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ABSTRACT

In 1948 HüEFFDING, W ([7D proposed the functional

based on the distance between the joint and marginal dis­
tribution functions for measuring dependence. This func­
tional ins't fully satisfactory. !t's an appropriate measure
only when F is absolutely continuous. In this article we
suggest the functional based on the generating function for
measuring dependence and testing independence for dis­
crete distributions. The corresponding empirical functiona1
is essentially the statistics to be considered for testing in­
dependence.

RESUMEN

En 1948 HüEFFDING, W ([7D propuso el funcional

basado sobre la distancia entre la función de distribución
conjunta y el producto de las funciones de distribu­
ción marginales para medir la dependencia. Es una buena
medida cuando F es absolutamente continua. En este artÍ­
culo se propone un funcional basado sobre la función ge­
neratriz para medir la dependencia y testar la independen­
cia de las distribuciones discretas.

1. INTRODUCTION

Measuring dependence and testing independence are
one of the most important aspects of many statistical inves­
tigation.

\

This problem has been receiving considerable atten­
tion. In the independence problem we want to test if two

(or in general n) random variables X and Y with marginal
distributions F¡, F2 and bivariate distribution F(X,Y) are in­
dependent. This hypothesis of independence can be tested
in a nonparametric framework.

"The idea of using various simple functionals of the
sample d.f of vector chance variables in order to test the
independence of components, is a natur one" ([ID. Many
functionals have been proposed and studied in the statisti­
cal literature.

The following measure which is based on the distance
between two distribution functions, is proposed by HüEF­
FDING. W ([7D

L1 = f( F(x,Y) (x,y) - Fj (x)F2 (y)rdF(x.y} (x,y)

This function is not fully satisfactory as measure of
dependence, since the examples of the discrete distribu­
tions my be found where A =°in the presence of depend­
ence. !t's an appropriate measure when F(x,Y) is absolutely
continuous.

Example 1. (Kumar Joag Dev ([8]. p. 84)

If P(X = 0, y = 1) = P(X = 1, Y = O) = 1/2. !t's easy
to see that A = O. However, X and Y are dependent.

The main objective of this article is to measure de­
pendence and test independence for the discrete distribu­
tions. Üur attention is aimed at the use of the generating
function. The discussion is limited only on the bivariate
distributions, as its extension to multidimensional distribu­
tions is straightforward.

Let (X, Y) be a random variable defined on the proba­
bility space ('1, }l, P) taking values in the measurable space
(N2

, P(N2».

Let G, G¡ and G2 denote the generating functions of
(X, Y), X and Y respectively. We suggest the squared dif-
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ference functional for measuring dependence and testing
independence

Let (Xl' Y¡); ... ; (Xw Yn) be independent identically dis­
tributed copies of (X, Y).

Let Gn, Gn.¡, Gn.2 be the empirical generating function
associated with the sample {(X ¡ ,Y¡); 1::;; i ::;; n},

{X¡; 1::;; i::;; n} and {Y¡; 1::;; i ::;; n} respectively, that is to say:

Gn is a sufficient, strongly consistent unbiased estimator of
the generating function G in such a way that

En ='¡;;(Gn-G) converges in cylindrical law to
Ne.M (O, Q)([4]). An intuitively appealing estimate ofI is

In =Ir Tn
2
(s,t)ds dt where Tn(s,t) =Gn (s,t) - Gn.¡ (s) Gn.2(t).

2. CONSISTENCY

Here we want to etablish that In is a strongly estimator
of l.

Proposition 1. We have:

al EIn~Iasn~oo

b/ In converges almost surely as n~ 00 to 1

Proof:

simple but somewhat tedious calculations which can be
obtained by writing to the author, yield

ETn
2(s,t) =[anG(s2 ,t2)+bnG

2(s,t) +cnG(s,t)G¡ (s )G2(t)+

dn(G(s2,t)G2(t)+G(s,t2))+enG¡(s)Gi(t)
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!n=n(n-l)(n-2)

therfore, it follows that

We notice that

Tn(s,t)- T(s,t) =Gn (s, t) -Gn.2(t)(Gn.¡ (s) -G¡ (s))

-G¡ (s)(Gn.2(t) -G2(t))

We obtain then

Since the right hand side tends to O a.s as n~ 00 ([4]).
We have

Since lA!::;; 4!!Tn- TII, it's clear that In converges almost
surely to I as n~ 00

3. ASYMPTOTIC DISTRIBUTION

Here we give the asymptotic distribution of In under
the hypothesis Ho: "X and Y are independent". The follow­
ing result is needed.

Lemma 1. ([ll]) p. 4): Let a(z¡ ,..., Zm); z,=(x" y¡),
1 ::;; i ::;; m be a bounded function from IR2m into IR. Then

J...Ja(z¡ "",zm)d Dn(z¡ )...d Dn(zm) =Op(l) (*)

where Dn =.¡;;(F,. - F) is the empirical process.

Proof. We use lemma B ([9]. p. 223). We have

Using chebyshev's inequality, we obtain n.
The following Proposition etablishes our intuition that,

under the null hypothesis of independence, In is asymptot­
ically equal to a Cramer-von Mises statistics.

Proposition 2. Under the hypothesis Ho we have:
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In =~ ~>((X¡,Y¡); (Xj,Yj))+Op(n-3/2)
n ¡,j=¡

where h((x¡.y¡); (X2'Y2)) =frq((s.t); (x¡,y¡)) q((s.t);

(X2'Y2)) ds dt

Proof. Write

Tn(s,t) =Gn(s,t) -G¡ (s)G2(t) -G¡(s)(Gn,2(t) -G2(t))
-G2(t)(Gn,¡ (s) -G¡ (s))- (Gn,l (s)-G¡ (s))(Gn,2(t) -G2(t)).

Let's put u=(s,t); u=(x,y) and H¡(u.z)=(u¡t

-G¡(d), i =1,2

where (.i is the i-th component of (.).

Then it follows that fH¡(u,z)dF(z) =O yields to

Tn{s.t) = fHI (u.z)H2{u.z)d Fn{z)- JIHI (u.zl)H2{u.Z2)d Fn{z¡)d Fn{Z2)

-1

= n"2fHI (u,z)H2{u.z)d Dn{z)-n-1 JI HI {u, z¡)H2{u, z2)d Dn{z¡)d Dn{Z2)

Using the lemma 1 we obtain

We define q((s.t); (x, y)) = (sx -G¡(s))(tY -G2(t))

h(Z¡,Z2) = fT q((s.t); zI)q((s.t); z2)ds dt

Thus

which can be written in the form:
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n Vn is the von Mises' statistics which is associated
with the Kernel h.

The Kernel h induces the integral operator by

Af(i,j) =Lh((i,j); (k,l))f(k,1)dk,ld1,2
k,/'2.0

where

dk,¡ =~((lG¡(s)/al) , i=1,2
k! s=O

The associated eigenvalues characterize the asymptotic
distribution of nln and the corresponding eigenfunctions
are orthonormal. We note that by rearranging terms, we get

with

We define the integral operators

BJ(l) =Lh¡(l.k)f(k)dk,¡ i=1,2
k'2.0

Now let (iK.4>~) k= 1,2,... ; be an eigenpair of B¡ =1,2
and let us put

It then follows that (A,jK' 4>jK) j. K ;::: 1 is an eigenpair
of A.

Thus, to solve the integral equation to obtain A,"K we
need only to solve the integral equations for A,~ and A,i.

We have ([9]. p. 196)

E(4)ij(X,Y)4>K/(X,y)) =8(¡,j)(K,/).E(4>ij(X,y)) =OVi,j

E(h((X.Y); (x,y))) =LA,¡j < 00

¡,j

Remark. 1: Let's put O'K(1) =f(k)dk,¡,fk (j) =
h¡ (j, k) and O'jk =O'j (lk)' If X has a finite spectrum
{l, ... ,m}, then the eigenvalues of B¡ are the eigenvalues of

the matrix "" =(O'ij) .. . (We have the same result if the
.L..t¡ ¡Si,j$m

spectrum is {x¡ .... ,xm}.
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Proposition 3. Under the hypothesis Ho' we have
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In the light of proposition 3 and remark 1, it's easy to
check that

n/n~(i(p, u)x~ where <l(p, u) =(pquv)/9

where (N¡j; i,j7Z.1) are iid N(O,l).

Proof. We have

Where Un is the U-statistics that is associated with the
Kernel h.

We have

al By the strong 1aw of 1arge numbers

.!.ih((X¡,Y,), (X¡,Y¡)) n~~ )E(h(X,f); (xx)) =LAij<ooa.s
n~ W

b/Byth. 1 ([2].p. 4), nUn~ ¿Aij(NJ-1)
¡,j'~l

These results together prove the previous proposition.

4. TEST OF INDEPENDENCE

The problem under study is that for testing Ho: "X and
y are independent" against the alternative H¡. Choose a
possible prescribed level of significance a (O < a< 1). We
consider the following test: rejet Ho if nln > ua where ua is
choosen so that an approximate level of significance is
achieved. ua is the upper a-point in the limit null distribu­
tion of n/no

Example 2. Let X~B(P) and Y~B(u); O<p, u < 1

[B(.) is the Bernoulli distribution]. We want to test the
null hypothesis Ho that the two variables X and Y are in­
dependent. We have G¡ (s) = ps+q, G2(t) = ut + v; p+q =
u+v=1.

For a: O< a < 1 we reject Ho if n/n Ua where

p{(l(p,u)x¡ > ua ) =a
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