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ABSTRACT

For 1 5, p, q 5,00 with 1 / p + 1 / q 2:: 1 we prove a nat
ural factorization theorem for thQse linear and continuous
T: X -7 Y between Banach spaces which have the property
that A ® T: lq' ®e X -7lp®" Y is continuous for each linear
and continuous A: lq' -7 lp (here t and 1t denote the injec
tive and projective norm, respectively). Our result is a
special case of a more general factorization theorem for
mulated in the abstract framework of so-called weights on
Banach spaces-thissetting grew out of sorne nowadays
standard ideas which can be traced back to S. Kwapien's
and A. Pietsch's important work on s-summing and L s

factorable operators.

RESUMEN

Para 1 5, p, q 5, 00, con 1 / p + 1 / q 2:: 1, se demues
tra un teorema de factorización natural para aquellas
aplicaciones lineales y continuas T: X -7 Y entre espa
cios de Banach que tienen la propiedad de que
A ® T: lq' ®eX -7lp®" Y es continua para cada A: lq' -7lp
lineal y continua (donde t y 1t denotan, respectivamente,
la norma inyectiva y proyectiva). Nuestro resultado es un
caso particular de un teorema de factorización más gene
ral formulado en la estructura abstracta de los llamados
pesos sobre espacios de Banach -este surgió de algunas
ideas hoy estándar que pueden encontrarse en la impor
tante obra de S. Kwapien y A. Pietsch sobre operadores s
sumables y Ls-factorizables.

1. INTRODUCTION AND PRELIMINARIES

Our aim is to chafacterize operators between Banach
spaces which satisfy certain abstract matrix inequalities (in
terms of s-summing and Ls-factorableoperators) osee [2],
[3] and [9] for all needed information on operator ideals
and tensor products. This is done by a standard separation
argument within the framework of so-called weights on
Banach spaces.

The original motivation was to produce a -in a certain
sense natural- factorization theorem for (linear and con
tinuous) operators T: X -7 Y between Banach spaces which
for fixed 15, p, q 5, 00 with 1 / p + 1 / q 2:: 1 fulfilI the fol
lowing inequality:

(1) There is a constant e 2:: O such that for all n, all
n x n matrices (ak) and all vectors Xl"'" Xn E:: X,
y;, ..., y~ E Y'

It ak,l Y~(TX¡)I~

~ cll (ak,¡): 1;, -71; 11 sup .(2: IX'h)(J
uq

, Sup (2: IY~(YtJIIP'
Ilx'II,,;¡ k 11YII,,;¡ k

By a standard closed graph argument (1) has an equiv
alent formulation in terms of tensor products:

(1') For all operators A: lq' -7lp the tensor product
operator

A ~ T: lq' ~e X -7 lp ~1t" Y

is continuous; here as usual e denotes the injective and 1r

the projective norm.

The most spectacular characterization of such a matrix
inequality can be given in the case p= q = 1: Grothend
ieck's famous inequality from [4] states that T satisfies (1)
iff it factorizes through a Hilbert space. The case
1/ P +1/ q= 1 is 'completely covered by results from
Kwapien' s important paper [5]: For p= q' it is obvious that
T fulfills (1') if it satisfies (1') forA == id: lp -7lp only, and
in this case (1) reduces to

I 1 ( J
lIP ( JI/P'I yk(TXk) 5, e sup I)x'(xkt. sup L!y;(yt

kllx'll~I k 11* I k

Such T form the Banach operator ideal Dp of a11 p
dominated operators, and by Kwapien's factorization the
orem from [5] this ideal consists of all compositions
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absolutely s-surnrnable sequences in X. Then it is
obvious that for each A: 1q' ~ 1p

is continuous.

where R is p-surnrning and S' is p'~surnrnin&. RecaH that an
operator U: E -7 F is s-.surnrning{1:s;; s < 00) whenever

(for s=oo put 1t"~(u):=IIUII). Moreover, Kwapieú in [5]
showed that Dp is in trace duality with the Banach operator
ideal Lp' of all p'-factorable operators:

for 1:s;; s:S;; 00 an operator U: E -7 F is s-factorable (in short
TE Ls) whenever T for sorne rneasure J1 allows a factorization

In [2, p. 373] this latter duality result is extended to the
case 1/ p +1/ q > 1: Every operator T satisfies (1) if and
only if TE (Lq o Lp')*' the adjoint of the ideal of aH corn
positions UV with U E Lq , V E Lp " But it rernained
open how a Kwapierí-like factorization theorern for
1/ p +1/ q > 1 could look like.

The foHowing consideration shows that there is a nat
ural candidate for such a factorization theorern: Assurne
that T: X -7 Y aHows a factorization

X --'-T__-.... Y

IR U jI
E ------=----....F

such that

(11) id®R: 1q' ®e X -71q, ®Aq,E is continuous (Le. R is
.q'-surnrning, see [2, p. 128]),

(11') id® S: 1p ® ApF~ 1p ®¡r Y is continuous (by duality
this rneans that S' is p'-surnrning),

(I1I) A®U:1q,®Aq,E~lp®ApF is continuous for
each A: 1q' ~ 1p; here As stands for the norm on
ls ® X induced by l.(X), the Banach space of all

Our rnain application states that the converse of this
result holds: If T: X -7 Y satisfies the rnatrix inequality (1),
then it can be written as a product T =SUR with R, S as
in (11) and (11'), and U as in (I1I).

The Banach operator idealof aH U which satisfy (I1I)
is weH-understood: Again it was shown by Kwapieú in [5]
that for 1/ p + 1/ q =1 every operartor U: E -7 F fulfills
(I1I) if and only if it factorizes through a subspace L of a
quotient of sorne Lp (J1) (= quotient of a subspace...):

L

(for p = q =2 this is an irnportant characterization of 2
factorable operators due to Lindenstrauss and Petczynsky
[6]). In [1] (see [2, p. 369]) Kwapieú's result was extended
to the case 1/ p +1/ q > 1: An operator U satisfies (I1I) iff
there are a probability rneasure J1 and closed subspaces

such that U factorizes through the canonical rnapping

L1K~N/M, f+K~f+M.

In the language of Banach operator ideals these U form
the injective and surjective hull L~!:ur of the ideal Lp.q of
aH (p, q)-factorable operators (see [2, seco 18]).

2. KWAPIEÑ'S SEPARATION ARGUMENT

For a normed space X denote by Hlx) the set ofall
positive hornogeneous rnappings h: X~ R~o such that

sup h(x):s;; 1
Ilxll,;;¡ .

For 1:S;; P :s;; 00 and e e H¡(X) we call

wp,c:$X ~R~o. wp,c(xd:=SUP(:¿h(Xk)P)IIP
N heC k
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a weight on X (with the obvious modification for p =00).
Standard examples are the weak p-weight

and the strong p-weight

Another interesting example was investigated by Mat
ter [7] and López-Sánchez [8]: For O:::; () <1 and 1:::; p :::; 00

defines a weight on X which for 0= Oobviously equals wP •

We remark that if H¡(X) is endowed with the topology
1:, of pointwise converg~nce on X, then by Tychonoff's
theorem the 1:,-closure C of each C e H¡ (X) is compact,
and moreover

The space of .all Borel probability measures J1 one is
denoted by Mi(e).

Dealing with weights the following result is central:

Lemma. Fork = l,oo.,n let wp"c, be a weight on the

normed space X k and L 1/ Pk = l. Then for each function
k

n

qJ :rr X k ~ R~o,
k=l

wich is positive homogeneous in each coordinate, the fol
lowing are equivalent:

(1) For all m and Xl E X;n ,...,Xn E X;:
m n

LqJ(XI(k), ... ,xn(k)):::;rrWpk,Ck (xd.
k=l k=l

(2) There are Jl.k E Mi(ck) such that for aH
n ,

XE rrXk
k=l

For n =2, the' weak Pk-weights wpk' and qJ =11/> I with 1/>

a bilinear form on Xl x X 2 ' this result - at least essentially

- is due to Kwapierí [5]. Our (only formally) more general
version is proved exactly in the same way using a Hahn
Banach separationargument - for example copy wordby
word the proofs oí [9, Th. 17.4.2], or [2, Th. 19.2.]. Some~
times we will refer to this lemmaas "Kwapierí's separation
argument".

If wp,C is a weight on X, then we call an operator
T: X ~ Y (p, C)-summing whenever

"p,dT) ,~ sup t(~ II'IX,IIP}"I",p,d",),,; ll} < ~.

The class of (p, e) -summing operators T: X ~ Y will
be denoted by

flp,e(X,y).

Together with 1r ,C this is a seminormed space which
for the weakp-weigbt equals flp(X,y), all p-surnming op
erators, and for the strong p-welght thespace L(X, Y) of all
operators.

Obviously, for each Jl. E Mi(e)

Ix: X~ LAJl.,e), (Ixx)h:= h(x)

is (p, C)-summing and 1rp,c(Ix ):::; l. It is not hard to guess
from the Grothendieck-Pietsch cycle of ideas that this
rnapping is the protorype of a (p, c)-summing operator:
Assume that TE L (X, Y) is (p,C)-summing with
1rp ,c(T):::; c. Then for all XI,oo"Xn E X and Y~,oo.,y~ E Y'

Hence by Kwapierí' s separation argument there is
Jl. E Mi(c) such that for all X € X

( )

l/P

IITxll:::; c fch(x)p dJ1(h)

Clearly, this inequality gives a factorization

put G:= rangeIx and R(Ixx):= Tx. Vice versa, it is obvi~
ous that any operator t which factors in this way has
(p, C)-summing norm :::; c:

1rp ,c(r):::; IIR II1rp ,c(Ix):::; c.
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For the weights W p,e these results were discovered by
Matter [7] and López Sánchez 18].

3. A MATRIXVERSION OF KWAPIEN'S
SEPARATION ARGUMENT

For each n let Zn be a subspace of aH n x n matrices,
and lit a norm Oh Zn' We wilI say that the sequence

((Zn,llt)) ofsuch "matrix spaces" satisfies the so-called r

condition (1::;; r ::;; 00) whenever for all a E Zn' b E Zm

(obvious modification for r == 00).

The following variant of Kwapien's separation argu
ment is basic to our applications.

Proposition. Lef WP,C on X and Wq,D on Y be weights

such that 1/ p +1/ q ~ 1 and assume that ((Zn' IHln)) for r

defined by 1/ p' +1/ q' +1/ r == 1 satisfies the r-condition.
Thenfor every function <p: X x Y ~ R~o' which is positive
homogeneous in each coordinate, the following are equiv
alent:

(1) For all n, all a E Zn and all x E X n, y E yn

L a(k, l) q>(x(l) ,y(k)) ::;; Wq',c(x )Wp',D(y)llalln .

k,l

(2) There are J1 e Mt (e)) and ve Mt(15) such that
for all n, all a E Zn' and all x E X n, y E yn

L a (k,l)<p(x(l) ,y(k)) ::;;
k,l

PROOF: Clearly, only the implication (1) => (2) needs
a proof. We assume without loss of generality that e and
D are 't's-closed. Moreover, we wilI indentify each
a == (an) E $NZn with the block diagonal matrix
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where lal:== L (number of rows of al)' The idea of the

proof is to a¿ply Kwapien's séparation argument to the
modulus of the mapping

ep :$q' X X$p' YX$r Zn ~ R
N N N

ep(x,y,a):== L a(k,l)<p(x(l),Y(k))
k,/

(assume that the "length" of x and y equal lal, otherwise
add zeros). Define for h E e

XE$X
N

and

é'={hl hEC}CJ{,(~qx)
For each m and (Xj) e ($ xt'(Yj) E ($ yt, (a j) E:

($ znt we have

~ ~ aj(k, l}q¡(xj(l) 'Yj (k}) =¡ ($ aj)(k, l)q¡ ((E!hj ) (l), ($ Yj)(k))
j k,/ k,/

(again the "length" of the x j andYj equallajl). By as

sumption and since ((Zn' IHln)t satisfies the r-condition

L 1<!>{xj,Yj,aj)l::; wq',c ($ Xj )Wp',D ($Yj) 11$ ajlll:la¡1
j

Hence Kwapien's separation argument gives sorne

¡lE M:(c)and 11 E Mt(b) such that for all x E $X,

y E $ Y, a == (an) E $ Zn

note that e is 't's -closed since the bijection

[

al

(a (i,i)) :== $ al == O

is a homeomorphism. Define J1 and V to be the image
measure of it and v with respect to the inverse of this
mapping. Then the conclusion foIlows if we apply the
preceding inequality to aH x e X n, y E yn and "single"
matrices a E Zn' •
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4. WEIGHTED SEMINORMS ON TENSOR
PRODUCTS

If qJ in the preceding matrix version of Kwapien's sep
aration argument is bilinear, then it turns out to be conven
ient to reformulate this result in terms of tensor products.
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Again we start with sorne notation. Let wq',c be a

weight on X, wp',D a weight on Yand Z= ((Zn,IHln)) a
sequence of matrix spaces which satisfies the r-condition
with r defined by 1/ p' +1/ q' +llr= l. Define for each
zEX®Y

the infimum taken over all finite representations

n

Z =L a(k,l)x¡ ® Yk
k,l=¡

with a E Zn, X E X n and y E yn. Then it is not hard to see
that (X is a seminorm on X ® Y which we will call the
weighted seminorm generated by wq',c, Wp',D and Z (for
the proof ot the A-inequality mimic the proof of [2, Ex.
12.8]).

Examples. Let 1/ p' + 1/ q' +1/ r =1.

(1) Recall that Lapreste's tensor norms ap,q on
X ® Y are defined by

which generalize Saphar' s and Chevet' s tensor norms
gp := (Xp,¡ and dp := (X¡,p (see [2, seco 12]). Hence, if Zn
COnsists(Of

n
aH nJ~/~ diagonal matrices D¡ normed by

IID... IL:= tt IAl ,then by definition (and H6lder's in

equality)

were studied in [2, seco 28] - here rp,q is of particular
interest since it is the projective associate of the dual a;,q
of (Xp,q'

The foHowing theorem is our main result on weighted
serninorms a on X®Y generated by wq',C,Wp',D and Z,
andan analogue of the Grothendieck-Pietsch factorization
theorem for a-continuous functionals on X® Y. It shows
in particular that the seminorm

ap,q,Z on X ® Y

generated by the strong-weights Aq"ilp' and Z plays an
exeptional role among all such a.

Theorem. For 1::;; p, q, r ::;; 00 with 1/ p' + 1/ q' +1/ r =1
let (X be a weighted seminorm on X® y generated by the
weight wq',c on X, the weight wp',D on Yand the sequence

Z =((Zn' 11-11)) satisfying the r-condition. Then ¡or each lin
ear functional qJ on X ® Y the jollowing are equivalent:

,
(1) qJ E(X ®a y)

(2) There is a factorization

qJ
X®Y 'K

IR0S ('
E®F/

lJI

Let us reformulate this result in terms of operators.

a wp. Ap'

wq' ap,q dq,

Aq. gp' re

read: 1t is the weighted (semi)norm

generated by ilq"ilp' and ((Zn,llt)), ..·
For each operator T: X ~ Y' the following are equiv

alent:

(1') There is a constant c:2: O such that for aH n,aH
a E Zn and aH x¡, ... ,xn E X, Y¡, ... ,Yn E y

(2) Take for Zn aH n X n matrices normed by

Ilalln := Ila: 1;, -41;11·
The tensor n'orms r p,q,13p,q, and Op,q defined via the

table

L ak,¡(Tx¡)(Yk) ::;;cllalln Wq',c(X¡)Wp',D{Yk).
k,¡

(2') There is a factorization
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T
X~~......::..~~_·Y'

IR 1s'
U

E~~""':;:'~~-"'F'

Rev.R.Acad.Cien.Exact.Fis.Nat. (Esp), 1996; 90

The following result was already announced in the
introduction.

,

lJfe(E®ap'l'z F) withlllJfll:::;; 1,

with R and S as in (1) and U such that for some d;;::: O

holds for all n and a e Zn'

In this case: in!c= in!{1Cq"c(R)1Cp"D(S) inf d}

PROOF: The implication (2) =} (1) follows by sOrne
straight forward estimations using the definitions onIy. The
converse is an irnmediate consequence of the matrix ver
sion of Kwapien' s separation argument: Obviously,
<p e(X®a Y)is equivalent to statement (1) of the propo
sition in section 3 (w.l.o.g.: 11<p11:::;; t). Hence there are prob
ability measures fl and v such that

L a(k,l)<p(x(l)®y(k)):::;;
k,t

Define (for the definition of Ix see section 1)

Rx:= Ixx e range Ix =:E -4 Lq'(JL,C), x e X

Sy:= Iyy E range I y=:F -4 Lp,(v,15), ye Y

lJf(Rx® Sy):= <p(x® y)

Then 1t'q',c(R):= 1t'p',D(S) =1, and by the preceding
inequality

which proves (1). Finally, in order tosee (1') <=> (2') define

<p:XXY-4K, <p(x,y):=(Tx)(y).

Then it is obvious that (1) <=> (1') and (2) <=> (2').•

5. MATRIXINEQUAUTIES

We now deal with more specialized situations - again
it will always beassumed that 1$, p,q,r:::;; 00 and

1/ p' + 1/ q' +1/ r =1.

In the frrst two examples we apply the theorem to the
weak and strong weights, and take for Zn the space Mn of
aH n x n matrices normed by

Example 1. For every operator T: X -4 Y the follow
ing are equivalent:

(1) For all operators A: lq' -41p

A®T: lq' ®e X -41p ®¡t Y

is continuous.

(2) There is a c ;;::: O such that for all n, all n x n ma
trices (ak,t) and all x1, ... ,xn e X, yi, ... ,y~ E Y'

(3) There is a factorization

X~~~T~~_.y

IR U Is
E-~~~~-"'F

with R e IIq,(X, E) , S' e IIp' (Y', F') and U such
that for all operators A: lq' -4 lp

A®U:lq,®,.,. K-41p ®,.,. L'
o' p

is continuous.

In this case:

PROOF: A direct argument for the implication (3) =}

(1) was given in the introduction. Recall that the equalities

, ,
l; ®¡r Y" = (l;, ®e Y') = ((y'r, wp ,)

hold isometrically, and that

id® K y : 1; ®¡r Y -4/; ®¡r y"

is an isometric embedding (K y : Y -4 Y" the canonical em
bedding). Henee (1) =} (2) follows by a simple closed
graph argument. For the proof of (2) =} (3) we applythe
theorem to the weights wq' = wq',c on X, wp' = wp',D 9n
Y' and Mn (as aboye), and the operator .

KyT: X -4 Y" .
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This way we obtaina factorization
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(see [2, p.373]), and that each of these formulas gives in
formation on the matrix inequalities (2) of example 1.

Exactly the same way -replace Wp',D by !1p~ we
obtain

X __......:.:K,!;:yT:..._--.. Y"

l0 Ir
vK ~----=-----..L'

with o E Ilq" PE Ilp' and V such that for aH A

A®V: lq' ®A
q

• K ~ lp ®A p L'

{

dnal

(Lq
oL ,)* = Ilq o Ilq,

p Ildnal Il2 o 2

q'=p

l<p,q5,2

is continuous. In order to produce a factorization as in (3)
define

R:X ~range O=:E, Rx:=Ox

U: E ~ rangeV=:F ,Ux:==Vx

S: F ~ Y,Sx:= P'x

It remains to show that S' E II p'' But since
P" E IIp'(Y'''' L"), this foHows from the fact that

P"
YItt_~---=-__--... L"

S'
Y'-_....::.._~--..F'

commutes (1: F ~ L' the eanonical embedding).•

It is interesting to reformulate this result in terms of s
summing and s-factorable operators. It was already men
tioned in the introduetion that (1) is equivalent to the faet
that T is in the adjoint ideal of the eomposition Lq o Lp"

Hence (1) <=> (3) givesthe formula

(L o L .)* =Ild~1 o t njsur
on .q p p p.q q

here Il;?al stands for the ideal of aH opertors with p'-sum
ming duals. Moreover, it can easilybe seen that this equal~

ity even holds isometriealIy if all involved ideals are given
their natural norms. By [2,p. 337] we know that

(ls the ideal ofall s-integral operators), hence we can also
write

Example 2. For every operator T: X~ Y the follow
ing are equivalent:

(1) For all operators A :-lq' ~ lp

is continuous.

(2) There is c ~ O such that for all n, all n X n matri
ces (ak,l) and all xl, ... ,xn E X

(3) There is a factorization

with RE Ilq,(X,E), and U such that for all
A:lq'·~ lp

is continuous.

In this case: snp IIA ® 711 =inf e =inf{·1I:q.{R} snp IIA ® UII}· .
IIAR~l RAII~1

(L o L .)* =Il~~1 o .(Id~1 01 ,)* o Il 'q p y q p q'

Finally, we remark that

25,q5,oo

1<q5,2

q=1

In terms ofoperator ideals (see [2,p. 374]) this reads as
follows:

(L 1 )
* T injsur

q o p' =Lp,q o Ilq•.

We finish looking at two subspaces of Mn: the sub~

space ofall n x n diagonal matrices and the subspace of all
regular n x n matrices (differences of two in the lattice
sense positive operators).
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Example 3. For every operator T: x~ y the follow
ing are equivalent:

(1) For all diagonal operators DA: lq, ~ lp

DA @ T: lq' @e X ~ lp @¡r y

is continuous, or equivalently: there is c ~ O such
thatforalln and al! X¡,oo"Xn E X ,Yí, ...,Y~ E Y'

(2) For all regular operators A: lq' ~ lp

is continuous, or equivalently: there is c ~ Osuch
that for all n, all regular n X n matrices and all
X¡'''',Xn E X,Yí, ... ,Y~ E Y'

L ak,¡yk(Tx,) ~ ella :1;, ~ 1;11 wq,{x¡)wp,{y,n.
k,¡

(3) There is a factorization

(see e.g. [2, p.80]). Hence the proof of (1) ~ (3) is an easy
modification of the proof given for example 1 (in (1) the
equivalence of both statements follows by the closed graph
theorem). Moreover, (3) implies both statements in (2) 
use again the argument from the introduction. FinalIy, we
remark that it is obvious that each of the statements in (2)
implies (1).•

Clearly, analoguous results hold if wp ' is replaced by
wp',O" and wq' by wq',v with O~o",v<1 and l~p,q,r~tX>

such that

1-0' 1-v 1
---+--+-=1.

p' q' r '

in this setting equivalence (1) ~ (3) of the preceding re
sult was observed in [8].
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