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Abstract 

The approximate controllability of solutions of a large class of semilinear parabolic 
problems is studied. We extend previous results in the literature under a sublinear asymptotic 
condition on the nonlinearities. On the other hand, we show that this property fails for strictly 
superlinear nonlinearities. 

Resumen 

En este trabajo se estudia la controlabilidad aproximada de una amplia clase de problemas 
semilineales parabólicos. En una primera parte se muestra esta propiedad bajo una hipótesis de 
comportamiento asintótico sublineal sobre las no linealidades extendiendo resultados conocidos 
en la Hteratura. En una segunda parte se muestra que la propiedad no se verifica si los términos no 
lineales son estrictamente superlineales. 

1. Introduction 

Let O a bounded regular subset of R" , r>0 , Oan open subset of 
(2 : = a X (O, r ) , / a continuous function, A{x, t) eLr{Q)md p (•) a bounded 
maximal monotone graph of R^ such that Z)(̂ ) = R . The main goal of this 
article is the study of "the controllability" of the parabolic problem: 

U-Ay¥f{y) + A{x,t)li{y)3uxa in Q, 

{(P)\y(x,t) = 0 on Z = ¿>Ox(0,r), 

\y{xfi) = yoix) on a. 
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Problem (íP) arises in the modelling of many different applications. 
When A = 0 the semilinear equation of (íP) is relevant, for instance, in 
chemical kinetics (see e.g. Aris [1975] and Diaz [1991a]). If A = Othe equation 
of (iP) may become multivalued. So, if y4>0in Q, problem (iP) includes a 
large class of parabolic variational inequalities arising in the study of many 
different contexts (see e.g. Duvant-Lions [1972], Brézis [1973], Benilan [1978] 
and Diaz [1980a] [1980b] for details about modelling, existence, uniqueness 
and some qualitative properties). The case A < 0 in Q have been studied 
recently in the context of some combustion problems (Gianni-Hulshof [1982]) 
and also in Climatology (Diaz [1983], [1994a], [1994b]). 

The main goal of this paper is the study of the controllability of solutions 
y of (iP) by means of controls u acting on the open set OŒQ: we say that 
problem (iP) has the exact controllability property with respect to the states 
space X and controls space U if for each j¿ e X fixed there exists a control 
u^U and a solution j = y(-,w) of the associated problem [T) such that 
y{T:u) = y¿ . 

This property usually holds for conservative problems (such as, for 
instance, the wave equation). Nevertheless, in the case of parabolic problems 
the smoothing effect is an impediment for this property except for very special 
choices of X. Due to this, a weaker formulation is introduced: we say that 
problem (iP) has the approximate controllability property with respect to the 
states space X and controls space U if for each y,/ € X fixed there exist a 
sequence of controls {¿^«j,,̂ ^ c i î i and solutions y^ =j(-,w„) of the associated 
problems such that v„ (7) -> v,y in X as n -> «D . 

A first general answer on the approximate controllability for linear 
parabolic problems was given in Lions [1968]. Concerning the nonlinear case, 
the first type of results assumed 0 = Q and A = 0. (See Henry [1978] and a 
recent simpler proof in Diaz-Fursikov [1993]). Another interesting question 
related to the case 0 = Q and A = 0 appears under a restriction condition on 
the sign of the controls. For example, if we assume Vo = 0 and v̂  e Li (Q) it is 
possible to choose the control u in the space Ll(0). This question was already 
studied in Diaz [1990] for the linear case with controls on the boundary. The 
study of this property for the nonlinear case was carried out in Diaz-Henry-
Ramos [1994]. 

A new method for the study of the controllability of the linear case 
( / = 0, A = 0) was introduced in Lions [1990], [1991] and later extended to a 
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Special formulation of (iP)by Fabre-Puel-Zuazua [1992] [1995]. In both cases 
the domain of controllability is restricted to open subsets of the form 
O = œx(0,T), where œ is an open regular subset of Q and the nonlinear 
equation considered corresponds to the case A = 0 and/satisfying 

(1) / i s a globally Lipschitz continuous function and 
(2) I f{s) \<a-^b\s\ if I 5" I > M for some positive numbers a, b and M. 

Our main goal is to study the approximate controllability property when 
assumption (1) fails. More precisely, in Section 2 we will show that the 
regularity on f given by (1) can be improved once that the sublinear asymptotic 
condition (2) is assumed. As an special case of our results (see Theorem 1 
below) we can make sure that the approximate controllability holds, if, for 
instance, A = 0 and 

(3) m=x\s i r - l 
S 

with 0<r<l(not ice that such a function / does not satisfy (1)). Our 
controllability result replaces condition (1) by the differentiability of / in 
merely one point (see condition (6)). This result generalizes and develops the 
one presented in Diaz [1994a] for A = 0. Here we also consider the multivalued 
case A=0 under an additional assumption on ¡i more general than the 
boundedness condition. 

Section 3 is devoted to show that the sublinear asymptotic condition (2) 
is fundamental in the study of the approximate controllability property on 
strictly included subdomains OciQ. More precisely we shall show that if we 
assume A = 0 (only for simplicity) a n d / i s given by (3), with r > 1, then a 
uniforme estimate holds making impossible the approximate controllability 
property. In fact, the results of this section are the motivation of a further work 
Diaz [1994b] where the approximate controllability of problem (T) is proved 
for functions / having a superlinear asymptotic behaviour and under suitable 
restrictions on the desired state y^ . 
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2. Approximate controllability under a sublinear growth 

In order to make clear our results we start by considering the case in 
which f is given by (3). The case r = l corresponds to the linear model. The 
approximate controllability can be obtained by different methods: using the 
Hahn-Banach Theorem (Lions [1968]), by some constructive methods (Lions 
[1990]) and by a duality argument (Lions [1991]). 

Concerning the case 0 < r < 1, it is interesting to mention the work of 
Seidman [1974] where an abstract result is presented and whose application to 
the problem (iP)was already pointed out in Diaz [1990]. Nevertheless, this 
point of view is very sophisticated and we shall follow a different method. 

The main goal of this section is to obtain a more general result applicable 
to the case 0 < r < 1. We shall follow the duality method introduced in Lions 
[1991], latter improved in Fabre-Puel-Zuazua [1992] [1995], relative to the case 
13 = 0, 0 = 0) x(0,T) with coczQ and/satisfying (1) and (2). 

Our result is the following 

Theorem 1 Assume f(s) such that 

(4) / € C ( R ) 

(5) 
(there exists M>0,c^ >0 , and 2̂ >0 such that 

[ \f{s)\<c,+c,\s\,if\s\>M 

(6) the derivative f'(^s^) exists, for some s^eR.. 

Then problem (iP) has the approximate controllability property with state 
space X = U (o), \<p<oo and control space î i = L" (g) • 

Remark 1 Condition (6) holds when/is Lipschitz continuous on some interval 
( a , è ) c R . Indeed, by a well known result (see, for instance, page 145 of 
Brezis [1973]), there exists f'{s) for almost every s G (a,è). l̂ 

Corollary 1 The conclusion of Theorem 1 holds in each one of the following 
special cases: 
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i) f is a globally Lipschitz continuous function, 

ii) fis a locally Lipschitz continuous function satisfying (5), 

Hi) f(s) = X\s\'~^s and 0<r<l. D 

Before starting with the proof of Theorem 1 we shall give some previous 
results and definitions. 

Proposition 1 If M is an open subset of Ô, !</?'<<», aeLr{Q) and (p 

satisfies 

f -Çf - A(p + a(x,t)(p = 0 in Q, 

(p = 0 on I., 

(p(T)eLP'{Q) and 

then (p = 0 in Q. 

(p = 0 in M, 

Proof. Let t* = s u p { i < r : 3xeQ, such that(jc,i)GM}. Then, by the unique 

continuation theorem (see Mizohata [1958] and Saut-Scheurer [1987]) and the 

uniqueness of solutions we deduce that (p = 0 in Q* =Ox(o, i* j . Further, by 

backward uniqueness results (see page 173 of Friedman [1964]), we conclude 
that (¡p = 0 in the whole domain Q. m 

Proposition 2 (Fabre-Puel-Zuazua [1992], [1995]) The result of Theorem I is 
true for the linear case with a potential (i.e. with A = 0 and replacing f[y) by 
a{x,t)y, with a{x,t)e Lr{Q)y Furthermore, the controls can be taken of 
"quasi bang-bang type"^ D 

For the sake of the exposition we recall here the idea of the proof of the 
Proposition 2. Those authors obtain the result for 0 = (ÛX (O, T) but the proof 
for a general open set Oof Q follows with easy modifications. They obtain the 
result by minimizing the functional 

* We say that v is of "quasi bang-bang type" if there exist a constant C and a function 

(¡9() such that v() € C sig (p{) 
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V)4(Il^(^'')lH' "-"l̂ " I'm -ÍJ"^"'^ 
over LP' (Q) , where (p (x, t) is the solution of the retrograde problem 

-Çj - A(p + a{x,t)(p = 0 in g , 

9 = 0 on Z, 

(p{T) = (p'' on O . 

Now, by using Proposition 1, the coercitivity of the functional /(•) is shown. 
Therefore, /(•) attains its minimum over Z / ' ( Q ) in a unique point ç^ . Further, 
if ç{x, t) is the solution of the corresponding retrograde problem, through the 
subdifferential of the functional / , it can be shown that there exists 
V e sgn(q)(xj))xQ such that the solution of 

[ j , - A j + a(x,i)j =19^1(0) v^{? in Q, 

y = 0 on E, 

y(0) on O, 

satisfies II j ( r ) - 3 ; , | | ^ 
{a)<e. 

Proposition 3 (Fabre-Puel-Zuazua [1992] [1995]). Let M be the mapping 

M:V{a)xr{Q)-^ü\Q) 

{y^,a) h^ (p\ 

Then, if K is a compact subset of L^(0) and B is a bounded subset of L"{Q), 
then M(K X B) is a bounded subset of LP' {Q) . • 

Proposition 4 Let a = a{t, x) G L^ [Q) . Then there exists a constant C > 0 such 
that for every k e LP{Q) and o)^ e L^(ü) the solution œ of 
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cOj-'Acû-^a{t,x)û) = k in Q, 

^cû = 0 on E, 

[co{0) = cû^ on Q, 

satisfies 

(7) lhlL-(o,r;z.(n))^c(||«,°||^(„,+||A:||^(g,). 

Moreover, if co^ =0 and a(-,) = 0, then cûeXP{0,T) and there exists a 
constant C > 0 such that 

(8) ||a,||^.,„,)<C||/:||^P(^^, 

where 

XP (0, T) = LP (O, r ; Wo'P (a)) nw^^P (o, 7; L^ (O)), 

ana 

lMlxp(o,r) ~li llL''(o,r;wj'''(fí)) "*"lrllwí-̂ (o,7';LP(n))' 

Proof . For (7) see Theorem 9.1, page 341 of Ladyzenskaja-Solonnikov-
Uralceva [1968] and pages 226-228 of Pazy [1993]. For (8) see pages 341-342 
of Ladyzenskaja-Solonnikov-Uralceva [ 1968]. • 

Remark 2 If a( -, •) = 0, then using Proposition 4 and Gronwall's Lemma it is 
easy to prove that coeXP(0,T) and 

ll^llxp(o,r) - ^ a Ir IILP(Ô) ' 

with C,=o(l+||a||^.(^)exp(||a| |,.(g))). D 

We shall need to use a fixed point theorem for multivalued operators: 

Defínítíon 1 Let X, Y two Banach spaces and A:X->íP(F) a multivalued 
function. We say that Ais upper hemicontinuous at x^eX, if for every 
PEY\ the function 
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x-^a{A(x%p)= sup <p,y>r^Y 
yeAix) 

is upper semicontinuous at XQ. We say that the multivalued función is upper 
hemicontinuous on a subset K ofX, if it satisfies this property for every point 
ofK. 

Theorem 2 (Kakutani's fíxed point Theorem). Let KczX be a convex and 
compact subset and A:K-^K an upper hemicontinuous application with 
convex, closed and nonempty values. Then, there exists a fixed point of A. D 

For a proof see, for instance, Aubin [1984] page 126. 

Proof of Theorem 1. We fix y^ e L^ (il), £ > 0 and we define 

§(s)= 

m-f{so) 
s- s„ 

s^s^^ 

fVo) ^ = ^o^ 

As / satisfies (4), (5) and (6) then gGL'"(R)nC(R) . Indeed: Let 

M = max { M , | 5̂  | +1}. Then, as g e C (R) (by construction), 

max< |g(^)|: ^G -M,M > < o o . 

Moreover, from (5), 

sup \g{s)\< sup 
' ' '^' \s\>M \s\>M 

\f{s)\ , | /(^.) | 
\^| '̂  ^0 \ \ ^ ^0 \ y 

< sup 
\s\>M 

C, + C2 |i I 

V p - ^ o l J 
•\fiSo) < o o 

since U - -̂̂  > 1 and lim -i ^—r- = c. 
s~ s 

file://�/fiSo
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Now, for each zeIf{Q) and for each bep{z) we can split 
y = Lh (z) + Yh (z), where L = L¿, (z) is the (unique) solution of 

(9) 

L,-AL + giz)L = -f{s^) + giz)s,-A{xj)b in Q, 

L = 0 on S, 

L(0) = y^ on n . 

and by using Proposition 2, for each £ >0 it is possible to find two functions 
(p(z, b)e If'{Q) and v{z,b)e sgn [(p{z,b))XQ such that the solution Y=Yh{z) 
of 

(10) 

\Y,-AY-^g(z)Y = uXo in Q, 

y = 0 on Z, 

y(o)=o on n, 

with M=||<p(z,è)j|^, v(z,è) satisfies 

(11) \\nT)-{y.-LÍT))l^^^<e. 

Now, by using Remark 2 and that 

(12) Zp (0, T)çzC ([0, r ] ; L^ (fí)) with compact embedding 

(see Lemma 4 and Theorem 3 of Simon [1987]) we have that 

(13) {y^ - L{T): zeLP{Q),b Ep(z)} is a relatively compact subset of L^(0). 

Further, y = L + Y is solution of 

(14) j = 0 on E, 

y(0) = Jo on n 
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and satisfies 

(15) | | j ( r ) - j , | | ^ ( ^ , < e , 

with M = IIÇ) (z, b) II ̂ ,. . V (z, è) . As g ( • ) is bounded, from (13) and Propositions 

3 and 4 we obtain that 

(16) {|(p(z,è)||^,^^^v(z,&),zGZ/(e),&Gi3(z)}isboundedinL-(ô) 

and then 

(17) M= sup <?'(z,¿)L.,o) < - • 

Obviously M = ||(j!)(z,£>)||^,.Q,v(z,è) satisfies 

(18) hL~iQ)^M-

Therefore, if we define the operator 

A:LP{Q)-^iP{LP{Q)) 

by 

Aiz)= { y satisfies (14), (15) for some beI3{z) and some u satisfying (18)}, 

we have seen that for each z e LF{Q), A(z)^ 0 . In order to apply Kakutani's 
fixed point Theorem, we have to check that the next properties hold: 

(i) There exists a compact subset U of LP{Q), such that for every 
zeLP{Q), A{z)czU. 

(ii) For every zeLP[Q), A(z) is a convex, compact and nonempty 
subset of ¿'^(g). 

(iii) A is upper hemicontinuous. 
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The proof of those properties is as follows: 

(i) From Remark 2 we know that there exists a bounded subset U of Lf{Q) 
such that for every z G L^{Q), A{Z)CZU . Now, to see that we can choose such 
a set U being compact, we shall prove that the set 

iX = | J satisfying (14)for some zeL^{Q), befi{z) and u verifying (18)} 

is a relatively compact subset of LP{Q). If j e ^ X , there exist 

zeL^{Q),b^p{z) and ueL^{Q) satisfying (18) such that y = u^+u^+Y, 

where Y is given by (10) and u^ ,u^ are given by 

\ul -Aw' =-f{s^) in Q, 

w' =0 on E, 

u'(0) = y^, on a , 

uf - A M ' +g{z)(u' +u^) = g{z)s^-A{xj)b in Q, 

u^ =0 on Z, 

M'(0) = 0 on n . 

Since w' is a fixed point in L''(g),{g(z)M', zeLP{Q)^ is a bounded subset of 
Lf{Q). Then, from Remark 2, the solution ¿/̂  lies on a bounded subset of 
X^(0,r) . But, as X^(0,r)cL^(!2) with compact embedding (see (12)), u^ 
lies on a compact subset K^ of ¿^(ô) • O" the other hand, by Remark 2, y(v), 
solution of (10), lies in a bounded subset of X'' (0,7), and Y{v) a K^, with K2 
being a compact subset of Z/(g) .Therefore ^a u^ -\- K^-\- K2, which is a 
relatively compact subset of Lf{Q) .This concludes the proof of (i) if we take 

in) We have already seen that for every z G LP{Q), A(z) is a nonempty subset 
of W{Q)' Further A(z) is obviously convex, because B[y^,e),p{z) and 
|MGL"(g): satisfying (18) jare convex sets. Then, we have to see that A(z) 
is a compact subset of LP{Q)' In (i) we have proved that A(z)c:i/ with U 
compact. Let [y" ) be a sequence of elements of A(z) which converges on 
L^{Q) to yeU. We have to prove that yeA{z). We know that there exist 
b" epiz) and u"" e L^iQ) satisfying (18) such that 
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(19) 

fy; -Ay" +g{z)y'' =-f{s„) + giz)s„-Ab'' +u''xo ' " Q-

j " = 0 on Z, 

/ ( 0 ) = y„ on Q, 

Now, using that j3 is a bounded maximal monotone graph and that the controls 
M" are uniformly bounded, we deduce that u"" -^u and b"" -^b in the weak 
topology of LP{Q). Further u satisfies (18) and since any maximal monotone 
graph is strongly-weakly closed (see Proposition 3.5, of Barbu [1976]) over 
Banach spaces whose topological duals are uniformly convex (for instance, 
LP{Q) with \<p<oo) we obtain that bep{z). Therefore, if we pass to the 
limit in (19) we obtain: 

yt-^y + g{z)y = 'f{s^)^g{z)s^-\-Ab + uXo in Q, 

y = Q on E, 

y{0) = y, on a. 

Further, by the smoothing effect of the heat equation, j " {T) converges to y{T) 
on LF{ü) (using again Remark 2 and the compactness result (12)) and 
II y{T) - yd\iPíQ\ - ^ • This proves that y G A(z) and concludes the proof of (ii). 

(iii) We must prove that for every Zo ^LP{Q) 

limsup G{h{zn),k)<a{h{zo),k), \fkeLP'{Q). 

We have seen in (ii) that A (z) is a compact set, which implies that for every 
n G N there exists j " eA{zn) such that 

cr(A(z„),/:) = j k{t,x)y''{t,x)dxdt. 
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Now by (i) (y'^) c i / (compact set). Then, there exists yeLP{Q) such that 

(after extracting a subsequence) y'^-^y on LP{Q). We shall prove that 

yeK{zo)' We know that there exist è" G/3(z„)and w" GL°°((2) satisfying 

(18) such that 

(20) 

y^ ^^y^ +g{z,)y^ =-f{s,) + g{z,yAb^ +U^X0 Í« Ô, 

3;''=0 on Z, 

y'(o)=j, on a, 

ll^"(^)"^^ll L^'in) 
< £ . 

Then there exists ueLr{Q) satisfying (18) such that u^-^u in the weak-* 
topology of LT ((2). On the other hand, using again that /3 is a bounded 
strongly-weakly closed graph and the smoothing effect of the heat equation, we 
deduce that J satisfies (14) and (15) with z = Zo for some ueÜ°{Q) satisfying 
(18) and some b€p{zo), which implies that yeA{zo)' Then, for every 

CJ(A(Z„),/:) = J k{t,x)y''(t,x)dxdt-^\ k{t,x)y{t,x)dxdt < 

< sup I k (t, x)y (t, x)dxdt = a [Mzo ), ^ ) , 

which proves that A is upper hemicontinuous and concludes the proof of (iii). 
Finally, if we restric K io K= conv (U) (the convex enveloppe of U), which is 

a compact set in L^(Q), A satisfies the assumptions of the Kakutani's fixed 

point Theorem. Then, A has a fixed point ye K. Further, by construction, 

there exists a control u e Lr{Q) satisfying (18) such that 

^y,~Ay + f{y) + A{x,t)l3{y)3uXo in Ô, 

y = 0 on E, 

^̂ ^̂  ^y{o)=y„ on n, 

II y(T) - V J | ^ e. 
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Therefore, y is the solution that we were looking for. • 

We can improve the boundedness condition on p 

Corollary 2 Let j3:R -^ iP(R) be a maximal monotone graph such that there 
exist two positive constants Cj and Ci such that 

\b\<c,+c,\r\ ^bePir). 

Assume also that the set of points where p is multivalued is, at most, a set of 

the form { Xi : / G Z} , 

such that 

SM(Í3U))<~ 

if fx is the Lebesgue's measure on R . Suppose, finally that p is differentiable 
at some point x^ . Then, the problem 

y,-ày + 'p{y)3uXo in Q, 

y{xj) = Q on E, 

has the approximate controllability property with state space X = L^ (Q.) 
(l< p < oo) and control space Zl = LT (Q). 

Proof of Corollary 1. If we call /?(• ) to the maximal monotone graph such 
that p{xo) = p{x„), P{') is constant over each interval [x¿,x¿^^) {ieZ) and 
p\^P[Xi}j = iLiip{Xi}) (ÍE2J) , then, 8̂ is a bounded maximal monotone 
operator and f = p-p is a nondecreasing function satisfying the conditions of 
Theorem 1. The proof concludes by applying this theorem with f -¥ p = p . m 
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Remark 3 It seems important to point out that Theorem 1 is established for 
any open set O of Q. The case in which the controllability set O is reduced to 
a single point [{t^,Xo)\of Q, or a segment {0,T)x{xo}, for some x^ eQ,, 
needs a different approach. Notice, that, for instance, any control u with such 
support is not an element of the dual of the energy space 
(̂ in particular u^ U(0,T;H~^{Q.))\ and so the associated state y{t,:u) can not 
be found, in general, in the natural energy space L̂  (0, T;//J (Q)). A very 
special controllability result when O = (0, T) x [x^ }{N = l, f linear, A = 0,... ) 
was the object of the works Lions [1994] and Glowinski-Lions [1995]. D 

3. Negative results for the superlinear case (r > 1). 

In this case, the result about approximate controllability is, in general, negative. 
For instance, if O = œx{0,T) with co an regular open subset of Q. and 
A( •,) = 0, then any solution can be uniformly estimated (independently of the 
controls) over Q.\W. A first example is due to A. Bamberger (see Henry 
[1978]): Given a = (0,l),r>l , and vGÎ/ = L2(o,r), we consider the problem: 

yt-yxx-^\yr'y = ̂  in Q, 
y^(tfi) = v(t);y{t,l) = 0 on Z, 

j(0) = 0 on a. 

Then, if Q.^ = {e ,l) (O < £ < l) , we have that 

|_y(r,jc)| dxúC^ (independently of v). 11 

A different method was developped in Diaz [1990] for the global 
boundary control case. Here we adapt his proof to problem (iP) with 
A ( - , ) - 0 . 

Theorem 3 Asume p>\ . Let uell = L^{œx{0,T)) arbitrary and let 

y[x,t\u^ be the corresponding solution of the problem (íP) with y4(-,) = 0 

and /(^) = |̂ |̂ ~ s. Then 
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\y{x,t:u)\<C(r,n) 
1 1 

dixY 
t'j 

a.e.{x,t)e{a\œ) x(0,r). 

with 

0 = -, and d(x) = dist(x,d(o) D 
p ~ l ^ ^ 

Proof. It suffices to prove that 

j(jc,i:M)<C(r,n) 

Í ^ 
1 1 

J(x)' 
t'J 

a,e. {x,t)G(Q,)\cû) x(0,T), 

(the other inequality is analogous). We define the function 

Yix,t) = Cir,n)\ 1 1 

dix)" 
t'J 

d'{x„) 
Now, for every x^ eQ.\ co, t^ e (O, T) and k = —^-^ , we consider the 

function 

Uit,x)=^ ^ J=c(kt^{x-^x,y)''\ 

over the set 

S = {(t,x)eQ\{cûX(0,T)):\x-x^f <iki,0<i < i J , 

with r = |jc-;Co| and C a constant that we shall choose later. Following the 
work Kamin-Peletier-Vázquez [1989] we shall show that forC large enough, 
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U>u in 5. First of all, we point out that Í/ = oo over the parabolic boundary of 
5. Further, if we denote (by simplicity) y/^kt-r^ ,we obtain that 

L{U) = U,-AU + U'' 

= -kCew'^'^'^ - div[20Cv -̂<'*"(x, - ;c„,,)] + C v̂ -* 

1=1 1=1 

+ Cy/-^ 

Therefore, if we choose C such that 

(22) 

-C"! >4e(e + l)r^ 

3 

•CP-' >fe0v̂ . 

we obtain that L( [/)> 0. Now, as r̂  + ŷ  < ¿ (̂x )̂ = fcio. (22) is satisfied if 

C = c{p,n) / 
d{xoY +kP-^ d{x„)JÂ 

Then, by applying the maximum principle to u and U in S, we obtain 

d{x„)'^k'^^ d{xj 
u{to,x„)<U{t„,x„) = -—j = c{p,n)-

••c{p,n) 
1 _^k'tr' 

0 /, \e d{xo) (K) 
= c{p,n) 

(*>.)• 

1 1 
— r + T 

2 4-or , 
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Corollary 3 If r>\, the problem {^)with A(-,) = 0 does not verify the 

approximate controllability properyty. G 

Remark 4 It seems possible to extend the results of this paper to other 
nonlinear problems of more complex structure than the semilinear one. This is 
the case, for instance, of the porous medium equation 

y.-ày'^^uxo 

and the (m +1) -Laplacian equation 

yt-\m^i)y=^Xo 

So, if m > l we have already obtained negatives answers. For 0 < m < l we 
conjecture that the answer is positive. D 
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