AN OPTIMAL CONTROL PROBLEM FOR HELMHOLTZ EQUATION WITH NON-LOCAL BOUNDARY CONDITIONS AND QUADRATIC FUNCTIONAL

(optimal contro//helmholtz equation/elliptic equations)
Francisco Criado*, Gamlet Meladze** and Nana Odisehlidze**
*Department of Mathematics. Málaga University. Spain. ** Department of Applied Mathematics and Computer Science. Tbilisi State University. Georgia.
E-mail: f_criado@ccuma.sci.uma.es

Presentado por Fco. Javier Girón, 14 de mayo de 1997.

Abstract

In the present paper the optimal control problem for Helmholtz equation with non-local boundary conditions and quadratic functional is considered. The necessary and sufficient conditions for optimality in a maximum principle form have been obtained.

RESUMEN

En este trabajo se considera el problema de control óptimo para la ecuación de Helmholtz con condiciones de contorno locales y funcional cuadrático. Se obtienen condiciones necesarias y suficientes de optimalidad en la forma del principio del máximo.

1. INTRODUCTION

The control with distributed systems, described by linear differential elliptic equations with non-local boundary conditions is a serious problem in the optimal control theory.

Bitsadze-Samarski non-local boundary problem [1] arises in connection with mathematical modeling of plasma processes. We can also indicate other areas of important applications, for example, in the investigation of baroclinic sea [8], in the theory of elasticity and shells [2]. An optimal control problem for elliptic equations with classical boundary conditions and quadratic functional has been considered in [3].

2. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let G be a rectangle $G=10, l_{1}[\times] 0, l_{2}[$. Γ the boundary of the rectangular domain, $\gamma=\left\{\left(l_{1}, y\right): 0 \leq y \leq l_{2}\right\}$ and $\gamma_{0}=$
$\left\{\left(x_{0}, y\right): 0 \leq y \leq l_{2}\right\}, x_{0}$ the fixed point of interval $] 0, l_{1}[, V$ some open subset in \mathfrak{R} and $U_{a d}$ the set of control functions $v: G \rightarrow V . v \in L_{2}(G)$.

Let us consider Bitsadze-Samarski problem for Helmholtz equation [4] for each fixed $v \in U_{a d}$ in the domain G :

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-q(x, y) u=a(x, y) v+b(x, y) \quad(x, y) \in G \tag{1}\\
u(x, y)=0 \quad(x, y) \in \Gamma / \gamma \tag{2}\\
u\left(l_{1}, y\right)=\sigma u\left(x_{0}, y\right) \quad 0 \leq y \leq l_{2}
\end{gather*}
$$

where $a \in L_{\infty}(G), b \in L_{2}(G), 0 \leq q \in L_{\infty}(G), 0<\sigma<1, \sigma$ $=$ const

Similarly as [5], it can be shown, that the solution of problem (1)-(2) exists, is unique and belongs to space $H^{2}(G)$ [10].

Let us consider the functional

$$
\begin{equation*}
I(v)=\iint_{G}\left[c(x, y) u-z_{d}\right]^{2} d x d y+\iint_{G} N(x, y) v^{2} d x d y \tag{3}
\end{equation*}
$$

where: $c \in L_{\infty}(G), z_{d}$ is given element, $z_{d} \in L_{2}(G), 0<N \in$ $L_{\infty}(\mathrm{G})$.

1. Let us formulate the following control problem: find the function $v_{0} \in U_{a d}$, whose corresponding solution of the boundary value problem (1)-(2) together with v_{0} results in minimal functional value. The pair (u_{0}, v_{0}) thus obtained is called optimal [9].
2. To obtain conditions of optimality following the scheme developed in the works [6] [7].

Let us consider arbitrary permissible control $\nu_{\varepsilon} \in U_{a d}$ and u_{ε} corresponding solution of problem (1)-(2). Let us introduce the notation

$$
\begin{equation*}
\tilde{v}=v_{\varepsilon}-v_{0}, \quad \tilde{u}=u_{\varepsilon}-u_{0} \tag{4}
\end{equation*}
$$

then we obtain the following problem:

$$
\begin{array}{rlrl}
\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}-q(x, y) \tilde{u}=a(x, y) \tilde{v}, & (x, y) \in G \\
\tilde{u}(x, y) & =0 & & (x, y) \in \Gamma \backslash \gamma \\
\tilde{u}\left(l_{1}, y\right) & =\sigma \tilde{u}\left(x_{0}, y\right) & & 0 \leq y \leq l_{2} . \tag{6}
\end{array}
$$

Let $\Psi \neq 0, \Psi \in H^{2}\left(G \backslash \gamma_{0}\right) \cap H^{\prime}(G)$ [3]. Multiplying equation (5) by Ψ and integrating over domain G, the following equality is obtained:
$\iint_{G} \Psi(x, y)\left[\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}-q(x, y) \tilde{u}\right] d x d y=\iint_{G} a(x, y) \Psi(x, y) \tilde{v} d x d y$
The increment of functional (3) with fixed v_{0}, v_{ε} is:

$$
\begin{equation*}
\tilde{I}=I\left(v_{\varepsilon}\right)-I\left(v_{0}\right) \tag{8}
\end{equation*}
$$

$=\iint_{G}\left[\left(c(x, y) u_{e}-z_{d}\right)^{2}+N(x, y) v_{c}^{2}\right] d x d y-\iint_{G}\left[\left(c(x, y) u_{0}-z_{d}\right)^{2}+N(x, y) v_{0}^{2}\right] d x d y=$
$=\iiint_{\sigma}\left[2 c(x, y) \tilde{u}\left(c(x, y) u_{0}-z_{d}\right)+2 N(x, y) \nu_{0} \tilde{v}+c^{2}(x, y) \tilde{u}^{2}+N(x, y) \tilde{v}^{2}\right] d x d y$
From relations (7)-(8), we obtain for the increment the following expression:

$$
\begin{align*}
& \tilde{I}=I\left(v_{e}\right)-I\left(v_{0}\right)= \tag{9}\\
& =\iint_{G} \Psi(x, y)\left[\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}-q(x, y) \tilde{u}\right] d x d y-\iint_{G} a(x, y) \Psi(x, y) \tilde{v} d x d y \\
& +\iint_{G}\left[2 c(x, y) \tilde{u}\left(c(x, y) u_{0}-z_{d}\right)+N(x, y) \tilde{v}^{2}+2 N(x, y) v_{0} \tilde{v}\right. \\
& \left.+c^{2}(x, y) \tilde{u}^{2}\right] d x d y=\iint_{G} \Psi(x, y)\left[\frac{\partial^{2} \tilde{u}}{\partial x^{2}}+\frac{\partial^{2} \tilde{u}}{\partial y^{2}}\right] d x d y+ \\
& +\iint_{G}\left[\left(2 c(x, y)\left(c(x, y) u_{0}-z_{u}\right)-q(x, y) \Psi\right) \tilde{u}+\right. \\
& \left.+\left(2 N(x, y) v_{0}-a(x, y) \Psi\right) \bar{v}+c^{2}(x, y) \tilde{u}^{2}+N(x, y) \tilde{v}^{2}\right] d x d y
\end{align*}
$$

To obtain the adjoint equation, let us make the following transformations:

$$
\begin{aligned}
& \left.\int_{0}^{1} \int_{0}^{1} \Psi(x, y) \frac{\partial^{2} \tilde{u}}{\partial x^{2}} d x d y=\int_{0}^{1} \int_{0}^{x} \int_{0}^{x} \Psi(x, y) \frac{\partial^{2} \tilde{u}}{\partial x^{2}} d x+\int_{x_{0}}^{1} \Psi(x, y) \frac{\partial^{2} \tilde{u}}{\partial x^{2}} d x\right) d y= \\
= & \int_{0}^{1}\left(\Psi\left(l_{1}, y\right) \tilde{u}_{x}\left(l_{1}, y\right)-\Psi(0, y) \tilde{u}_{x}(0, y)+\left[\Psi\left(x_{0}^{-}, y\right)-\Psi\left(x_{0}^{+}, y\right)\right] \tilde{u}_{x}\left(x_{0}, y\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
+\left[\Psi_{x}\left(x_{0}^{-}, y\right)-\Psi_{x}\left(x_{0}^{+}, y\right)-\sigma \Psi_{x}\left(l_{1}, y\right)\right] \tilde{u}\left(x_{0}, y\right)+\int_{0}^{x_{0}} \frac{\partial^{2} \Psi}{\partial x^{2}} \tilde{u}(x, y) d x+ \\
\left.+\int_{x_{0}}^{1} \frac{\partial^{2} \Psi}{\partial x^{2}} \tilde{u}(x, y) d x\right) d y
\end{gathered}
$$

Since $\Psi \in H^{2}\left(G \backslash \gamma_{0}\right) \cap H^{1}(G)$, then $\Psi\left(x_{0}^{-}, y\right)=\Psi\left(x_{0}^{+}, y\right)$ [10]

In similar way, we obtain:

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1 /} \Psi(x, y) \frac{\partial^{2} \tilde{u}}{\partial x^{2}} d x d y \\
=\int_{0}^{1}\left[\int_{0}^{l_{2}} \tilde{u}(x, y) \frac{\partial^{2} \Psi}{\partial y^{2}} d y+\left(\Psi\left(x, l_{2}\right) \tilde{u}_{y}\left(x, l_{2}\right)-\Psi(x, 0) \tilde{u}_{y}(x, 0)\right)\right) d x
\end{gathered}
$$

From these relations we conclude that if Ψ is the solution of the following problem:

$$
\begin{equation*}
\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}-q(x, y) \Psi=-2 c(x, y)\left(c(x, y) u_{0}-z_{d}\right), \quad(x . y) \in G \backslash \gamma_{0}, \tag{10}
\end{equation*}
$$

$$
\begin{array}{cc}
\Psi(x, y)=0 & (x, y) \in \Gamma \tag{11}\\
\Psi_{x}\left(x_{0}^{-}, y\right)-\Psi_{x}\left(x_{0}^{+}, y\right)=\sigma \Psi_{x}\left(l_{1}, y\right), & 0 \leq y \leq l_{2}
\end{array}
$$

then, the increment of the functional will take the form:
$\tilde{I}=\iint_{G}\left(2 N(x, y) v_{0}-a(x, y) \Psi\right) \tilde{v} d x d y+\iint_{G}\left(c^{2}(x, y) \tilde{u}^{2}+N(x, y) \bar{v}^{2}\right) d x d y \geq 0$
Partially integrating equation (10) and using the properties of Dirac's distribution, we obtain the following problem equivalent to problem (10) - (11).

$$
\begin{array}{cl}
\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}-q(x, y) \Psi=-2 c(x, y)\left(c(x, y) u_{0}-z_{d}\right)- \\
-\delta\left(x_{0}-x\right) \sigma \Psi_{x}\left(l_{1}, y\right), & (x, y) \in G \\
\Psi(x, y)=0 & (x, y) \in \Gamma \tag{14}
\end{array}
$$

where $\delta\left(x_{0}-x\right)$ is the Dirac distribution.
Theorem 1. Let Ψ_{0} be a solution of the adjoint problem (13)-(14) and $N(x, y)>0$, then for (u_{0}, v_{0}) to be optimal a necessary and sufficient condition is that the following relation be true almost everywhere on G :

$$
\begin{equation*}
2 N(x, y) v_{0}-a(x, y) \Psi_{0}=0 \tag{15}
\end{equation*}
$$

Proof. Let $\left(u_{0}, v_{0}\right)$ be the optimal pair and $N(x, y)>0$. We are going to show, that condition (15) is satisfied. Let us prove the contrary. Let us assume, that

$$
2 N(x, y) v_{0}-a(x, y) \Psi_{0} \neq 0
$$

on a set of positive Lebesgue measure.
Consequently,

$$
\begin{aligned}
0 & <\mu\left[\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0} \neq 0\right\}\right]= \\
= & \mu\left[\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0}>0\right\} \cup\right. \\
& \left.\cup\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0}<0\right\}\right]= \\
= & \mu\left[\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0}>0\right\}+\right. \\
& +\mu\left[\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0}<0\right\}\right.
\end{aligned}
$$

where μ is the Lebesgue measure on the G. Let us introduce the notation:

$$
\begin{aligned}
G_{+} & =\left[\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0}>0\right\}\right] \\
G_{-} & =\left[\left\{(x, y) \in G / 2 N(x, y) v_{0}-a(x, y) \Psi_{0}<0\right\}\right]
\end{aligned}
$$

Let us consider two cases: $\mu\left(G_{+}\right)>0, \mu\left(G_{-}\right)>0$.
Suppose $\mu\left(G_{+}\right)>0$. Since V is open, there exists $k_{0}>0$ such, that $v_{0}+k_{x G+} \in V$ with $|k| \leq k_{0}$, where $x G+$ denotes the characteristic function of the set G_{+}.

Denote by

$$
T=2 N(x, y) v_{0}-a(x, y) \Psi_{0}
$$

then there exists $\varepsilon>0$ such that

$$
\iint_{G_{+}} T d x d y>\varepsilon
$$

According to the definition $\left\|k_{x G+}\right\|_{L_{2(G)}} \rightarrow 0$ for $k \rightarrow 0$. Let $k<0$; and assuming, that $\tilde{v}=k_{x G_{+}}$and $\tilde{u}\left(x, y, k_{x G_{+}}\right)$is the solution of problem (5) - (6), it then follows that:

$$
\begin{equation*}
\tilde{u}\left(x, y, k_{x G_{+}}\right)=k \tilde{u}\left(x, y, x G_{+}\right) \tag{16}
\end{equation*}
$$

Taking into account that $\tilde{v}=k_{X G+}$

$$
\iint_{G}\left(2 N(x, y) v_{0}-a(x, y) \Psi_{0}\right) \tilde{v} d x d y=\iint_{G} T k_{x_{G}+} d x d y=k \iint_{G_{*}} T d x d y
$$

and, further, that

$$
\iint_{G} N(x, y) \tilde{\nu}^{2} d x d y=\iint_{G} N(x, y)\left(k_{x G+}\right)^{2} d x d y=k^{2} \iint_{C_{+}} N(x, y) d x d y
$$

and taking into account (16), we have

$$
\begin{gathered}
\iint_{G} c^{2}(x, y) \tilde{u}^{2} d x d y=\iint_{G} c^{2}(x, y) \tilde{u}^{2}\left(x, y, k_{x G_{+}}\right) d x d y \\
=k^{2} \iint_{G} c^{2}(x, y) \tilde{u}^{2}\left(x, y, x G_{x}\right) d x d y
\end{gathered}
$$

Since v_{0} is optimal, then for sufficently small increment \tilde{v}

$$
I\left(v_{\varepsilon}\right)-I\left(v_{0}\right) \geq 0
$$

On the other hand, for $\tilde{v}=k_{X G+}$ from equation (12) it follows

$$
\begin{aligned}
& I\left(v_{0}+\tilde{v}\right)-I\left(v_{0}\right)=\iint_{G} T \tilde{v} d x d y+\iint_{G} N(x, y) \tilde{v}^{2} d x d y+\iint_{G} c^{2}(x, y) \tilde{u}^{2} d x d y= \\
& =k\left(\iint_{G_{0}} T d x d y+k\left(\iint_{G_{F}} N(x, y) d x d y+\iint_{G} c^{2}(x, y)\left(\tilde{u}\left(x, y, x C_{+}\right)\right)^{2} d x d y\right)\right)
\end{aligned}
$$

From here, there exists $\delta>0$ such that for $-\delta \leq k \leq 0$ we have
$\left|k\left(\iint_{G_{+}} N(x, y) d x d y+\iint_{G} c^{2}(x, y)\left(\tilde{u}\left(x, y, x \mathrm{G}_{+}\right)\right)^{2} d x d y\right)\right|<\frac{\varepsilon}{2}$

Consecuently, for $-\delta \leq k \leq 0$
$0 \leq \frac{\varepsilon}{2}<\iint_{\mathrm{G}_{+}} T d x d y+k\left(\iint_{G_{+}} N(x, y) d x d y+\iint_{G} c^{2}(x, y)\left(\tilde{u}\left(x, y, x G_{+}\right)\right)^{2} d x d y\right)$,
and
 that is, for $-\delta \leq k \leq 0$

$$
I\left(v_{0}+k X_{\mathrm{G}_{+}}\right)-I\left(V_{0}\right)<0
$$

Taking into account, that for $|k| \leq k_{0}$

$$
v_{0}+k_{X G_{*}} \in U_{a d} \text { and } \lim _{k \rightarrow 0}\left\|k_{X G_{+}}\right\|_{L_{2}(G)}=0
$$

this contradicts the optimally of v_{0}. Hence

$$
\mu\left(G_{+}\right)=0
$$

Similary, it is proved that $\mu\left(G_{-}\right)+0$.
Thus, the neccessary condition of optimality is proved. To prove sufficiency: Let

$$
2 N(x, y) v_{0}-a(x, y) \Psi_{0}=0
$$

almost everywhere on G and $N(x, y)>0$. It then follows, from our assumptions, that for each ν_{ε}

$$
I\left(v_{\varepsilon}\right)-I\left(v_{o}\right) \geq 0
$$

i.e., $\left(u_{0}, v_{0}\right)$ is the optimal pair.

This proves the theorem.

Let us consider the case when V convex set and functional has the following form:

$$
I(v)=\iint_{G}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right] d x d y+\iint_{G} v^{2} d x d y
$$

Let us formulate the following control problem: find the function $v_{0} \in U_{a d}$, whose corresponding solution of the boundary value problem (1)-(2) together with v_{0} results in minimal functional value (17). The pair (u_{0}, v_{0}) thus obtained is called optimal [9].

Let us consider arbitrary permissible control $v_{\varepsilon}=v_{0}+\boldsymbol{\varepsilon}(v$ $\left.-v_{0}\right) \in U_{a d}$ and $u_{\varepsilon}=u_{0}+\varepsilon\left(u-u_{0}\right)$ corresponding solution of problem (1)-(2). Let us introduce the notation
$\delta v=v_{\varepsilon}-v_{0}=\varepsilon\left(v-v_{0}\right), \quad \delta u=u_{\varepsilon}-u_{0}=\varepsilon\left(u-u_{0}\right)$
Let us $\Psi \neq 0, \Psi \in H^{2}\left(G \gamma_{0}\right) \cap H^{1}(G)$.
In a similar way we obtain that, if Ψ is the solution of the following problem:

$$
\begin{gather*}
\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}-q(x, y) \Psi=2(q(x, y) u+a(x, y) \nu+ \\
+b(x, y)), \quad(x, y) \in G \backslash \gamma_{0}, \tag{19}\\
\Psi(x, y)=0, \quad(x, y) \in \Gamma . \tag{20}\\
\Psi_{x}\left(x_{0}^{-}, y\right)-\Psi_{x}\left(x_{0}^{+}, y\right)-\sigma \Psi_{x}\left(l_{1}, y\right)=-2 \sigma u_{x}\left(l_{1}, y\right), \quad 0 \leq y \leq l_{2}
\end{gather*}
$$

then, the increment of the functional will take the form:

$$
\delta I=\iint_{G}\left(2 v_{0}-a(x, y) \Psi\right) \delta v+\iint_{G}\left[\left(\frac{\partial(\delta(u)))}{\partial x}\right)^{2}+\left(\frac{\partial(\delta(u)))}{\partial y}\right)^{2}+(\delta v)^{2}\right] d x d y
$$

Taking into account (18), we obtain:

$$
\begin{aligned}
& \delta I=\varepsilon \iint_{G}\left(2 v_{0}-a(x, y) \Psi\right)\left(v-v_{0}\right) d x d y+ \\
& +\varepsilon^{2} \iint_{G}\left[\left(\frac{\partial\left(u-u_{0}\right)}{\partial x}\right)^{2}+\left(\frac{\partial\left(u-u_{0}\right)}{\partial y}\right)^{2}+\right. \\
& \left.+\left(v-v_{0}\right)^{2}\right] d x d y, \quad \forall v \in U_{a d}, \forall \varepsilon \geq 0
\end{aligned}
$$

From here we have:
(21)

$$
\iint_{G}\left(2 v_{0}-a(x, y) \Psi\right)\left(v-v_{0}\right) d x d y \geq 0, \quad \forall v \in U_{a d}
$$

Let us show equivalence of (21) and (22),
$\inf _{v \in V}\left[\left(2 v_{0}-a(x, y) \Psi\right) v-\left(2 v_{0}-a(x, y) \Psi\right) v_{0}\right] \geq 0$
Let us introduce the notation: $P=2 v_{0}-a(x, y) \Psi$,
$G_{0}=\left\{\left(x_{0}, y_{0}\right) \in G\right.$ is a Lebesgue's point for P and $P v_{0}$ functions $\}$

Then $m e s G_{0}=m e s G$.
Let us

$$
G_{\delta}=\left\{(x, y) \in G\left|x-x_{0}\right|<\delta,\left|y-y_{0}\right|<\delta\right\}
$$

where $\left(x_{0}, y_{0}\right)$ is arbitrary fixed point from G_{δ}. Consider admissible control:

$$
v_{\delta}(x, y)= \begin{cases}v_{0}(x, y), & (x, y) \in G \backslash G_{\delta} \\ v, & (x, y) \in G_{\delta}\end{cases}
$$

where v is arbitrary point from V.
From (21) follows:

$$
\iint_{G} P(x, y) v_{\delta}(x, y) d x d y \geq \iint_{G} P(x, y) v_{0}(x, y) d x d y
$$

Since $G=G \cup\left\{G G_{\delta}\right\}$, then
$\iint_{G_{\delta}} P(x, y) v(x, y) d x d y \geq \iint_{G \backslash G_{\delta}} P(x, y) v_{0}(x, y) d x d y \geq$
$\geq \iint_{G_{\delta}} P(x, y) v_{0}(x, y) d x d y+\iint_{G \backslash G_{\delta}} P(x, y) v_{0}(x, y) d x d y$

Hence

$$
\begin{aligned}
\iint_{G_{\delta}} P(x, y) v(x, y) d x d y & \geq \iint_{G_{\delta}} P(x, y) v_{0}(x, y) d x d y \\
\operatorname{mes} G_{\delta} & =4 \delta^{2}
\end{aligned}
$$

From here we get:

$$
\begin{gathered}
\lim _{\delta \rightarrow 0} \frac{1}{4 \delta^{2}} \iint_{G_{d}} P(x, y) v d x d y \geq \\
\geq \lim _{\delta \rightarrow 0} \frac{1}{4 \delta^{2}} \iint_{G_{d}} P(x, y) v_{0}(x, y) d x d y
\end{gathered}
$$

According to the Lebesgue's theorem

$$
P\left(x_{0}, y_{0}\right) v \geq P\left(x_{0}, y_{0}\right) v_{0}\left(x_{0}, y_{0}\right)
$$

As $\left(x_{0}, y_{0}\right)$ is taken arbitrary from G_{0} and v from V, then
$\inf _{v \in V} P\left(x_{0}, y_{0}\right) v \geq P\left(x_{0}, y_{0}\right) v_{0}\left(x_{0}, y_{0}\right), \quad$ for any $\left(x_{0}, y_{0}\right) \in G$ i.e., (22) is valid.

Since $m e s G_{0}=m e s G$, then

$$
\inf _{v \in V} P(x, y) v=P(x, y) v_{0}(x, y)
$$

almost everywhere on G.
Let us prove the converse. From (22) it follows

$$
P(x, y) v(x, y) \geq P(x, y) v_{0}(x, y), \quad \forall v(\cdot) \in U_{a d}
$$

almost everywhere on G, since

$$
P(x, y) v(x, y) \geq \inf _{w \in Y} P(x, y) w=P(x, y) v_{0}(x, y)
$$

almost everywhere on G. Then

$$
\iint_{G} P(x, y) v(x, y) d x d y \geq \iint_{G} P(x, y) v_{0}(x, y) d x d y
$$

for any $v(\cdot) \in U_{a d}$.
Thereby the equivalence of (21) and (22) is proved. Hence the necessity of conditions (22) for optimality of pair (u_{0}, v_{0}) directly follows.

To prove sufficiency, let (22) be valid. Let us prove that (u_{0}, v_{0}) is an optimal pair. From equivalence of (21) and (22) follows that (21) is valid, and hence we get:

$$
\begin{gathered}
I=\iint_{G}\left(2 v_{0}-a(x, y) \Psi\right)\left(v-v_{0}\right) d x d y+ \\
+\varepsilon^{2} \iint_{G}\left[\left(\frac{\partial\left(u-u_{0}\right)}{\partial x}\right)^{2}+\left(\frac{\partial\left(u-u_{0}\right)}{\partial y}\right)^{2}+\left(v-v_{0}\right)^{2}\right] d x d y \geq 0
\end{gathered}
$$

i.e., $\left(u_{0}, v_{0}\right)$ is the optimal pair.

For this problem (1)-(2), (17), when V some open subset from \Re, the condition (22) has the following form:

$$
2 v_{0}-a(x, y) \Psi=0
$$

Now consider the optimal control problem (1)-(3) when V convex set. Similarly we conclude, that if Ψ is the solution of (10-11), then taking into account (18) from (12) we have:

$$
\iint_{G}\left(2 N(x, y) v_{0}-a(x, y) \Psi\right)\left(v-v_{0}\right) d x d y \geq 0, \quad \forall v \in U_{a d}
$$

which is equivalent to this:

$$
\inf _{v \in J}\left[\left(2 N(x, y) v_{0}-a(x, y) \Psi\right) v-\left(2 N(x, y) v_{0}-a(x, y) \Psi\right) v_{0}\right] \geq 0
$$

The maximum principle has been obtained.
Theorem 2. Let the cost functional $I(v)$ be given by formula (17) (or (3)). Then a necessary and sufficient condition for the pair $\left(u_{0}, v_{0}\right)$ to be optimal is that the following relations: (1), (2), (9), (20) (or (1), (2), (10), (11)) and
$\iint_{G}\left(2 v_{0}-a(x, y) \Psi\right)\left(v-v_{0}\right) d x d y \geq 0, \quad \forall v \in U_{a d}$
(or $\iint_{G}\left(2 N(x ; y) v_{0}-a(x, y) \Psi\right)\left(v-v_{0}\right) d x d y \geq 0$,
$\forall v \in U_{a d}$) almost everywhere on G, hold.

REFERENCES

1. Bitsadze, A.V. \& Samarski, A.A. (1969) On some simplest generalizations of linear elliptic problems, Papers Academy of Sciences of the USSR, 185, (2), 739-740. (Russian).
2. Gordeziani, D.V. (1971) On some boundary problems solvability for one variant of thin shells theory, Papers of Academy of Sciences of the USSR, 215, (7), 1289-1292. (Russian).
3. Lions, J.L. (1968) Contróle optimal de systémes gouvernés par des équations aux dèrivées partielles, Paris.
4. Tikhonov, A.N. \& Samarski, A.A. (1972) Equations of mathematical Physics, (Russian).
5. Il'in V.A. \& Moissev E.I. (1990) 2-d nonlocal boundary value problem for Poisson's operator in differential and difference variants, Mathematical modeling, 2, (8), 598-611, (Russian).
6. Plotnikov, V.I. (1971) The necessity conditions of optimality for control systems of general form, Papers of Academy of Sciences of USSR, 199, (2), 275-278. (Russian).
7. Plotnikov, V.I. (1973) The necessity and sufficient conditions of optimality and uniqueness conditions of optimize functions for control systems of general form., Proceedings of Academy of Sciences of the USSR, series. math., 36, (3), 652-679. (Russian).
8. Gordeziani, D.V., Dgioev, T.Z. (1978) The generalization of Bisadze-Samarski problem with reference to the problems of baroclinic sea's dynamics., Outlines on physics and chemistry of the waters of the Black Sea., Moscow, (Russian).
9. Pontriagin, L.S., Boltianski, V.G., Gamkrelidze R.V. \& Mishenko E.F. (1983) Mathematical theory of optimal processes. (Russian).
10. Sobolev, S.L. (1950) Some applications of functional analysis in the mathematical physics., 1, (Russian).
