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ABSTRACT

For 1 5, p, q 5,00 with 1 / p + 1 / q 2:: 1 we prove a nat­
ural factorization theorem for thQse linear and continuous
T: X -7 Y between Banach spaces which have the property
that A ® T: lq' ®e X -7lp®" Y is continuous for each linear
and continuous A: lq' -7 lp (here t and 1t denote the injec­
tive and projective norm, respectively). Our result is a
special case of a more general factorization theorem for­
mulated in the abstract framework of so-called weights on
Banach spaces-thissetting grew out of sorne nowadays
standard ideas which can be traced back to S. Kwapien's
and A. Pietsch's important work on s-summing and L s­

factorable operators.

RESUMEN

Para 1 5, p, q 5, 00, con 1 / p + 1 / q 2:: 1, se demues­
tra un teorema de factorización natural para aquellas
aplicaciones lineales y continuas T: X -7 Y entre espa­
cios de Banach que tienen la propiedad de que
A ® T: lq' ®eX -7lp®" Y es continua para cada A: lq' -7lp
lineal y continua (donde t y 1t denotan, respectivamente,
la norma inyectiva y proyectiva). Nuestro resultado es un
caso particular de un teorema de factorización más gene­
ral formulado en la estructura abstracta de los llamados
pesos sobre espacios de Banach -este surgió de algunas
ideas hoy estándar que pueden encontrarse en la impor­
tante obra de S. Kwapien y A. Pietsch sobre operadores s­
sumables y Ls-factorizables.

1. INTRODUCTION AND PRELIMINARIES

Our aim is to chafacterize operators between Banach
spaces which satisfy certain abstract matrix inequalities (in
terms of s-summing and Ls-factorableoperators) osee [2],
[3] and [9] for all needed information on operator ideals
and tensor products. This is done by a standard separation
argument within the framework of so-called weights on
Banach spaces.

The original motivation was to produce a -in a certain
sense natural- factorization theorem for (linear and con­
tinuous) operators T: X -7 Y between Banach spaces which
for fixed 15, p, q 5, 00 with 1 / p + 1 / q 2:: 1 fulfilI the fol­
lowing inequality:

(1) There is a constant e 2:: O such that for all n, all
n x n matrices (ak) and all vectors Xl"'" Xn E:: X,
y;, ..., y~ E Y'

It ak,l Y~(TX¡)I~

~ cll (ak,¡): 1;, -71; 11 sup .(2: IX'h)(J
uq

, Sup (2: IY~(YtJIIP'
Ilx'II,,;¡ k 11YII,,;¡ k

By a standard closed graph argument (1) has an equiv­
alent formulation in terms of tensor products:

(1') For all operators A: lq' -7lp the tensor product
operator

A ~ T: lq' ~e X -7 lp ~1t" Y

is continuous; here as usual e denotes the injective and 1r

the projective norm.

The most spectacular characterization of such a matrix
inequality can be given in the case p= q = 1: Grothend­
ieck's famous inequality from [4] states that T satisfies (1)
iff it factorizes through a Hilbert space. The case
1/ P +1/ q= 1 is 'completely covered by results from
Kwapien' s important paper [5]: For p= q' it is obvious that
T fulfills (1') if it satisfies (1') forA == id: lp -7lp only, and
in this case (1) reduces to

I 1 ( J
lIP ( JI/P'I yk(TXk) 5, e sup I)x'(xkt. sup L!y;(yt

kllx'll~I k 11* I k

Such T form the Banach operator ideal Dp of a11 p­
dominated operators, and by Kwapien's factorization the­
orem from [5] this ideal consists of all compositions
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absolutely s-surnrnable sequences in X. Then it is
obvious that for each A: 1q' ~ 1p

is continuous.

where R is p-surnrning and S' is p'~surnrnin&. RecaH that an
operator U: E -7 F is s-.surnrning{1:s;; s < 00) whenever

(for s=oo put 1t"~(u):=IIUII). Moreover, Kwapieú in [5]
showed that Dp is in trace duality with the Banach operator
ideal Lp' of all p'-factorable operators:

for 1:s;; s:S;; 00 an operator U: E -7 F is s-factorable (in short
TE Ls) whenever T for sorne rneasure J1 allows a factorization

In [2, p. 373] this latter duality result is extended to the
case 1/ p +1/ q > 1: Every operator T satisfies (1) if and
only if TE (Lq o Lp')*' the adjoint of the ideal of aH corn­
positions UV with U E Lq , V E Lp " But it rernained
open how a Kwapierí-like factorization theorern for
1/ p +1/ q > 1 could look like.

The foHowing consideration shows that there is a nat­
ural candidate for such a factorization theorern: Assurne
that T: X -7 Y aHows a factorization

X --'-T__-.... Y

IR U jI
E ------=----....F

such that

(11) id®R: 1q' ®e X -71q, ®Aq,E is continuous (Le. R is
.q'-surnrning, see [2, p. 128]),

(11') id® S: 1p ® ApF~ 1p ®¡r Y is continuous (by duality
this rneans that S' is p'-surnrning),

(I1I) A®U:1q,®Aq,E~lp®ApF is continuous for
each A: 1q' ~ 1p; here As stands for the norm on
ls ® X induced by l.(X), the Banach space of all

Our rnain application states that the converse of this
result holds: If T: X -7 Y satisfies the rnatrix inequality (1),
then it can be written as a product T =SUR with R, S as
in (11) and (11'), and U as in (I1I).

The Banach operator idealof aH U which satisfy (I1I)
is weH-understood: Again it was shown by Kwapieú in [5]
that for 1/ p + 1/ q =1 every operartor U: E -7 F fulfills
(I1I) if and only if it factorizes through a subspace L of a
quotient of sorne Lp (J1) (= quotient of a subspace...):

L

(for p = q =2 this is an irnportant characterization of 2­
factorable operators due to Lindenstrauss and Petczynsky
[6]). In [1] (see [2, p. 369]) Kwapieú's result was extended
to the case 1/ p +1/ q > 1: An operator U satisfies (I1I) iff
there are a probability rneasure J1 and closed subspaces

such that U factorizes through the canonical rnapping

L1K~N/M, f+K~f+M.

In the language of Banach operator ideals these U form
the injective and surjective hull L~!:ur of the ideal Lp.q of
aH (p, q)-factorable operators (see [2, seco 18]).

2. KWAPIEÑ'S SEPARATION ARGUMENT

For a normed space X denote by Hlx) the set ofall
positive hornogeneous rnappings h: X~ R~o such that

sup h(x):s;; 1
Ilxll,;;¡ .

For 1:S;; P :s;; 00 and e e H¡(X) we call

wp,c:$X ~R~o. wp,c(xd:=SUP(:¿h(Xk)P)IIP
N heC k



Matemáticas: Andreas Defant· et al. Rev.R.Acad.Cien.Exact.Fis.Nat. (Esp), 1996; 90 135

a weight on X (with the obvious modification for p =00).
Standard examples are the weak p-weight

and the strong p-weight

Another interesting example was investigated by Mat­
ter [7] and López-Sánchez [8]: For O:::; () <1 and 1:::; p :::; 00

defines a weight on X which for 0= Oobviously equals wP •

We remark that if H¡(X) is endowed with the topology
1:, of pointwise converg~nce on X, then by Tychonoff's
theorem the 1:,-closure C of each C e H¡ (X) is compact,
and moreover

The space of .all Borel probability measures J1 one is
denoted by Mi(e).

Dealing with weights the following result is central:

Lemma. Fork = l,oo.,n let wp"c, be a weight on the

normed space X k and L 1/ Pk = l. Then for each function
k

n

qJ :rr X k ~ R~o,
k=l

wich is positive homogeneous in each coordinate, the fol­
lowing are equivalent:

(1) For all m and Xl E X;n ,...,Xn E X;:
m n

LqJ(XI(k), ... ,xn(k)):::;rrWpk,Ck (xd.
k=l k=l

(2) There are Jl.k E Mi(ck) such that for aH
n ,

XE rrXk
k=l

For n =2, the' weak Pk-weights wpk' and qJ =11/> I with 1/>

a bilinear form on Xl x X 2 ' this result - at least essentially

- is due to Kwapierí [5]. Our (only formally) more general
version is proved exactly in the same way using a Hahn­
Banach separationargument - for example copy wordby
word the proofs oí [9, Th. 17.4.2], or [2, Th. 19.2.]. Some~
times we will refer to this lemmaas "Kwapierí's separation
argument".

If wp,C is a weight on X, then we call an operator
T: X ~ Y (p, C)-summing whenever

"p,dT) ,~ sup t(~ II'IX,IIP}"I",p,d",),,; ll} < ~.

The class of (p, e) -summing operators T: X ~ Y will
be denoted by

flp,e(X,y).

Together with 1r ,C this is a seminormed space which
for the weakp-weigbt equals flp(X,y), all p-surnming op­
erators, and for the strong p-welght thespace L(X, Y) of all
operators.

Obviously, for each Jl. E Mi(e)

Ix: X~ LAJl.,e), (Ixx)h:= h(x)

is (p, C)-summing and 1rp,c(Ix ):::; l. It is not hard to guess
from the Grothendieck-Pietsch cycle of ideas that this
rnapping is the protorype of a (p, c)-summing operator:
Assume that TE L (X, Y) is (p,C)-summing with
1rp ,c(T):::; c. Then for all XI,oo"Xn E X and Y~,oo.,y~ E Y'

Hence by Kwapierí' s separation argument there is
Jl. E Mi(c) such that for all X € X

( )

l/P

IITxll:::; c fch(x)p dJ1(h)

Clearly, this inequality gives a factorization

put G:= rangeIx and R(Ixx):= Tx. Vice versa, it is obvi~
ous that any operator t which factors in this way has
(p, C)-summing norm :::; c:

1rp ,c(r):::; IIR II1rp ,c(Ix):::; c.
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For the weights W p,e these results were discovered by
Matter [7] and López Sánchez 18].

3. A MATRIXVERSION OF KWAPIEN'S
SEPARATION ARGUMENT

For each n let Zn be a subspace of aH n x n matrices,
and lit a norm Oh Zn' We wilI say that the sequence

((Zn,llt)) ofsuch "matrix spaces" satisfies the so-called r­

condition (1::;; r ::;; 00) whenever for all a E Zn' b E Zm

(obvious modification for r == 00).

The following variant of Kwapien's separation argu­
ment is basic to our applications.

Proposition. Lef WP,C on X and Wq,D on Y be weights

such that 1/ p +1/ q ~ 1 and assume that ((Zn' IHln)) for r

defined by 1/ p' +1/ q' +1/ r == 1 satisfies the r-condition.
Thenfor every function <p: X x Y ~ R~o' which is positive
homogeneous in each coordinate, the following are equiv­
alent:

(1) For all n, all a E Zn and all x E X n, y E yn

L a(k, l) q>(x(l) ,y(k)) ::;; Wq',c(x )Wp',D(y)llalln .

k,l

(2) There are J1 e Mt (e)) and ve Mt(15) such that
for all n, all a E Zn' and all x E X n, y E yn

L a (k,l)<p(x(l) ,y(k)) ::;;
k,l

PROOF: Clearly, only the implication (1) => (2) needs
a proof. We assume without loss of generality that e and
D are 't's-closed. Moreover, we wilI indentify each
a == (an) E $NZn with the block diagonal matrix
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where lal:== L (number of rows of al)' The idea of the

proof is to a¿ply Kwapien's séparation argument to the
modulus of the mapping

ep :$q' X X$p' YX$r Zn ~ R
N N N

ep(x,y,a):== L a(k,l)<p(x(l),Y(k))
k,/

(assume that the "length" of x and y equal lal, otherwise
add zeros). Define for h E e

XE$X
N

and

é'={hl hEC}CJ{,(~qx)
For each m and (Xj) e ($ xt'(Yj) E ($ yt, (a j) E:

($ znt we have

~ ~ aj(k, l}q¡(xj(l) 'Yj (k}) =¡ ($ aj)(k, l)q¡ ((E!hj ) (l), ($ Yj)(k))
j k,/ k,/

(again the "length" of the x j andYj equallajl). By as­

sumption and since ((Zn' IHln)t satisfies the r-condition

L 1<!>{xj,Yj,aj)l::; wq',c ($ Xj )Wp',D ($Yj) 11$ ajlll:la¡1
j

Hence Kwapien's separation argument gives sorne

¡lE M:(c)and 11 E Mt(b) such that for all x E $X,

y E $ Y, a == (an) E $ Zn

note that e is 't's -closed since the bijection

[

al

(a (i,i)) :== $ al == O

is a homeomorphism. Define J1 and V to be the image
measure of it and v with respect to the inverse of this
mapping. Then the conclusion foIlows if we apply the
preceding inequality to aH x e X n, y E yn and "single"
matrices a E Zn' •
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4. WEIGHTED SEMINORMS ON TENSOR
PRODUCTS

If qJ in the preceding matrix version of Kwapien's sep­
aration argument is bilinear, then it turns out to be conven­
ient to reformulate this result in terms of tensor products.
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Again we start with sorne notation. Let wq',c be a

weight on X, wp',D a weight on Yand Z= ((Zn,IHln)) a
sequence of matrix spaces which satisfies the r-condition
with r defined by 1/ p' +1/ q' +llr= l. Define for each
zEX®Y

the infimum taken over all finite representations

n

Z =L a(k,l)x¡ ® Yk
k,l=¡

with a E Zn, X E X n and y E yn. Then it is not hard to see
that (X is a seminorm on X ® Y which we will call the
weighted seminorm generated by wq',c, Wp',D and Z (for
the proof ot the A-inequality mimic the proof of [2, Ex.
12.8]).

Examples. Let 1/ p' + 1/ q' +1/ r =1.

(1) Recall that Lapreste's tensor norms ap,q on
X ® Y are defined by

which generalize Saphar' s and Chevet' s tensor norms
gp := (Xp,¡ and dp := (X¡,p (see [2, seco 12]). Hence, if Zn
COnsists(Of

n
aH nJ~/~ diagonal matrices D¡ normed by

IID... IL:= tt IAl ,then by definition (and H6lder's in­

equality)

were studied in [2, seco 28] - here rp,q is of particular
interest since it is the projective associate of the dual a;,q
of (Xp,q'

The foHowing theorem is our main result on weighted
serninorms a on X®Y generated by wq',C,Wp',D and Z,
andan analogue of the Grothendieck-Pietsch factorization
theorem for a-continuous functionals on X® Y. It shows
in particular that the seminorm

ap,q,Z on X ® Y

generated by the strong-weights Aq"ilp' and Z plays an
exeptional role among all such a.

Theorem. For 1::;; p, q, r ::;; 00 with 1/ p' + 1/ q' +1/ r =1
let (X be a weighted seminorm on X® y generated by the
weight wq',c on X, the weight wp',D on Yand the sequence

Z =((Zn' 11-11)) satisfying the r-condition. Then ¡or each lin­
ear functional qJ on X ® Y the jollowing are equivalent:

,
(1) qJ E(X ®a y)

(2) There is a factorization

qJ
X®Y 'K

IR0S ('
E®F/

lJI

Let us reformulate this result in terms of operators.

a wp. Ap'

wq' ap,q dq,

Aq. gp' re

read: 1t is the weighted (semi)norm

generated by ilq"ilp' and ((Zn,llt)), ..·
For each operator T: X ~ Y' the following are equiv­

alent:

(1') There is a constant c:2: O such that for aH n,aH
a E Zn and aH x¡, ... ,xn E X, Y¡, ... ,Yn E y

(2) Take for Zn aH n X n matrices normed by

Ilalln := Ila: 1;, -41;11·
The tensor n'orms r p,q,13p,q, and Op,q defined via the

table

L ak,¡(Tx¡)(Yk) ::;;cllalln Wq',c(X¡)Wp',D{Yk).
k,¡

(2') There is a factorization
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T
X~~......::..~~_·Y'

IR 1s'
U

E~~""':;:'~~-"'F'
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The following result was already announced in the
introduction.

,

lJfe(E®ap'l'z F) withlllJfll:::;; 1,

with R and S as in (1) and U such that for some d;;::: O

holds for all n and a e Zn'

In this case: in!c= in!{1Cq"c(R)1Cp"D(S) inf d}

PROOF: The implication (2) =} (1) follows by sOrne
straight forward estimations using the definitions onIy. The
converse is an irnmediate consequence of the matrix ver­
sion of Kwapien' s separation argument: Obviously,
<p e(X®a Y)is equivalent to statement (1) of the propo­
sition in section 3 (w.l.o.g.: 11<p11:::;; t). Hence there are prob­
ability measures fl and v such that

L a(k,l)<p(x(l)®y(k)):::;;
k,t

Define (for the definition of Ix see section 1)

Rx:= Ixx e range Ix =:E -4 Lq'(JL,C), x e X

Sy:= Iyy E range I y=:F -4 Lp,(v,15), ye Y

lJf(Rx® Sy):= <p(x® y)

Then 1t'q',c(R):= 1t'p',D(S) =1, and by the preceding
inequality

which proves (1). Finally, in order tosee (1') <=> (2') define

<p:XXY-4K, <p(x,y):=(Tx)(y).

Then it is obvious that (1) <=> (1') and (2) <=> (2').•

5. MATRIXINEQUAUTIES

We now deal with more specialized situations - again
it will always beassumed that 1$, p,q,r:::;; 00 and

1/ p' + 1/ q' +1/ r =1.

In the frrst two examples we apply the theorem to the
weak and strong weights, and take for Zn the space Mn of
aH n x n matrices normed by

Example 1. For every operator T: X -4 Y the follow­
ing are equivalent:

(1) For all operators A: lq' -41p

A®T: lq' ®e X -41p ®¡t Y

is continuous.

(2) There is a c ;;::: O such that for all n, all n x n ma­
trices (ak,t) and all x1, ... ,xn e X, yi, ... ,y~ E Y'

(3) There is a factorization

X~~~T~~_.y

IR U Is
E-~~~~-"'F

with R e IIq,(X, E) , S' e IIp' (Y', F') and U such
that for all operators A: lq' -4 lp

A®U:lq,®,.,. K-41p ®,.,. L'
o' p

is continuous.

In this case:

PROOF: A direct argument for the implication (3) =}

(1) was given in the introduction. Recall that the equalities

, ,
l; ®¡r Y" = (l;, ®e Y') = ((y'r, wp ,)

hold isometrically, and that

id® K y : 1; ®¡r Y -4/; ®¡r y"

is an isometric embedding (K y : Y -4 Y" the canonical em­
bedding). Henee (1) =} (2) follows by a simple closed
graph argument. For the proof of (2) =} (3) we applythe
theorem to the weights wq' = wq',c on X, wp' = wp',D 9n
Y' and Mn (as aboye), and the operator .

KyT: X -4 Y" .
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This way we obtaina factorization
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(see [2, p.373]), and that each of these formulas gives in­
formation on the matrix inequalities (2) of example 1.

Exactly the same way -replace Wp',D by !1p~ we
obtain

X __......:.:K,!;:yT:..._--.. Y"

l0 Ir
vK ~----=-----..L'

with o E Ilq" PE Ilp' and V such that for aH A

A®V: lq' ®A
q

• K ~ lp ®A p L'

{

dnal

(Lq
oL ,)* = Ilq o Ilq,

p Ildnal Il2 o 2

q'=p

l<p,q5,2

is continuous. In order to produce a factorization as in (3)
define

R:X ~range O=:E, Rx:=Ox

U: E ~ rangeV=:F ,Ux:==Vx

S: F ~ Y,Sx:= P'x

It remains to show that S' E II p'' But since
P" E IIp'(Y'''' L"), this foHows from the fact that

P"
YItt_~---=-__--... L"

S'
Y'-_....::.._~--..F'

commutes (1: F ~ L' the eanonical embedding).•

It is interesting to reformulate this result in terms of s­
summing and s-factorable operators. It was already men­
tioned in the introduetion that (1) is equivalent to the faet
that T is in the adjoint ideal of the eomposition Lq o Lp"

Hence (1) <=> (3) givesthe formula

(L o L .)* =Ild~1 o t njsur
on .q p p p.q q

here Il;?al stands for the ideal of aH opertors with p'-sum­
ming duals. Moreover, it can easilybe seen that this equal~

ity even holds isometriealIy if all involved ideals are given
their natural norms. By [2,p. 337] we know that

(ls the ideal ofall s-integral operators), hence we can also
write

Example 2. For every operator T: X~ Y the follow­
ing are equivalent:

(1) For all operators A :-lq' ~ lp

is continuous.

(2) There is c ~ O such that for all n, all n X n matri­
ces (ak,l) and all xl, ... ,xn E X

(3) There is a factorization

with RE Ilq,(X,E), and U such that for all
A:lq'·~ lp

is continuous.

In this case: snp IIA ® 711 =inf e =inf{·1I:q.{R} snp IIA ® UII}· .
IIAR~l RAII~1

(L o L .)* =Il~~1 o .(Id~1 01 ,)* o Il 'q p y q p q'

Finally, we remark that

25,q5,oo

1<q5,2

q=1

In terms ofoperator ideals (see [2,p. 374]) this reads as
follows:

(L 1 )
* T injsur

q o p' =Lp,q o Ilq•.

We finish looking at two subspaces of Mn: the sub~

space ofall n x n diagonal matrices and the subspace of all
regular n x n matrices (differences of two in the lattice
sense positive operators).
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Example 3. For every operator T: x~ y the follow­
ing are equivalent:

(1) For all diagonal operators DA: lq, ~ lp

DA @ T: lq' @e X ~ lp @¡r y

is continuous, or equivalently: there is c ~ O such
thatforalln and al! X¡,oo"Xn E X ,Yí, ...,Y~ E Y'

(2) For all regular operators A: lq' ~ lp

is continuous, or equivalently: there is c ~ Osuch
that for all n, all regular n X n matrices and all
X¡'''',Xn E X,Yí, ... ,Y~ E Y'

L ak,¡yk(Tx,) ~ ella :1;, ~ 1;11 wq,{x¡)wp,{y,n.
k,¡

(3) There is a factorization

(see e.g. [2, p.80]). Hence the proof of (1) ~ (3) is an easy
modification of the proof given for example 1 (in (1) the
equivalence of both statements follows by the closed graph
theorem). Moreover, (3) implies both statements in (2) ­
use again the argument from the introduction. FinalIy, we
remark that it is obvious that each of the statements in (2)
implies (1).•

Clearly, analoguous results hold if wp ' is replaced by
wp',O" and wq' by wq',v with O~o",v<1 and l~p,q,r~tX>

such that

1-0' 1-v 1
---+--+-=1.

p' q' r '

in this setting equivalence (1) ~ (3) of the preceding re­
sult was observed in [8].
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