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ABSTRACT

We study here a cooperative elliptic system defined on IR";
we obtain necessary or sufficient conditions for having the
Maximum Principle and the existence of a positive solution
for linear systems involving Schridinger operators. Then we
deduce existence of positive solutions for semilinear sys-
tems.

RESUMEN

En este trabajo se estudia un sistema cooperativo defini-
do sobre todo IR" dado por operatores de tipo Schrédinger.
Se dan condiciones necesarias o suficientes para la validez
del principio del médximo. Finalmente, se analiza la existen-
cia de una solucién positiva de tal sistema.

1. INTRODUCTION

Given an integer N > 1, we consider the following system
(in its variational form), for any 1 £i < N:

€3]
; N j=N : "
{(l.l) L= (—A+q,) u; = zj,:l a;u; + f; in R
Here a; are given numbers such that
a; >0 for i # j; 2)
3)

g, is a positive continuous function, larger than 1I;
g; tending to + oo at infinity;

Hypothesis on f,, which are given functions, will be spe-
cified later.

Such systems where (2) is satisfied are called cooperati-
ve. They appear in some physical and biological problems.
They have been studiend on Q, bounded open set of IR" and
when g, = g, = 0 in [1] to [14]... Only few papers deal with
systems defined on unbounded domains [15] to [17]. Here,
System (1), which involves Shrodinger operators and which
is defined on IR", appears for example in laser theory. It has
been studied, when N =2 and f, = 0, in [15] or [16]; we ex-
tend here some of these results when f, # O.

We say that System (1) satisfies a Maximum Principle if
any nonnegative data: f; 2 0, V1 < i < N, implies that any
solution u := {u,,..., &,... ) is nonnegative: u, > 0. The pro-
ofs here are often analoguous to that of [5], [6]; we do not
use the decoupling method as in [3, 4, 15] or [16].

Our paper is organized as follow: In Section 2 we recall
some results on Schrodinger equations, N = 1; then we study
linear systems of N equations in Section 3, and semilinear
systems in Section 4. For all these cases we study necessary
or sufficient conditions for having the Maximum Principle
and for existence of solutions. Note that, generally our ne-
cessary conditions are different from the sufficient ones, and
only for the case g, = g, = ... = g5, we have been able to ob-
tain necessary and sufficient conditions (e.g. as in {35, 6, 7]).

2. RECALLS ON THE SCALAR CASE

We first recall some results on the scalar, case.

Lethe L>(R"; ais a given number and ¢ is a continuous
function such that:

de>0, O<c<glx), gqfx)— +ooas x| ~» oo, 4
We study here the equation, in its variational form:

Lu=A+q@u=au+h inR" (E)
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The associated variational space is V, (IR"): the comple-
tion of D(R") with respect to the norm

Jel, = [f, IVl +a ]

Since, e.g. by [18], the embedding of V (IR") into L* (IR")
is compact, L, considered as an operator in L? (IR") is posi-
tive, selfadjoint, with compact inverse. Hence its spectrum
is discrete; it consists in an infinite sequence of positive ei-
genvalues, tending to +eo; moreover, the smallest one, de-
noted by A(g) is simple and is associated with an eigen-

function ¢ which does not change sign in IR™

{ L, o=Mpe R
@Px) >0as x| » o 9>0 inlR"

Such an eigenvalue is usually referred as «principal ei-
genvalue». It is characterized by:

Mg) J o U £ J o (Vul* +q uf’)  Vu e V, (R). &)
The equality in (5) holds if and only if u = k@, k € R.

Proposition 1 (Maximum Principle) For any a < Mg),
L, — a is with compact inverse and therefore, for any h e L*
(IR"), there exists a unique u € V (IR") solution of (E); 0 <
h e L* (IRM, implies u > 0 if and only if a < Mq). Moreover
u>0ifh #0.

This is the (strong) Maximum Principle, that can be found
in [19].

3. LINEAR SYSTEMS

We consider here system (1) with N equations, N 2 2. We
assume that Hypothesis (2), and (3) are verified; set: g :=
max(g,), 1 £ < N and Mg) the associated principal eigen-
value. Note that, since g — A(qg) increases with g, A(g) 2
Mg), Vi e {1,..., N}. We seek weak solutions in V,, (IR")
X..x V., (IR"). Indeed, if the potentials are such that:

lg, - gi<Aq withO<A<], 39
the variational spaces V,, (R") =V, (IR") = V (R") are the same.

First let us recall some notions about nonsingular M-ma-
trices.

Definition 1 Any matrix M of the form
M=slI-B, s>0, B=20

for wich s > p(B), the spectral radius of B, is called a non-
singular M-matrices.

Proposition 2 If M is with negative entries outside the
diagonal, each of the following conditions is equivalent to
the statement: «M is a nonsingular M-matrix»:

(P1) M is semipositive; that is there exists X > > 0 with
MX>>0.

(P2) M is inverse-positive; that is, M™ exists and M 2 0.

(P3) There exists a positive diagonal matrix D such that
M D + D M'is positive definite.
(P4) All the principal minors of M are positive.

For more details about M-matrices and the proof of the
proposition see [20].

The system (1) could be written:

LU =AU+ F
with A = (a,), .y and
—A+gq, O 0
u) hi 0 -0
U= , F = , L = 0 0
Uy Iy . - 0 - 0
0 -+ 0 —A+gy

For all 1 £ i < N, denote by ¢, the principal positive €i-
genfunction of L, = —A + g, wich is associated with the prin-
cipal eigenvalue A(g,) and A the matrix:

Alg:) 0 0
0 0 0
A= 0 0
. 0 0
0 - 0 2'(‘IN)

Note that since the system is cooperative, the matrix A —
A is with negative entries outside the diagonal.

Theorem 1. We suppose that (2), (3), and (3') are satis-
fied; assume that for all 1 <i < N, f; are in L? (IR™; if the
Maximum Principle holds for (1), then neccesarly

©)

{ (a) V1<i<N a,<Mg)
b) Mqg)l — A is a nonsingular M-matrix

Remark: For N = 2, (6.b) is (Mg) —~ a,,) (Mq) — a,,) >
a,,0,)-

Proof of Theorem 1: Assume that V1 <i <N, £, 20, f;
# 0, and that any solution (u,,..., &) is such that &, 2 0, V1
<i<N

Multiplying (1.0) by the principal eigenfunction ¢, asso-
ciated with the principal eigenvalue A(g,), integrating over
IR", we obtain:

{(l(q,-) - a; _[u o - Za,] J'u @, 2 0(> 0iff; # 0)

j#
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Since by hypothesis, the Maximum Principle holds, ,f“ o
g2 ATE nonnegative; moreover a; > 0, Vi # j; therefore it
follows that a; < Mgq).

Then we rewrite (1.0) as follows:

1
{(l' i) Ly = Zau u; + (g—q)u; + f;

Jj=l

Denote by ¢ the principal eigenfunction, associated with
the principal eigenvalue A(g). Multiplying (1'./) by ¢ and in-
tegrating over IR", we get:

A(q) J."i (P_gaij _["j P = ﬂ(‘l‘qi)“i +fi]‘P 2 0(>0if f; # 0)

Since by hypothesis, the Maximum Principle holds, we
get (Mg)l — A)X = G > > 0 with X > > 0, where X,, the i-th
component of X, is: X, = Ju, 0. By (PI), (Mg)] — A) is a non-
singular M-matrix.

Theorem 2. Assume that for all 1 <i <N, f, are in L* (IR")
and that (2) and (3) are satisfied. If (A — A) is a nonsingu-
lar M-matrix then the Maximum Principle holds for (1).

Proof of Theorem 2: Assume that for all 1 £i <N, f, 2

0. For any solution (u,,..., u,) of (1), we multiply (1.0) by u;

== max (0, —u;) and integrate. We have:
J(V”i) (V”i_) + g uu = — ”qu,-"z + qilui—lz] =
a; J.u,-u,-' + Zaij J.(u;' - uj")u,-" + Jf,-u,-‘,

J#

so that;

JIvel + aleil]=
a; ”u{lz Zau J‘u u; + Za,] Ju u;

J#i

a; _”u,-'l2 + Za,-j ju,’ u;

Jei

a [l + X [flit Jlef]

in u;

A}

172

I/\

It follows from the variational characterization of A(g,) (5),

that
fita) - o) 1] < S ]

or equivalently

[J.lul | ]l/2
0 with X =

Iz

Since (A — A) is a nonsingular M-matrix, by (P2) we have

(A-A)X <

X=A-A)'"[(A-A)X]1<0
It follows that ;= 0, forall 1 i< N.

‘We are now concerned with the proof of existence of po-
sitive solutions. We use Lax-Milgram theorem for proving:

Theorem 3. Assume that (2) and (3) are satisfied. If (A —
A) is a nonsingular M-matrix, and if f, 20 forall 1 i £ N,
then System (1) has a unique solution which is nonnegative,
Conversely, if, in addition, (3') is satisfied and if System (1)
has a unique solution which is nonnegative for all F 2 0,
then (6) holds.

Proof of Theorem 3: Note that, if (A — A) is a nonsin-
gular M-matrix, by (P2) (A — A)' is a nonsingular M-matrix
too. So by (P3) there exists a positive diagonal matrix D such
that (A — A)Y D + D(A - A) is positive definite. -

d 0 0
0 -0
D = 0 0 andV1 £i<N d >0
0 - 0
0 0 dy

‘We first rewrite (1.i) and (1.2) as:
(7

{(7.9) d,-(Lqi + m)u,- = d;(a; + m)u; + Zd a; u; + d, f; in IR"

iy Yy
J#i

where m is large enough so that g, + m > 0, V1 £ i < N.

We define a map [ from [(V (IR"))x...x(V (IR"))]x
[V, (RX..x(V,(IR") in R, by

(U, v) = -V + (m+ gy vi)

i=N
;di J‘IR,‘(Vu

i=N
—Zd, a;+m Iu,-vi -

dia; | u;v

) S,
It is easy to check that [ is a continuous bilinear form.

Moreover we prove that if A — A is a nonsingular M-matrix,

then [ is coercive. First, by Cauchy-Schwarz inequality and

by (5), we have:
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I, U) =
St s abl]- S
_ ;di a; fu,u
- S (b Juf)”

=N _ Jul, + m _ “";'HW, fed,...
2 ZMa) - @) 3ey ;4%KMM+mHMM+MWZ

where “u“;m = jf (IVu]z + (m+q) o )

e,
\/ Mg} +m

KU, U)zX DA-A) X

Setting X = (x;), oy Withx;, = , we get

Since X' D(A —A) X = % X ((A-A)Y D + DA -A) X

and (A — A) D + D(A — A) is positive definite, [ is coerci-
ve and this implies that (7) has a unique solution for any f,
1 £i< N in L*(JR"). This solution is positive whenever, f; 2
0, for all 1 £i < N, by the Maximum Principle.

4. SEMINILEAR SYSTEMS

Now we prove existence of solutions when f; depends on
x, u; and u; by using sub and super solutions.

Hypotheses: Assume that for all 1 < i < N there exist 9,
e L’ (IR"), 8, > 0, 3M > 0 such that

(A - A — MI) is a nonsingular M-matrix (8)
{O<f(e(uppe, ) EMu,+ 9, foru, 20,.., 4, 20 (9)
f; are lipschitz w.r.t. (u,,..., u,) (10)

Theorem 4. If (2), (3) and (8) to (10) are satisfied, then
(1) has at least a positive solution.

Proof of Theorem 4: We use the method of sub-super so-
lutions.

Construction of a super-solutions: consider
11
{(Lqi+ m)u = (m + a;)u; + Za,-j u; + Mu; + 0, inIR"

J#i

It follows from the section 2 and from (8) that (11) ad-
mits a positive solution U° := (u,..., ud). By (9), (..., u¥)
is a super solution, i.e.:

(12)
{LG ul = (A + g ) 2 a;uf + Za,-j uj +f,-(x, (u{’,., ug)) in IR"
¥idi

Obviously by (9), U, = (0,..., 0) is a subsolution, i.e.:
(13)

{Lq.- 1= (~A + g )uo S @y + 265 o + fi(%, (thores Uno)) in IR"

JE

Definition of a compact operator: choose m > 0 so that
foral 1<i<N m+a,>0.

Wy
Then we define T: U e[Uy; U] » W = = TU
2 VAN .
e (L2 (IRY)" by: "
(14)
{(Lq., + m)w,. = (m + ag)u; + Za;j u; + f; (%, (..., uy)) in IR"

ief

which can also be written:

{W; (L + m)—l [(m +a )+ Y ayuy + fi(x (e +uN))]

J#

It follows from (9) and from the scalar case that TU is
well defined; we prove now that it is continuous and hence
by (10) and the compactness of the operators (L + m)™, T is
compact.

Let (U),» be convergent sequences in (L? (IRD)" : V1 <
i <N, u, — u,. Set T(U) = (W,) and T(U) = (W).

(Lqi + m) (W"k - Wi) = (m + aii) (uik - u,-) + Za,-j(u"j - uj)

+fi(X,(u|k,., uNk)) -—f,-(x,(ul,,, uN)),

We multiply each equation by (w,, — w)) and integrate over
IR"; we get:

"Wik - Wi“z'_m s Iiwik - w,“L[(m + a;) ]Iuik - ui“,}

+ Za,y "u,-k - u,“L2 + Hf,-(x,(ulk,., uNk)) —f,.(x,(u,,., ”N))“z}]'
By (10):
"Wik _Wi“LZ <C l:%"uik _u“z}] = 0ask = oo,
i=l

[U,; U is an invariant set for T : T((Uy; U°]) < [U,, U°l.
It follows from (9) that 1 <i < N, fi(x,(u,5..., u,)) = 0 for
u, 2, 0,..., uy 2 0. Therefore, for U 2 U, we have
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[(m+a,-i)u.-+ Z""i u; +f,-(x,(u,,..., uN)):l >0

i

Then applying the Maximum Principle for the scalar case
we obtain that TU = Ug= (0,..., 0).

We show now that 0 < U < U° implies that TU < U°. We
substract (14) from (11):

S ay(u 1)

i

(L,,i +m) (u,-o-—w,-) = (m+a;) (u,p—-u,-) +
+Mul + 19,-—f,~(x,(u,,..., u,,)).

Of course (m + a,) (u)— u) + X, a; () — u) 2 0. By ),
0<f x(up., ) S Mu, + 9; therefore (L + m) @ ~ w)
2 0. By the scalar case, u) ~w, 2 0. Hence U, U"] is in-
variant by 7.

Since [U,; U] is convex, bounded and closed in (L* (IR")",
we can apply Schauder Fixed Point Theorem which gives
the existence of at least one solution in [U; U]

To prove uniqueness, we assume there exists a concave
function

Wy wy) = H(x, uys..., uy)

such that:
(15)

(x, Upyeoes Uy )
i

{f:(x Upse. ’uN) =

Theorem 5. If (2), (3), (8) to (10) and (15) are satisfied,
then (1) has a unique positive solution.

Proof of Theorem 5: By (P1), if (A~ A — M I) in a non-
singular M-matrix, (A — A) is a nonsingular M-matrix too.
So, as in the proof of the theorem 3, we consider the posi-
tive diagonal matrix D such that (A — AY D + D(A — A) is
positive definite. Assume that U = (u,,..., #,) and V = (v,,...,
v,) are solutions of (1); set W := U — V. Then:

oH oH —
{(—A+q,-)w, =apw + Y aywy + [BTI, (e1ser ) — E (7. v,.,)] inIR

Jwi

Multiplying each equation by d, w, and adding the N equa-
tions, we obtain

=N

2 (v + 4 w?) = zd ai [w? + Ddiay [ww,

i=l J#i
i=N

+ 310 | ) = L ()| )

i

By (15), we have:
(16)

2 2
Zdi ay jw,- jwj
jei

i=N

Ed, - ,, J.w,

i=1

Edi ay Jwi w; £
Jei

Setting X = (x)),.,cy With x, = [, w2 we get X D(A — A) X
<0, or equivalently

X((A-AYD+DA-A)X=L0.

Since (A — AY D + D(A —~ A) is positive definite, it fo-
Hlows X=0(w,=0V1I<i<N)
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