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ABSTRACT

For 1<p, g<e with 1/p +1/g2=1 we prove a nat-
ural factorization theorem for those linear and continuous
T: X — Y between Banach spaces which have the property
that A®T: [, ® X —1,®.Yis continuous for each linear
and continuous A: [, — [, (here € and 7 denote the injec-
tive and projective norm, respectively). Our result is a
special case of a more general factorization theorem for-
mulated in the abstract framework of so-called weights on
Banach spaces -this setting grew out of some nowadays
standard ideas which can be traced back to S. Kwapieii’s
and A. Pietsch’s important work on s-summing and L
factorable operators.

RESUMEN

Para 1<p, g<oo, con 1/p +1/g2=1, se demues-
tra un teorema de factorizacién natural para aquellas
aplicaciones lineales y continuas 7: X — Y entre espa-
cios de Banach que tienen la propiedad de que
A®T: [, ® X —1 ® Y es continua para cada A:l, -1,
lineal y continua (donde €y = denotan, respectivamente,
la norma inyectiva y proyectiva). Nuestro resultado es un
caso particular de un teorema de factorizacién més gene-
ral formulado en la estructura abstracta de los llamados
pesos sobre espacios de Banach -este surgié de algunas
ideas hoy estdndar que pueden encontrarse en la impor-
tante obra de S. Kwapieti y A. Pietsch sobre operadores s-
sumables y L -factorizables.

1. INTRODUCTION AND PRELIMINARIES

Our aim is to characterize operators between Banach
spaces which satisfy certain abstract matrix inequalities (in
terms of s-summing and L -factorable operators) -see [2],
[3] and [9] for all needed information on operator ideals
and tensor products. This is done by a standard separation
argument within the framework of so-called weights on
Banach spaces. i

The original motivation was to produce a —in a certain
sense natural-— factorization theorem for (linear and con-
tinuous) operators T: X — Y between Banach spaces which
for fixed 1<p, g< oo with 1/p +1/g21 fulfill the fol-
lowing inequality:

() There is a constant ¢ =0 such that for all », all
n x n matrices (a,,) and all vectors x,,...,, x, € X,
Yooy Vo€ V'

<

2 a Yi(Tx,)
K

, 179’ ) 1/p’
< c” (@) g =1, " sup [z |x'(xk)|q ] sup [Z | y,'c(y)|p ] .

17, SR

By a standard closed graph argument (I) has an equiv-
alent formulation in terms of tensor products:

(I') For all operators A:l; — [, the tensor product
operator

AeT:l, e, X—>1,8, Y

is continuous; here as usual £ denotes the injective and &
the projective norm.

The most spectacular characterization of such a matrix
inequality can be given in the case p=g¢ =1: Grothend-
ieck’s famous inequality from [4] states that T satisfies (I)
iff it factorizes through a Hilbert space. The case
1/p+1/g=1 is completely covered by results from
Kwapieri’s important paper [5]: For p=4¢’ it is obvious that
T fulfills (I’) if it satisfies (I') forA =id: I, =1, only, and
in this case (I) reduces to

s %% S
Such T form the Banach operator ideal D, of all p-
dominated operators, and by Kwapiedi’s factorization the-
orem from [5] this ideal consists of all compositions
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T
X

v

where R is p-summing and S’ is p'-summing. Recall that an
operator U: E — F is s-summing(1< s< oo% whenever

7(U):=sup (kz:, ||kalls} sup (i

=114 21

s
x'(x;) |x) L1t <o

(for s=c0 put ﬂ;,(U ):=]]U H) Moreover, Kwapien in [5]
showed that D, is in trace duality with the Banach operator
ideal L, of all p'-factorable operators:

D,=L%,
for 1< s <00 an operator U: E — F is s-factorable (in short

T € L) whenever T for some measure ( allows a factorization

T
E - Fe F"

L (W

In [2, p. 373] this latter duality result is extended to the
case 1/ p+1/q>1: Every operator T satisfies (I) if and
only if Te (L, o L,)*, the adjoint of the ideal of all com-
positions UV with Ue L,, Ve L,. But it remained
open how a Kwapied-like factorization theorem for
1/ p+1/¢g>1 could look like.

The following consideration shows that there is a nat-
ural candidate for such a factorization theorem: Assume
that T: X — Y allows a factorization

X T Y
R s
E u F

such that

(I) id®R:[.®, X -1, ®A,E is continuous (i.e. R is
"q’-summing, see [2, p. 128D,

ar) id®Ss: I, ®A,F — I, ®, Y is continuous (by duality
this means that S’ is p'-summing),

(1) A®U:l ®A,E—1,®A,F is continuous for
each A:l,—>1,; here A; stands for the norm on
[, ® X induced by ls(X ), the Banach space of all

absolutely s-summable sequences in X. Then it is
obvious that for each A:l. —1,

A®T: 1y ® X = 1,8, Y
is continuous,

Our main application states that the converse of this
result holds: If T: X — Y satisfies the matrix inequality (I),
then it can be written as a product T = SUR with R, S as
in (II) and (AT"), and U as in (II).

The Banach operator ideal of all U which satisfy (IIT)
is well-understood: Again it was shown by Kwapier in [5]
that for 1/ p+1/g=1 every operartor U: E — F fulfills
(I1I) if and only if it factorizes through a subspace L of a
quotient of some L,(u) (= quotient of a subspace...):

U

E——F

L

(for p =g =2 this is an important characterization of 2-
factorable operators due to Lindenstrauss and Petczynsky
[6]). In [1] (see [2, p. 369]) Kwapien’s result was extended
to the case 1/ p+1/g>1: An operator U satisfies (III) iff
there are a probability measure (U and closed subspaces

K ¢ L c Lg(u)

N N N

M c N c Ly
such that U factorizes through the canonical mapping

LIK->NI/IM, f+K->f+M.
In the language of Banach operator ideals these U form

the injective and surjective hull L))" of the ideal L, of
all (p, g)-factorable operators (see [2, sec. 18]).

2. KWAPIEN’S SEPARATION ARGUMENT

For a normed space X denote by H,(X) the set of all
positive homogeneous mappings #:X — R such that

sup h(x)<1
It

For 1< p<o and Cc H(X) we call

i/p
W, ia X >Ry, wyclx):=sup [Z h(xk)p)
heC k
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a weight on X (with the obvious modification for p =oo).
Standard examples are the weak p-weight

1/p
W, = Sup (2 |x xk )

=l

and the strong p-weight

%) {;nxkn"]

Another interesting example was investigated by Mat-
ter [7] and Lépez-Sénchez [8]: For 0<0<1 and IS p<L o

1-6/p

p X (o)l e

defines a weight on X which for 6= 0 obviously equals W, .

w{,x,c = sup

We remark that if H,(X) is endowed with the topology
T, of pointwise convergence on X, then by Tychonoff’s

theorem the 7T-closure C of each C < H (X) is compact,
and moreover

wP,C = wp,é‘— .

The space of all Borel probability measures i onC is
denoted by M; (C)

Dealing with weights the following result is central:

Lemma. Fork=1,..,n let W, c, be a weight on the

normed space X and ) 1/ p, =1. Then for each function
k %

n
(p:HXk = Ry,
k=1

wich is positive homogeneous in each coordinate, the fol-
lowing are equivalent:

(1) Forall m and x, éXl'",...,xn e Xy
m n
Z(p(xl(k) k))SHWPk’Ck (xk)‘
k=1 k=1

(2) There are i er(Ek) such that for all

n

o(x)<

Ufk h(xe)™ dﬂk(h))wk .

k=1

For n = 2, the weak p,-weights W, , and ¢ = ]¢| with ¢
a bilinear form on X, X X, this result - at least essentially

- is due to Kwapiesi [5]. Our (only formally) more general
version is proved exactly in the same way using a Hahn-
Banach separation argument - for example copy word by
word the proofs of [9, Th. 17.4.2], or [2, Th. 19.2.]. Some-
times we will refer to this lemma as “Kwapieri’s separation
argument”.

I w,c is a weight on X, then we call an operator
T: X — Y (p, C)-summing whenever

T):=sup [; |7 [ J | me(xe <1| <oo

The class of (p,C)-summing operators T: X — ¥ will
be denoted by

I0,,c(X.Y).

Together with 7, ¢ this is a seminormed space which
for the weak p-weig tequals I (X Y) all p-summing op-
erators, and for the strong p- welght the space L(X,Y) of all
operators.

Obviously, for each pe My (5)
Iy: X L(u,C), (Ixx)h:=h(x)
is (p, C)-summing and 7, ()< 1. It is not hard to guess
from the Grothendleck-Pletsch cycle of ideas that this
mapping is the prototype of a ( D, C) summmg operator:

Assume that Te L(X,Y) is (p,C)- summmg with
7, o(T)< c. Then for all xy,...,x, eX and y{,....,y, €Y’

; 1yl’r(Txk)‘ < pr,C(xk)Ap’(yl’C).

Hence by Kwapieri’s separation argument there is
pe M{(C) such that for all xeX

<o |G ants))

Clearly, this inequality gives a factorization

X T

Y IRl < ¢;

Ix R

G L, (1)

put G:=rangel, and R(J Xx) := Tx. Vice versa, it is obvi-
ous that any operator 7T which factors in this way has
(p,C)-summing norm <c:

Zp,c(T)S R |75, c(1x) <
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For the weights W, o these results were discovered by
Matter [7] and Ldpez Sanchez [8].

3. A MATRIX VERSION OF KWAPIEN’S
SEPARATION ARGUMENT

For each n let Z, be a subspace of all nXn matrices,
and ||||n a norm on Z,. We will say that the sequence

((Z,,, - n)) of such “matrix spaces” satisfies the so-called 7-
condition (1<r <o) whenever for all a€Z,, beZ,

a 0
a®b:= o b €Zum

, r 1r
la+l,.., < (lall, + 141,

(obvious modification for 7= oo).

The following variant of Kwapieri’s separation argu-
ment is basic to our applications.

Proposition. Let wy, c on X and Wy p on Y be weights

such that 1/ p+1/q =1 and assume that (( ns ,,)) forr

defined by 1/ p’ +1/ ¢’ +1/r=1 satisfies the r-condition.
Then for every function ¢ : X XY — R, which is positive
homogeneous in each coordinate, the following are equiv-
alent:

(1) Foralln all acZ, and all xe X",yeY"

> alk Do (x(0).y(K))| < wc(®)wyo ().

kl

(2) There are ue M; (E)) and ve M{ (5) such that
foralln,all aeZ,, and all xe X", yeY"

<

> a(k)o(x(2), (k)

s(; [ A 0)" du ] [2 [ (o (w)) av( )]“p'uau,,.

PROOF: Clearly, only the implication (1) = (2) needs
a proof. We assume without loss of generality that C and
D are 7,-closed. Moreover, we will indentify each
a= (a,,) e ®,Z, with the block diagonal matrix

a 0
(a(i,j)) =@a = €z,
0 ay

where lal -'=2 (number of rows of g;). The idea of the

proof is to a;gply Kwapien’s séparation argument to the
modulus of the mapping

00, XX®, YX®,Z, >R
N N

N

9(x.y.a):= Y a(kDo(x(1).y (k)

kl

(assume that the “length”
add zeros). Define for he C

h(x) :=(Z h(x(l))q’J , ¥e®X

k

and
C:={h|nec}cat, (gqlx}

For each m and (xj)€(® X)’”,(y,-)e(@ Y)m, (aj)e
(@ Zn)m we have

2 2 kol ().5;(6) =

ikl ki

(@a,) k1) ((

(again the “length” of the x; and y; equal Iaj|)- By as-

5)(0):(0 ;) ()

sumption and since ((Z,,,”” n)) satisfies the r-condition
h

z |¢(xi’yi’aj)| S Wy (
wodlraal| S

x; )y D(@yl)”@a '

1/r
r
11 )

Hence Kwapieri’s separation argument gives some
,ueM ( ) and Ve M, (D) such that for all xe®X,

ye®Y, a—(an)e@Zn

o< [y (i) ([a0r #@) " (Shek)”

note that € is 7,-closed since the bijection

Zla|

A

2 C>»C

is a homeomorphism. Define u and v to be the image
measure of 4 and © with respect to the inverse of this
mapping. Then the conclusion follows if we apply the
preceding inequality to all xe X", yeY" and “single”
matrices aeZ,. R
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4. WEIGHTED SEMINORMS ON TENSOR
PRODUCTS

If ¢ in the preceding matrix version of Kwapieri’s sep-
aration argument is bilinear, then it turns out to be conven-
ient to reformulate this result in terms of tensor products.

Again we start with some notation. Let Wy ¢ be a

weight on X,w, p, a weight on Y and Z= ((Z,,,""")) a
sequence of matrix spaces which satisfies the r-condition
with r defined by 1/p’+1/q’+1/r=1. Define for each
zeX®Y

a(z):=inf al, wpr c(x)wp o (%),

the infimum taken over all finite representations

z= Z a(k,l)x; ® y;
k=1

with a€ Z,, x€ X" and y € Y". Then it is not hard to see
that o is a seminorm on X ®7Y which we will call the
weighted seminorm generated by Wy c,w, p and Z (for
the proof ot the A-inequality mimic the proof of [2, Ex.
12.8]).

Examples. Let 1/p’+1/¢'+1/r=1.

(1) Reecall that Lapreste’s tensor norms ¢, on
X®Y are defined by

pale) mf{n )y e ) 2= s @34 }

k

which generalize Saphar’s and Chevet’s tensor norms
gp =0, and d,:=q , (see [2, sec. 12]). Hence, if Z,
consxsts ‘of all n><n diagonal matrices D, normed by

1r
| ( , then by definition (and Hélder’s in-
equahty) =
o | w, Ap,

read: 7 is the weighted (semi)norm

generated by A ., A - and ((Z,,,"-"n)),...
Ay | &g | = .

w, | @, dq.

(2) Take for Z, all nxn matrices normed by

laf, =5 > 13-

The tensor norms ¥ p,q,Bp.4, and 8,4 defined via the

table

o | w, Ap
t

Wq' ﬂp.q 5q,p

Aq P % q

were studied in [2, sec. 28] - here ¥, , is of particular
interest since it is the projective associate of the dual &, ,
of o .

The following theorem is our main result on weighted
seminorms o on X ®Y generated by w, c,w, p and Z,
and an analogue of the Grothendieck-Pietsch factorization
theorem for o-continuous functionals on X ®Y. It shows
in particular that the seminorm

Opaz0n X®F

generated by the strong-weights A A, and Z plays an
exeptional role among all such o.

Theorem, For1< p,q,r <o withl/ p’+1/qg'+1/r=1

let a be a weighted seminorm on X ® Y generated by the
wezght Wy c on X, the weight w, 1, on Y and the sequence

= ((Z,,," ||)) satisfying the r-condztzon. Then for each lin-
ear functional ¢ on X®Y the following are equivalent:

D pe(xe,Y)
(2) Thereis a factorizatién

X®7Y 2 X
lR@/
v
EQF

X,E), Sel'Ipr,D(Y,F) and V/E(E@a,,,q,z F)-

7y o)}

Let us reformulate this result in terms of operators.

with ReTl .

In this case: |g||= inf {nq,,C(R)

For each operator T: X — Y' the following are equiv-
alent:

(1) There is a constant ¢=> 0 such that for all n, all
acZ, and all x,,....,x, € X, yp,..., ¥, €Y

2 ar (Tx;)(vx

[ X

)| cllal, wp,clx) wpr p(ve)

(2’) There is a factorization
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X r Y
JR ]S’
E u F’

with R and S as in (1) and U such that for some d =0

|aoU g 00, E> 0, F

<d|d|,

holds for all n and a € Z,,.
In this case: inf c=inf {IL'qr,c(R)ﬂpf’ D(S) inf d}

PROOF: The implication (2) = (1) follows by some
straight forward estimations using the definitions only. The
converse is an immediate consequence of the matrix ver-
sion of Kwapieri’s separation argument: Obviously

@ e(X ®, Y) is equivalent to statement (1) of the propo-

sition in section 3 (w.Lo.g.:¢| < 1). Hence there are prob-
ability measures {1 and v such that

Y, alkDo(x() @y (k)<

k2l

[ZI *(0)" du )HZ I g(y(k»”'dv(g)]”pluaun.

Define (for the definition of I, see section 1)

Rx:=Iyxe range [y =E — Lq,(,u,(_f), xeX
S, :=Iyy e range I, =:F — Lp.(v,ﬁ), yeY

v (Rx®Sy):=9(x®y)
Then 7, c(R)=n, p(S)=1, and by the preceding
inequality ,
velse,,, F) it <1,

which proves (1). Finally, in order to see (1°) « (2°) define

(Tx)(y)-

Then it is obvious that (1) & (1) and 2) & (2°). W

0 XXY>K, o(x,y):=

5. MATRIX INEQUALITIES

We now deal with more specialized situations - again
it will always be assumed that 1<p,q,r <o and

1/p+l/qg+1/r=1.

In the first two examples we apply the theorem to the
weak and strong weights, and take for Z, the space M, of
all nXn matrices normed by

Ha"":= “a =L

The following result was already announced in the
introduction.

Example 1. For every operator T: X — Y the follow-
ing are equivalent:

(1) For all operators A:l. -1,
A®T:1,®, X>1,8, Y
is continuous.

(2) Thereis ac=0 such that for all n, all nxn ma-
trices (ak’,) and dll x,,....x, € X, ¥{see Vo €Y’

wg (xe)wy (7).

!z ak,,y,'c(Tx,)| <c "a Hp =1

(3) There is a factorization
T

X Y
R s
E u F

with Rell,(X,E),S e, (Y",F’) and U such
that for all operators A:l. —1,

A®U:lq, ®Aq, K- lp ®A,, r
is continuous.

In this case:

sup||A®T]|—1nfc-mf{ (R),

s (S*) sup |[4®U H}

It

PROOF: A direct argument for the implication (3) =
(1) was given in the introduction. Recall that the equalities

Iy ® X= (X",wq,)

ne, v =(ne,¥) = ((Y')",wp,)
hold isometrically, and that
d®xy: 5,8, Y>1,8,Y”

is an isometric embedding («y : ¥ — Y” the canonical em-
bedding). Hence (1) => (2) follows by a simple closed
graph argument. For the proof of (2) = (3) we apply the
theorem to the weights w,, =w,. ¢ on X, w, =w, D on
Y and M, (as above), and the operator

KyT: X =Y.
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This way we obtain a factorization

K yT

X Yll
lo ‘Pl
K 14 L'

with Oell ., Pell, and V such that for all A

A®V.'lq' ®Aq’ K— lp ®Ap L,

is continuous. In order to produce a factorization as in (3)
define

R:X — range O=:E, Rx:=0x
U:E— rangeV =F,Ux:=Vx
S:F5Y,8x:=Px

It remains to show that S’ El—l,,:. But since
P eIl p,(Y *,L"), this follows from the fact that

Yl" P ’ L "
YI S’ F .

commutes (/:F —> L’ the canonical embedding). M

It is interesting to reformulate this result in terms of s-
summing and s-factorable operators. It was already men-
tioned in the introduction that (1) is equivalent to the fact
that T is in the adjoint ideal of the composition L, oL,
Hence (1) & (3) gives the formula

¥ yydual injsur
(Lq 0 LP,) =TI" o L2 o Tl
here I'If,"lal stands for the ideal of all opertors with p’-sum-
ming duals. Moreover, it can easily be seen that this equal-
ity even holds isometrically if all involved ideals are given
their natural norms. By [2,p. 337] we know that

s _ ( ol Ip')*

(X q
(I, the ideal of all s-integral operators), hence we can also
write
*  _dual _fydual *
(Lq oLP,) = HP' o (Iq' o Ip') qu,,

Finally, we remark that

q
‘(Lq °L°°)* =1 Ik <4
S L q=

and
dual ’__
(quLp,)*= Hg IOHQ' q=p
‘ I, oI, 1<p,g=<2

(see [2, p.373]), and that each of these formulas gives in-
formation on the matrix inequalities (2) of example 1.

Exactly the same way —réplace Wy p by A,— we
obtain

Example 2. For every operator T: X — Y the follow-
ing are equivalent:

(1) For all operators A :‘lq, -1,
A®T:1, ® X —>1,8A,Y

is continuous.

(2) There is ¢ =20 such that for all n, all nX n matri-
ces (ak’,) and all x,...,x,€X

1/
p P

)y

1

< c” a:ly -1 wq,(x,).

; a T (x;)

(3) There is a factorization

T

R
E

with Rel’Iq,(X,E), and U such that for all
A: lq, -1,

A®U:1,®, E—1,8, F

is continuous.

In this case: sup |A® T||=inf c=inf {nq,(R) sup [A®U ﬂ}
JAf=<1 Jafs1

In terms of operator ideals (see [2,p. 374]) this reads as

follows:
* _ yinjsur

(Lq oIp:) = Lp,q ° Hq'.

We finish looking at two subspaces of M,: the sub-

space of all nx n diagonal matrices and the subspace of all

regular nxn matrices (differences of two in the lattice
sense positive operators).
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Example 3. For every operator T: X — Y the follow-
ing are equivalent:

(1) For all diagonal operators Dy:l — 1,
D, ®T:1,8,X>1,8,Y

is continuous, or equivalently: there is ¢2 0 such
that for all n and all x,,...,x, € X, y{,...,¥, €Y’

(S bitm | = emy s ).

(2) For all regular operators A:l, -1,
49T:1, 9, X—>1,®, Y

is continuous, or equivalently: there is ¢2 0 such
that for all n, all regular nxn matrices and all
XpsesesXy € X, V], Vn €Y

; a1 yi(Tx)| < c"a Hp - l}','” wo (X)W (V1)

»

(3) There is a factorization
E

In this case: “sllllp |D; ® 7| = inf ¢ = inf {n'p,(S') nq,(R)}.
a] <t

R eIl (X,E)
S'eTL(Y",E")

Operators as in (1) are known under the name (g, p’) -
dominated operators, and - as mentioned in the introduc-
tion ~ the equivalence (1) & (3) for 1/p+1/g=1 is due
to Kwapien [5], and in the general case 1/p+1/g>1 to
[9, 17.4.2] (see also [2, sec. 19]).

PROQE: For regular (in particular, diagonal) operators
A:l -1,

”A ®U:l, ®, E~—1,8, F” = |4 [u]

(see e.g. [2, p.80)). Hence the proof of (1) & (3) is an easy
modification of the proof given for example 1 (in (1) the
equivalence of both statements follows by the closed graph
theorem). Moreover, (3) implies both statements in (2) -
use again the argument from the introduction. Finally, we
remark that it is obvious that each of the statements in (2)
implies (1). W

Clearly, analoguous results hold if w). is replaced by
Wy o and Wy by w,. , with 0<o,v<land 1< p,q,r <o
such that

l-0 1-v 1
—t+—4==1.

p q ro

in this setting equivalence (1) ¢ (3) of the preceding re-
sult was observed in [8].
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