On superbarrelled spaces. Closed graph theorems

BALTASAR RODRÍGUEZ SALINAS*

Académico Numerario

Recibido: 4 de Octubre de 1.995

Abstract

J. Arias de Reyna [1] has proved that the space 1_0^∞ (Ω, Σ) is not totally barrelled, except for trivial cases. Nevertheless, such space has a high degree of barrelledness, as has been proved by M. López Pellicer [4]. In this paper the spaces with López Pellicer's property (that we call super-barrelled), are studied, in connection with the barrelledness classes introduced by the author in [5] and [8], we prove that a space is super-barrelled if and only if is is barrelled of class α , for every α .

Definition 1. A locally convex space (1.c.s. in short) E is called superbarrelled if for every increasing web $W = \left\{ E_{n_1 \dots n_p} : p, n_1, \dots, n_p \in \mathbb{N} \right\}$ of vector subspaces of E, there exists a sequence $\left(n_k \right)_{k \in \mathbb{N}}$ so that $E_{n_1 \dots n_k}$ is barrelled and dense in E.

W is an increasing web if every sequence $\left(E_{n_1..n_{k-1}n}\right)_{n\in\mathbb{N}}$ is not decreasing and

$$E = \bigcup_{n=1}^{\infty} E_n$$

and

$$E_{n_1...n_k} = \bigcup_{n=1}^{\infty} E_{n_1...n_k n}$$

for all $k \in \mathbb{N}$

^{*} Supported in part by DGICYT, grant PB94-0243.

If Σ is a σ -algebra on a set Ω , following Valdivia [9] we denote by $l_o^\infty(\Omega, \Sigma)$ (or $l_o^\infty(\Sigma)$) the real or complex space spanned by the characteristic functions χ_A , with $A \in \Sigma$, endowed with the sup norm $\|x\| = \sup\{|x(\omega)|: \omega \in \Omega\}$. Theorem 1 of [4] asserts that $l_o^\infty(\Omega, \Sigma)$ is superbarrelled.

Proposition 2. If E is a superbarrelled space and (E_n) is a non decreasing sequence of vector subspaces whose union is E, then there exists a subsequence (E_{n_k}) consisting of superbarrelled spaces.

Proof. Suppose the proposition false. Then there is a non decreasing sequence (E_n) of subspaces of E covering E, none of them superbarrelled. Hence, for every $n_1 \in \mathbb{N}$ there exists an increasing web $W_{n_1} = \left\{ E_{n_1 \dots n_p} : p, n_2, \dots, n_p \in \mathbb{N} \right\}$ of subspaces of E_n such that for every sequence (n_k) there is as $E_{n_1 \dots n_k}$ which is not barrelled or is not dense in E. If we consider the web $W = \left\{ E_{n_1 \dots n_p} : p, n_1, \dots, n_p \in \mathbb{N} \right\}$, we then get a contradiction.

Definition 3. (By Transfinite induction). Every barrelled space is said to be of class 0. If α is a transfinite ordinal number of the first class (i.e., with predecesor), the barrelled space E is said to be of class α if, for every non decreasing sequence (E_n) of subspaces covering E, there is an n so that E_n is a barrelled space of class $\alpha - 1$, dense in E. If α is a transfinite ordinal number of the second class, E is said to be barrelled of class α if E is barrelled of every class $\alpha' < \alpha$.

Proposition 4. Every superbarrelled space is of class α , for all α .

Proof. Let us suppose there is a superbarrelled space E' which is not of class α' . Then there is a transfinite number α and a superbarrelled space E of class α , but not of class $\alpha+1$, such that every superbarrelled space is of class $\geq \alpha$. Let (E_n) be a non decreasing sequence of subspaces covering E. Then, by Proposition 2, there exists a subsequence (E_{n_k}) of superbarrelled subspaces, hence of class $\geq \alpha$, covering E. But then, according to Definition 3, E would be a barrelled space of class $\geq \alpha+1$.

Proposition 5. A barrelled space E is superbarrelled if and only if it is of class ω_1 , where ω_1 is the first uncountable ordinal.

Proof. If E is a superbarrelled space, by Proposition 4, E is of class ω_1 . Conversely, let us suppose that E is a barrelled space of class ω_1 and let (E_n) be a non decreasing sequence of subspaces covering E. If no E_n is of class

 ω_1 , there would be and $\alpha < \omega_1$ such that no E_n is of class α and so E would not be of class $\alpha + 1 < \omega_1$. Thus, there are infinite E_n of class ω_l .

Let now $W = \left\{E_{n_1 \dots n_p} : p, n_1, \dots, n_p \in \mathbb{N}\right\}$ be an increasing web of subspaces of E. By induction, using the preceding argument, we get a sequence (n_k) such that every $E_{n_1 \dots n_k}$ is a barrelled space of class ω_1 , dense in E. Thus, E is superbarrelled.

Corollary 6. Every barrelled space of class ω_1 belongs to any other class α .

Proof. It follows immediately from Propositions 4 and 5.

The following notions are related with those considered above:

Definition 7. Given a l.c.s. E, a $\Gamma_r(E)$ - space is a l.c.s. F such that every linear mapping $T: E \to F$ with closed graph, is continuous. $\Gamma_r(E)$ will denote also the class of all $\Gamma_r(E)$ - spaces. A $\Gamma_r^{(o)}$ (or simply Γ_r) space is a l.c.s. F belonging to $\Gamma_r(E)$, for every barrelled space E. If α is a transfinite ordinal of the first class, a $\Gamma_r^{(\alpha)}$ -space is a space F which is the union of a non decreasing sequence $F_r(E)$ of $F_r^{(\alpha-1)}$ -subspaces. If $F_r(E)$ is a transfinite number of the second class, a $F_r^{(\alpha)}$ -space is a $F_r^{(\alpha')}$ -space, for some $F_r^{(\alpha')}$ -space.

$$\Gamma_r^{(\alpha)} = \bigcup \left\{ \Gamma_r^{\left(\alpha'\right)} \colon \alpha' < \alpha \right\}$$

Clearly, $\Gamma_r^{(\alpha)} = \Gamma_r^{(\omega_1)}$, for every $\alpha \ge \omega_1$.

As an application of these notions, we have:

Theorem 8. [5, **Theorem** 11]. Let E be a barrelled space of class α and F be a $\Gamma_r^{(\alpha)}$ -space. If $T: E \to F$ is a linear map with closed graph, then T is continuous and there exists a subspace F_o of F which is a Γ_r -space and contains the range T(E) of T.

Theorem 9. [7, **Theorem 1**]. Let $m: \Sigma \to E$ (l.c.s.) be a mapping such that Σ is a σ -algebra of subsets of a set Ω , and $E \in \Gamma_r(l_o^\infty(\Sigma))$. If $x^* \circ m$ is bounded and finitely additive for every x^* beloging to a total subset Γ of the dual E^* of E, then E is a bounded vector measure.

Theorem 10. [7, **Theorem 2**]. Let Σ be a σ -algebra of subsets of Ω . If E(l.c.s.) is not a $\Gamma_r(l_o^{\infty}(\Sigma))$ -space, there exists a nonbounded, finitely additive

vector measure $m: \Sigma \to E$ and a total subset Γ of E^* such that for every $x^* \in \Gamma, x^* \circ m$ is a bounded maesure.

Let us notice that from Theorem 8 and [4, Theorem 2] it follows that $l_o^{\infty}(\Sigma)$ is of class ω_1 and that $\Gamma_r^{(\omega_1)} \subset \Gamma_r(l_o^{\infty}(\Sigma))$, for every σ -algebra Σ of subsets of a set Ω .

With our terminology, Valdivia [9, Theorem 1] has proved that $l_o^{\infty}(\Sigma)$ is of class 1, the author [5, Theorem 1] has proved that $l_o^{\infty}(\Sigma)$ is of class 2, and Ferrando and López Pellicer [2, Theorem 1] have proved that $l_o^{\infty}(\Sigma)$ is of class n for every $n \in N$ (see also [3 Theorem 1]).

References

- [1] ARIAS DE REYNA, J.: $l_o^{\infty}(\Sigma)$ no es totalmente tonelado. Rev. R. Acad. Ciencias Exactas, Físicas y Naturales. **79** (1985), 77-78.
- [2] FERRANDO, J.C. and LÓPEZ PELLICER, M.: Strong barrelledness properties in $l_o^{\infty}(X, \mathcal{A})$ and bounded finite additive measures. Math. Ann. 287 (1990), 727-736.
- [3] FERRANDO, J.C. and SÁNCHEZ RUIZ, L.M.: On a barrelled space of class \aleph_o and measure theory. Math. Scand. 71 (1992), 96-104.
- [4] LÓPEZ PELLICER, M.: Webs and bounded finite additive measures. (Preprint).
- [5] RODRÍGUEZ-SALINAS, B.: Sobre el teorema de la gráfica cerrada. Aplicaciones lineales subcontinuas. Rev. R. Acad. Cienc. Exactas, Fís. Nat. 74 (1980), 811-825.
- [6] RODRÍGUEZ-SALINAS, B.: Sobre la clase del espacio tonelado $l_o^{\infty}(\Sigma)$. Rev. R. Acad. Cienc. Exactas, Fís. Nat. **74** (1980), 827-829.
- [7] RODRÍGUEZ-SALINAS, B.: Sobre el teorema de Dieudonné-Grothendieck. Condiciones necesarias y suficientes. Rev. R. Acad. Cienc. Exactas, Fís. Nat. 74 (1980), 831-834.
- [8] RODRÍGUEZ-SALINAS, B.: Sobre el teorema de la gráfica cerrada. Teorema de Banach-Schauder. Rev. R. Acad. Cienc. Exactas, Fís. Nat. 75 (1981), 39-46.
- [9] VALDIVIA, M.: On certain barrelled normed spaces. Ann Inst. Fourier, 29 (1979), 39-56.