\mathcal{A}) = l_0^{\infty}(\mathcal{R}) \oplus \langle \{\chi_{\Omega}\} \rangle$, since $\mathcal{A} = \mathcal{R} \cup \{\Omega - E : E \in \mathcal{R}\}$. Let us see that $\overline{l_0^{\infty}(\mathcal{R})}$, where the closure is taken in $l_0^{\infty}(\mathcal{A})$, coincides with $l_0^{\infty}(\mathcal{R})$. So let $f = \sum_{i=1}^{n} a_i \chi_{E_i} \in \overline{l_0^{\infty}(\mathcal{R})}, f \neq 0$, where $\{E_i, ..., E_n\}$ is a partition on Ω by elements of $\mathcal{A}, a_i \in \mathbb{K}$ for $1 \leq i \leq n$, with $E_i \cap E_j = \phi$ and $a_i \neq a_j$ if $i \neq j$. Set $\varepsilon := \min \{|a_i - a_j| : 1 \leq i < j \leq n\}$ and choose $g = \sum_{j=1}^{m} b_j \chi_{F_j} \in l_0^{\infty}(\mathcal{R})$, where $F_j \in \mathcal{R}$ and $b_j \in \mathbb{K}, b_j \neq 0$, for $1 \leq j \leq m$, with F_i $\cap F_j = \phi$ and $b_i \neq b_j$ if $i \neq j$, such that $||f - g|| < |a_k|$ for each $k \in \{1, ..., n\}$ with $a_k \neq 0$, and $||f - g|| < \frac{\varepsilon}{2}$. We are going to prove that if $a_i \neq 0$ and $J_i := \{1 \leq j \leq m : F_j \cap E_i \neq \phi\}$, then $E_i = \bigcup_{j \in J_i} F_j$. This shows that $E_i \in \mathcal{R}$ and establishes the theorem.

Note in first place that if $F_j \cap E_i \neq \phi$ for some $j \in \{1, ..., m\}$, then $F_j \subseteq E_i$. Indeed, given any $w \in F_j$ then $|b_j - a_i| < \frac{\varepsilon}{2}$ since $F_j \cap E_i \neq \phi$, so if there would be some $t \in F_j \sim E_i$ then F_j would meet some E_k with $k \neq i$, i.e. $|b_j - a_i| < \frac{\varepsilon}{2}$, and then we would have

 $|a_i - a_k| \le |a_i - b_j| + |b_j - a_k| < \varepsilon$, a contradiction. On the other hand, assume that there is some $w \in E_i \sim \bigcup_{j \in J_i} F_j$. then obviously g(w) = 0 and consequently $|a_i| \le ||f - g|| < |a_i|$, which is again a contradiction.

Lemma 2.2. Each barrel T in $l_0^{\infty}(Z)$ absorbs the set of the characteristic functions of the finite subsets of \mathbb{N} .

Proof. We proceed by contradiction. Assume there is a barrel T in $l_0^{\infty}(\mathbb{Z})$ which does not absorb the set $\mathcal{F} = \{\chi_F : F \subseteq \mathbb{N}, F \text{ finite}\}$. Let $F_1 \in \mathcal{F}$ such that $\chi_{F_j} \notin T$. Let $\{P_i, P_2\}$ be a partition of the set $\{n \in \mathbb{N} : n > \max F_1\}$ such that if $m \in P_i$ then $m + 1 \in P_j$, for $1 \leq i, j \leq 2, i \neq j$. Obviously, T cannot absorb the characteristic functions of all finite subsets either of P_i or of P_2 . Assume for example that T does not absorb the set $\{\chi_F : F \subseteq P_1, F \text{ finite}\}$. Then there exists a finite set $F_2 \subseteq P_1$ such that $\chi_{F_2} \notin 2T$. Now if $\{P_1, P_2\}$ is a partition of $\{n \in P_1 : n > \max F_2\}$ such that if $m \in P_i$ then $m + 2 \in P_j$, for $1 \leq i, j \leq 2, i \neq j$, reasoning as above one shows that T does not absorb for example the set $\{\chi_F : F \subseteq P_1, F \text{ finite}\}$, and so there is finite set $F_3 \subseteq P_1$ such that $\chi_{F_i} \notin 3T$.

Proceeding by recurrence one finds a sequence $\{F_n : n \in \mathbb{N}\}$ of finite subsets of \mathbb{N} such that $\bigcup_{i=1}^{\infty} F_i \in \mathbb{Z}$ and $\chi_{F_n} \notin nT$. But setting $E = \bigcup_{i=1}^{\infty} F_i$, if 2^E stands for the σ -algebra for all subsets of E, obviously $l_0^{\infty}(2^E)$ is a barrelled space. Hence T absorbs the closed unit ball of $l_0^{\infty}(2^E)$, and consequently there is some $m \in \mathbb{N}$ such that $\chi_{F_m} \in mT$, a contradiction.

Lemma 2.3. ([4, Lemma 1]) For every sequence $\{A_n : n \in \mathbb{N}\}$ of infinite sets in \mathbb{Z} there exist finite sets $F_n \subseteq A_n$, $n \in \mathbb{N}$, such that $\bigcup_{n=1}^{\infty} (A_n - F_n) \in \mathbb{Z}$.

Theorem 2.4. $l_0^{\infty}(Z)$ is barrelled.

Proof. Let \mathcal{A} denote the algebra of subsets of \mathbb{N} generated by the ring \mathcal{Z} . Assume that $l_0^{\infty}(\mathcal{A})$ is not barrelled and let T be a barrel in $l_0^{\infty}(\mathcal{A})$ which is not a neighborhood of the origien in $l_0^{\infty}(\mathcal{A})$. As $l_0^{\infty}(\mathcal{Z})$ is a closed one-codimensional subspace of $l_0^{\infty}(\mathcal{A})$ by virtue of Lemma 2.1, T cannot absorb the closed unit ball of $l_0^{\infty}(\mathcal{Z})$ and thus there exists some $A_I \in \mathcal{Z}$ such that $\chi_{A_i} \notin T$.

Since $l_0^{\infty}(2^{A_1})$ is barrelled, *T* absorbs its closed unit ball, and hence *T* does not absorb the unit ball of the space $l_0^{\infty}(Z \cap (N - A_1))$. So, there is some $A_2 \in Z$ with $A_2 \cap A_1$ = ϕ , such that $\chi_{A_2} \notin 2T$. Again, as $l_0^{\infty}(2^{A_2})$ is barrelled, *T* cannot absorb the closed unit ball of $l_0^{\infty}(Z \cap (N - A_1 \cup A_2))$, and so on.

Consequently we obtain by recurrence a sequence $\{A_n : n \in \mathbb{N}\}$ of pairwise disjoint sets of density cero such that $\chi_{An} \notin nT$ for each $n \in \mathbb{N}$. But, according to Lemma 2.3, for each $i \in \mathbb{N}$ there is a finite set $F_i \subseteq A_i$ such that $\bigcup_{i=1}^{\infty} (A_i - F_i) \in \mathbb{Z}$. Hence, by putting $E = \bigcup_{i=1}^{\infty} (A_i - F_i)$ it follows that $l_0^{\infty}(2^E)$ is barrelled and, consequently, there is some $q \in \mathbb{N}$ with $\chi_{A_i-F_i} \in qT$ for each $i \in \mathbb{N}$. But, on the other hand, according to Lemma 2.2 there is some $p \in \mathbb{N}$ such that $\chi_{F_i} \in qT$ for each $i \in \mathbb{N}$. Therefore, setting $m \ge p + q$, one has that

$$\chi_{A_m} = \chi_{A_m-F_m} + \chi_{F_m} \in mT,$$

a contradiction.

Let us recall the definitions of some well known strong barrelledness properties [see for instance [9]]. A locally convex space is said to be suprabarrelled or barrelled of class 1 if given an increasing sequence of linear subspaces covering E there is one of them which is barrelled and dense in E. Given $n \in \mathbb{N}$, a locally convex space E is called barrelled of class n [barrelled of calls 0 = barrelled] if given an increasing sequence of linear subspaces covering E there is one of them which is barrelled of class n - 11 and dense in E. A locally convex space is said to be barrelled of class \aleph_0 if E barrelled of class n for each $n \in$ N. More general: if $\alpha + 1$ is a succesor ordinal, a locally convex space E is said to be barrelled of class $\alpha + 1$ [12] if given an increasing sequence of vector subspaces of Ecovering E, one of them is dense and barrelled of class α , and if $\alpha > 1$ is a limit ordinal a locally convex space E is said to be barrelled of class α if E is barrelled of class β for each $\beta < \alpha$. Following [2] a web in a set Ω is a family $\mathcal{W} = \{C_{n_1,\dots,n_i} : i, n_1,\dots, n_i \in \mathbb{N}\}$ of subsets of Ω such that $\Omega = \bigcup_{n=1}^{n} C_n$ and for $n_1, \ldots, n_i \in \mathbb{N}$ then

 $C_{n_{i}\dots,n_{i}} = \bigcup_{n_{i}+1=1}^{\infty} C_{n_{i}\dots,n_{i},n_{i+1}}$ A strand of \mathcal{W} is a sequence of subsets $\{C_{n_{i}},\dots,n_{i}\}_{i}$ where $\{n_{i}\}$ is sequence in \mathbb{N} . According to [8] a web of a locally convex space is said to be linear if it is formed by linear subspaces $\{E_{n_{i}\dots,n_{i}}: i, n_{1},\dots, n_{i} \in \mathbb{N}\}$ of E such that $E_{n_{i}} \subseteq E_{n_{i+1}}$ and $E_{n_{i}\dots,n_{i},n_{i+1}} \subseteq E_{n_{i}\dots,n_{i},n_{i+1}+1}$ for all $i, n_{1},\dots, n_{i} \in \mathbb{N}$. Baireled spaces [8] are defined as those locally convex spaces E such that each linear web in E contains a strand formed by barrelled and dense subspaces. It has been shown in [13] that baireled spaces of class \aleph_{1} .

For the next lemma let $\{E_n : n \in \mathbb{N}\}$ be an increasing sequence of linear subspaces of $l_0^{\infty}(\mathbb{Z})$, T_n a barrel in E_n , B_n the closure of T_n in $l_0^{\infty}(\mathbb{Z})$ and —denoting by $\langle B_n \rangle$ the linear span of B_n — let $H_n := \bigcap_{m \ge n} \langle B_m \rangle$ for each $n \in \mathbb{N}$.

Lemma 2.5. There exists a positive integer p such that

 $\{\chi_F: F \subseteq \mathbb{N}, F \text{ finite}\} \subseteq H_p.$

Proof. Assume $\{\chi_F : F \subseteq \mathbb{N}, F \text{ finite}\} \not\subseteq H_n$ for each $n \in \mathbb{N}$. Then there is a finite set F_1 in \mathbb{N} such that $\chi_{F_1} \notin H_1$. Then, as in the proof of Lemma 2.2, let $\{P_1, P_2\}$ be a partition of $\{n \in \mathbb{N} : n > \max F_1\}$ such that if $m \in P_i$, then $m + 1 \in P_i$, for $1 \le i, j \le 2, i \ne j$.

Clearly, none of the H_n can contain the characteristic functions of the finite subsets of P_1 or of P_2 . So we may assume for example that no H_n contains the set $\{\chi_F : F \subseteq P_1, F \text{ finite}\}$ for each n > 1. So there exists a finite set $F_2 \subseteq P_1$ such that $\chi_{F_2} \notin H_2$. Then, let $\{P_1, P_2\}$ be a partition of $\{n \in P_1 : n > \max F_2\}$ such that if $m \in P_i$ them $m + 2 \in P_j$, for $1 \le i, j \le 2, i \ne j$. Reasoning as above one shows that no $H_n > 2$ absorbs for example the set $\{\chi_F : F \subseteq P_1, F \text{ finite}\}$, and here there is a finite set $F_3 \subseteq P_1$ such that $\chi_{F_3} \notin H_3$.

Proceeding by recurrence one obtains a sequence $\{F_n: n \in \mathbb{N}\}$ of pairwise disjoint finite subsets of \mathbb{N} such that $\bigcup_{i=1}^{\infty} F_i \in \mathbb{Z}$ and $\chi_{F_n} \notin H_n$. Then, setting $M = \bigcup_{i=1}^{\infty} F_i$, as $l_0^{\infty}(2^M)$ is suprabarrelled and the sequence $\{H_n: n \in \mathbb{N}\}$ is increasing and covers $l_0^{\infty}(\mathbb{Z})$, there is a positive integer p such that $H_p \cap l_0^{\infty}(2^M)$ is a dense and barrelled subspace of $l_0^{\infty}(2^M)$. Thus $\langle B_n \rangle \cap l_0^{\infty}(2^M)$ is barrelled and dense in $l_0^{\infty}(2^M)$ for each $m \ge p$. But, as may be easily shown, the barrelledness of $\langle B_n \rangle \cap l_0^{\infty}(2^M)$ implies that it must be closed in $l_0^{\infty}(2^M)$. Hence $\langle B_m \rangle \supseteq l_0^{\infty}(2^M)$, and consequently B_m absorbs the closed unit ball of $l_0^{\infty}(2^M)$ for each $m \ge p$. Thus $\chi_{F_p} \in H_p$, a contradiction.

Theorem 2.6. $l_0^{\infty}(Z)$ is a suprabarrelled space.

Proof. Let \mathcal{A} denote the algebra of subsets of \mathbb{N} generated by the ring \mathcal{Z} . Assuming $l_0^{\infty}(\mathcal{A})$ is not suprabarrelled there exists an increasing sequence $\{E_n : n \in \mathbb{N}\}$ of dense linear subspaces of $l_0^{\infty}(\mathcal{A})$ covering $l_0^{\infty}(\mathcal{A})$ such that no E_n is barrelled. Thus, for each positive integer n let T_n be a barrel in E_n which is not a neighborhood of the origin in E_n and denote by B_n its closure in $l_0^{\infty}(\mathcal{A})$. Then define H_n as in the previous lemma.

According to Lemma 2.5 there is not loss of generality by assuming that

$$\{\chi_F: F \subseteq \mathbb{N}, F \text{ finite}\} \subseteq H_n$$

for each $n \in \mathbb{N}$. Then, as $l_0^{\infty}(Z)$ is a closed one-condimensional subspace of $l_0^{\infty}(\mathcal{A})$ by virtue of Lemma 2.1, no H_n contains the closed unit ball of $l_0^{\infty}(Z)$ and thus there exists some $A_1 \in \mathbb{Z}$ such that $\chi_{A_1} \notin H_1$. So, since $l_0^{\infty}(2^{A_1})$ is suprabarrelled, reasoning as in the last part of the proof of the previous lemma, there is some positive integer $n_2 > 1$ such that H_m contains the closed unit ball of $l_0^{\infty}(2^{A_1})$ for each $m \ge n_2$. Consequently no H_m with $m \ge n_2$ contains the closed unit ball of $l_0^{\infty}(Z \cap (N - A_1))$. Hence, there is some $A_2 \in \mathbb{Z}$ with $A_1 \cap A_2 = \emptyset$, such that $\chi_{A_2} \notin H_{n_2}$. Again, as $l_0^{\infty}(2^{A_2})$ is suprabarrelled, no H_m with $m \ge n_2$ contains the closed unit ball of $l_0^{\infty}(Z \cap (\mathbb{N} - A_1 \cup A_2))$, and so on. Then, proceeding by recurrence, we obtain a sequence $\{A_i\}$ $: i \in \mathbb{N}$ of pairwise disjoint sets of density cero such that $\chi_{A_i} \notin H_{n_i}$ for each $i \in \mathbb{N}$, with $n_1 = 1$. But, according to Lemma 2.3, for each $i \in \mathbb{N}$ there is a finite set $F_i \subseteq A_i$ such that $\bigcup_{i=1}^{\infty} (A_i - F_i) \in \mathbb{Z}$. Hence, setting $M = \bigcup_{i=1}^{\infty} M_i$ $(A_i - F_i)$, as $l_0^{\infty}(2^M)$ is suprabarrelled, there must exists some $p \in \mathbb{N}$ such that $\chi_{A_i-F_i} \in H_{n_p}$ for each $i \in \mathbb{N}$. Therefore one has that

$$\chi_{A_p} = \chi_{A_p - F_p} + \chi_{F_p} \in H_{n_p}$$

a contradiction.

For the next lemma consider the following linear subspaces of $l_0^{\infty}(\mathbb{Z})$. Given a positive integer p let $\{E_{n_1}, \dots, n_s \in \mathbb{N}, 1 \leq s \leq p\}$ be a p-net of linear subspaces of $l_0^{\infty}(\mathbb{Z})$, i.e., let $\{E_{n_1} : n_1 \in \mathbb{N}\}$ be an increasing sequence of subspaces of $l_0^{\infty}(\mathbb{Z})$ covering $l_0^{\infty}(\mathbb{Z})$ and for $1 < s \leq p$ let $\{E_{n_1,\dots,n_s} : n_s \in \mathbb{N}\}$ be an increasing sequence of linear subspaces of $E_{n_1,\dots,n_{s-1}}$ covering $E_{n_1,\dots,n_{s-1}}$. Let T_{n_1,\dots,n_p} be a barrel in E_{n_1,\dots,n_p} denote by B_{n_1,\dots,n_p} its closure in $l_0^{\infty}(\mathbb{Z})$ and set $Z_{n_1,\dots,n_p} =$ $Z_{n_1,\dots,n_p} = \langle B_{n_1,\dots,n_p} \rangle$ for each $(n_1, \dots, n_p) \in \mathbb{N}^p$. Then, following either the proof of Theorem 8.4.5. or the preliminaries of Lemma 9.3.3 of [9], define inductively the following subspaces:

$$H_{n_1,...,n_p} = \bigcap \{Z_{n_1,...,n_{p-1},m} : m \ge n_p\},\$$

and for s = p - 1, p - 2, ..., 1

$$Z_{n_1,\ldots,n_r} = \bigcup \left\{ H_{n_1,\ldots,n_r,m} \colon m \in \mathbb{N} \right\}$$

and

$$H_{n_1,\ldots,n_s} = \bigcap \{Z_{n_1,\ldots,n_{s-1},m}: m \geq n_s\}$$

It is plain that for $1 \le s \le p$ one has $E_{n_1,\dots,n_r} \subseteq H_{n_1,\dots,n_r}$, hence the increasing sequence $\{H_{n_1,\dots,n_r}: n_s \in \mathbb{N}\}$ covers $E_{n_1,\dots,n_{r-1}}$ for $1 < s \le p$.

Lemma 2.7. There exists some $n \in \mathbb{N}$ such that

$$\{\chi_F: F \subseteq \mathbb{N}, F \text{ finite}\} \subseteq H_n.$$

Proof. Reasoning by contradiction let us assume that

$$\{\chi_F: F \subseteq \mathbb{N}, F \text{ finite}\} \not\subseteq H_n$$

for each $n \in \mathbb{N}$. Since $\{H_n : n \in \mathbb{N}\}$ is an increasing sequence of linear subspaces of $l_0^{\infty}(Z)$ covering $l_0^{\infty}(Z)$ there exists a sequence of pairwise disjoint finite sets $\{F_n : n \in \mathbb{N}\} \subseteq \mathbb{N}$ such that $\bigcup_{n=1}^{\infty} F_n \in Z$ and $\chi_{F_n} \notin H_n$ for each $n \in \mathbb{N}$.

Setting $M = \bigcup_{n=1}^{\infty} F_n$, since $l_0^{\infty} (2^M)$ is barrelled of class p there is some $m_1 \in \mathbb{N}$ such that $H_{n_1} \cap l_0^{\infty} (2^M)$ is dense in $l_0^{\infty} (2^M)$ and barrelled of class p-1 for each $n_1 \ge m_1$. So, reasoning as in the proof of Lemma 9.3.3 of [9], we may obtain p-1 functions $m_2 (n_1), ..., m_p (n_1, ..., n_{p-1})$ such that $H_{n_1,...,n_p} \cap l_0^{\infty} (2^M)$ is a dense barrelled subspace of $l_0^{\infty} (2^M)$ for $n_1 \ge m_1, n_2 \ge m_2 (n_1), ..., n_p \ge m_p (n_1, ..., n_{p-1})$. Therefore $B_{n_1,...,n_p} \cap l_0^{\infty} (2^M)$ is a neighborhood of the origin in $H_{n_1,...,n_p} \cap l_0^{\infty} (2^M)$ for $n_1 \ge m_1, n_2 \ge m_2(n_1), ..., n_p \ge m_p (n_1, ..., n_p \ge m_p (n_1, ..., n_{p-1})$. Going backwards, this implies that $\{\chi_F : F \subseteq \mathbb{N}, F \text{ finite}\} \subseteq H_{n_1}$ for each $n_1 \ge m_1$. Hence $\chi_{F_n} \in H_n$ for each $n \ge m_1$, a contradiction.

Theorem 2.8. $l_0^{\infty}(Z)$ is a barrelled space of class p.

Proof. Assuming $l_0^{\infty}(\mathbb{Z})$ is not a barrelled space of class p, there exists a p-net $\{E_{n_1,\dots,n_i}: n_1,\dots, n_s \in \mathbb{N}, 1 \leq s \leq p\}$ of linear subspaces of $l_0^{\infty}(\mathbb{Z})$ such that no space E_{n_1,\dots,n_p} is barrelled. If T_{n_1,\dots,n_p} denotes a barrel in E_{n_1,\dots,n_p} which is not a neighborhood of the origin in E_{n_1,\dots,n_p} , let B_{n_1,\dots,n_p} be the closure of T_{n_1,\dots,n_p} in E_{n_1,\dots,n_p} , and, for $1 \leq s \leq p$, define Z_{n_1,\dots,n_n} , and H_{n_1,\dots,n_n} as above.

According to the previous lemma there is not loss of generality assuming hat

$$\{\chi_F: F \subseteq \mathbb{N}, F \text{ finite}\} \subseteq H_n$$

for each $n \in \mathbb{N}$. Then, using the fact that $l_0^{\infty}(2^E)$ is a barrelled space of class p for each $E \in \mathbb{Z}$, an appropriate modification of the argument used in the proof of Theorem 2.6 allows us to obtain a sequence $\{A_i : i \in \mathbb{N}\}$ of subsets of \mathbb{N} of density zero and a strictly increasing sequence of positive integers (n_i) such that $\chi_{A_i} \notin H_{n_i}$ for each $i \in \mathbb{N}$. So, using Lemma 2.3, for each $i \in \mathbb{N}$ there is a finite set $F_i \subseteq A_i$ such that $\bigcup_{i=1}^{\infty} (A_i - F_i) \in \mathbb{Z}$. Hence, setting $M = \bigcup_{i=1}^{\infty} (A_i - F_i) \in \mathbb{Z}$, as $l_0^{\infty}(2^M)$ is barrelled of class p there exists some $j \in \mathbb{N}$ such that $\chi_{A_i - F_i} \in H_{n_i}$ for each $i \in \mathbb{N}$. So we get the contradiction $\chi_{A_i} \in H_{n_i}$.

Corollary 2.9. $l_0^{\infty}(Z)$ is a barrelled space of class $\aleph_{0.}$

Proof. This is an obvious consequence of the previous theorem. \blacksquare

Theorem 2.10. $Z(l_p)$ is a barrelled space of class \aleph_0 for $1 \le p \le \infty$.

Proof. Consider the linear map $T: l_0^{\infty}(\mathbb{Z}) \otimes_{\pi} l_p \to \mathbb{Z}(l_p)$ defined by $T(\chi_A \otimes \xi) = \zeta$, where $\zeta_n = \xi_n$ if $n \in A$ and $\zeta_n = 0$ otherwise, for each $A \in \mathbb{Z}$ and each $\xi \in l_p$. Then, if $B_{l_0^{\infty}(\mathbb{Z}) \otimes_{\pi} l_p}$ denotes the closed unit ball of $l_0^{\infty}(\mathbb{Z}) \otimes_{\pi} l_p$ and $B_{\mathbb{Z}(l_p)}$ represents the unit ball of $\mathbb{Z}(l_p)$, one may easily prove that $T\left(B_{l_0^{\infty}(\mathbb{Z}) \otimes_{\pi} l_p}\right) = B_{\mathbb{Z}(l_p)}$. Consequently T is an onto, continuous and open mapping, and hence $\mathbb{Z}(l_p)$ is a quotient of $l_0^{\infty}(\mathbb{Z}) \otimes_{\pi} l_p$. As l_p is a Banach space, and according to Theorem 2.7, $l_0^{\infty}(\mathbb{Z})$ is a barrelled space of class \aleph_0 , it follows form Proposition 4.3.1 of [9] that $l_0^{\infty}(\mathbb{Z}) \otimes_{\pi} l_p$ is barrelled of class \aleph_0 is closed under the formation of separated quotients, this shows that $\mathbb{Z}(l_p)$ is also a barrelled space of class \aleph_0 .

Remark 2.1. Further investigations. If (Ω, Σ) is a measurable space it its well known [7] that the space $l_0^{\infty}(\Sigma)$ is barrelled of class \aleph_0 , a result that has recently been improved by the second author [10] by showing that $l_0^{\infty}(\Sigma)$ is in fact a baireled [= superbarrelled in [13]] space. So it is natural to wonder whether $l_0^{\infty}(Z)$ is a baireled space or not. However, it seems that the techniques used in this paper are not strong enough to show that $l_0^{\infty}(Z)$ is baireled, a property whose study has been suggested by Professor B. Rodríguez-Salinas. So we must postpone the answer to this question to a further research.

Acknowledgment. The authors are very grateful to the referees.

REFERENCES

- 1. Auerbach, H. (1930) Über die Vorzeichenverteilung in unendlichen Reihen. Studia Math. 2, 228-230.
- 2. De Wilde, M. (1978) Closed Graph Theorems and Webbed Spaces. RNM 19, Pitman.

- 3. Dierolf, P., Dierolf, S. & Drewnowski, L. (1978) Remarks and examples concerning unordered Baire-like and ultrabarrelled sapces. *Collog. Math.* 39, 109-116.
- 4. Drewnowski, L., Florencio, M. & Paúl, P. (1994) Barrelled subspaces with subseries decompositions or Boolean rings of projections. *Glasgow Math. J.* 36, 57-69.
- 5. Drewnowski, L., Florencio, M. & Paúl, P. (1996) Some new classes of rings of sets with the Nikodym Property. *Proceedings of the Trier Conference of Functional Analysis*, Eds.: Dierolf/Dineen/Domanski, 143-152.
- Ferrando, J.C. (1995) Strong barrelledness properties in certain *l*₀[∞] (*A*) spaces. J. Math. Anal. Appl. **190**, 194-202.
- 7. Ferrando, J.C. & López Pellicer, M. (1990) Strong barrelledness properties in $l_0^{\infty}(X, \mathcal{A})$ and bounded finite additive measures. *Math. Ann.* **287**, 727-736.

- Ferrando, J.C. & Sánchez Ruiz, L.M. (1992) A maximal class of spaces with strong barrelledness conditions. *Proc. R. Ir. Acad* 92A, Nº 1, 69-75.
- Ferrando, J.C., López Pellicer, M. & Sánchez Ruiz, L.M. (1995) Metrizable barrelled spaces. Pitman Research Notes in Math. 332, Longman.
- López Pellicer, M. (1997) Webs and bounded finitely additive measures. J. Math. Anal. Appl. 210, 257-267.
- 11. Paštéka, M. (1990) Convergence of series and submeasures on the set of positive integers. *Math. Slovaca* 40, 273-278.
- 12. Rodríguez-Salinas, B. (1980) Sobre la clase del espacio tonelado l_0^{∞} (Σ). *Rev. Real Acad. Ci. Madrid* 74, 827-829.
- 13. Rodríguez-Salinas, B. (1995) On superbarrelled spaces. Closed graph theorems. *Rev. Real Acad. Ci. Madrid* 89, 7-10.