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Abstract 

A large portion of statistical literature pertains to the theory and application of non-
parametric methods of inference. This work presents a new approach to some well-known statisti­
cal problems based on observation of stochastic process. The recent development of the theory of 
probability allows us to consider these observations as ones of random variables with values in an 
infinite dimensional vector space. This paper will be devoted to estimation and test by means of 
empirical generating function G^. We use a similar procedure to that of CRAMER-VON MISES 
for various hypotheses testing problems. 

0. Introduction 

Here we present some general and basic notation which we have tried to 
keep coherently throughout the paper. 

The generating function of the probability law P = (p.. ) defined on 
V •' ^ij>i) 

( N ^ ] P ( N ^ ) ) is the complex function G{s,t) defined in 

{ ( 5 , Í ) G C 2 / | 5 | < l , | t | < l j by G(s,t)= I Pas^t-^- Subsequently with lan-
ij>0 ^J 

guage abuse, we call more generating function of P the restriction of G on 
T = [0,l]x[0,l]. 

Let (X,,y¡);...;(X^,F„),n > 1 be independent indentically distributed 

(iid) random variables (r. v's) from a probability space (Q,â,P) with values 

B.P: 706. Tetouan. Morocco. 
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m and let IP̂  " " ^ ^(x >;) ^^ ^^^ corresponding empirical 

measure. G^ its generating function. We denote by: 

*r = [o,i]x[o,i] 
*C = C{T) be the separable Banach space of all continuous functions endo­

wed with a norm | | / | = sup|/(5',i)|. B{C) its Borel o -field. 
T 

*M = M{T) the space of all bounded measures defined on {T,B{T)) 

*C and M are paraid spaces, by the pairing functional 

<f,\^>= I f(u,v)d\i{u,v) 
JT 

,(k,l)= f u''v'dii(u,vy,(k,l)e'N\iieM . 
JT ^m„ 

In order to be more explicit and so that the subject can be accessible to anyone 
wishing to read it let us list some important concepts and results that are ne­
cessary to prove several results stated in laters parts. They are moreover presen­
ted in perspective with the historical development and strong interaction 
between Probability theory and Analysis. 

A: MATHEMATICAL TOOLS 
A.l: MEASURABLE VECTOR SPACE 

Definition 1: Given a vector space E over R and a a -field à of subsets of E, 
the pair {E,â) will be called "Measurable vectorspace" (M.V.S) if the 

mappings: (k, x)^X.x of R x £" onto E and {x,y) -^ x-\- y of ExE onto 

E are measurable when R is endowed with its Borel a -field. 

Example 1: If £ is a separated metric vector space (£, B{E)) is M. V.S. 

A.2: DUALITY AND MEASURABILITY 
Weakned a-field. 

Let E and F be two spaces paraid by a bilinear form (x,y) -^<x,y >. F 
is identified with a vector subspace of the algebraic dual E* of E. 
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Defînition 2: We call weak a -field on £, defined by the duality between E and 
F, and denoted w{E,F), the weakened sub -o -field of à, such that every li­
near form on E:x —>< x,y>, y e F,is continuous. 

Remark 1: The weak a -field is identical with the a -field generated by alge­
braic base of E. So by subset of F spaning a a (F,^)-sequentially dense subs-
pace. 

Construction of weak a-field: {E,F) denotes the family of all the finite 

codimensional a (F,F)-closed subspaces of F ordinate by the inclusion 3 . If 

G € (F, F) ,KQ is the canonical linear mapping of F onto E/G. A cylinder set 

in F is any subset of F of the form 71 ¿' (5) where Bisa Borel set in E/G. 

Theorem 1: w(E,F) is the a-algebra generated by a Boolean algebra 

The vector space (E,à)"^ of all measurable linear forms on (F ,a ) will 

be called the "Dual of the M.V.S. {E,â) ". If The canonical duality between F 

and (F,a) '" is separated in EU.e < x,f >= 0, V/ G (F, a)"" =:> x = Oj, then 

(F ,a ) will be called "separated" (S.M.V.S.) 

We have ( F , w ( F , ( F , a r ) ) " = (F,a) '". 

Theorem 2: Every Borel linear form defined on a separable Frechet space is 

continuous, wich my be written ( F , B{E)) = F . However it is well known 

that W{E,E)=B{E). 

We refer the reader to ([33], [4]) for a detailed study of this theory of 

"measurable duality" and its applications, especially for a characterization of 
the dual of certain types of M.V.S. 

A. 3 RANDOM VECTORS AND THEIR OBSERVATIONS. 
A. 3.1 Definitions and examples 

Let (Q,â, P) be a fundamental probability space. Let F and F be two li­
near spaces paraid by a bilinear from <.,.>. 
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Definition 3: An E valued random X:0—>£ is an à--w{E,F) measurable 

function. 

Theorem 3: A function X.Q.^ E is a- w{E,F) measurable function if and 

only if <X,y> defined on the same probability space is a random variable. 
The previous remark 1-A.2 will be useful. Indeed it is enough to verify 

that for restricted subspace of measurable linear functional. 
The important example of the random variables with values in an infinite 

dimensional vector spaces is constitued by stochastic process with paths in so­
me space of functions. Let (Q.,à,P) denotes a probability space, (X^J e T) 

denotes a R-valued stochastic process defined on ( 0 , a , P ) . If £" is the vector 
space of real functions on T so that for all co e O, the sample X (co) belongs to 
£*, then we consider the application Z.co -^ Z (co) as an E valued random if 
there exists a vector space F so that E and F are paraid. That is, when F holds 
the set of the linear forms b^ix -^ x(t) generating a a(F,^)-sequentially 
dense vector sub space. 

If r is a a -compact metric space and {X^J G T ) with a.s-continuous sample 

paths. It is easily seen that X :CÛ^X(CÛ) , CO G Q defines a random vectorXta-
king values in the S.M.V.S. (C, B(C).) whose topological dual is identified with 
the space Mc(T) of all regular measures with compact support on T. The ca­
nonical duality < C,Mc(T)> being defined by the bilinear form 

<f,li>=j^fdii. 

A. 3.2. CHARACTERISTIC ELEMENTS OF RANDOM VECTOR 

Let X: (a, à, P) -^ (£, W(E, F), Px ) a random vector. 

Definition 4: We call the characteristic function of X the function. 

Definition 5: For random vectors (X„;n > l) we say that (X„;n > l) converges 

in cylindrical probability to a random vector X, provided 
9 x„ ( j) -> 9 X iy) V); G F. 
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Definition 6: Let X:{Q,a,P)-^ (E,W{E,F),Px)3. random vector. X is scalarly 

integrable if, \/y e F E^ (< X,y >)exists. It will be said to be integrable if the­

re exists EX E E (identified with a vector subspace of F*) such that 

< EX,y >= Ep(< X,y >)for all y^F. 

We now announce the most important results that we need for the proof 
of our main results. 

Theorem 4: Let E a separable Frechet space which topology determined by the 

increasing sequence of semi norms (/?„,w ^ l ) . Then X integrable if p^iX) it 

is for all n. 
In particular, if £" is a separable Banach space EX exists as soon as ||X|| 

be an integrable real random variable. 

Proof: ([l].p 112) 
Under the same preceding hypotheses. We have. 

Theorem 5: a) If E(P^ (X , )) < OO , Vn > 0, there exists a random vector X so 

that 5„ =—y\Xi -> X a.s, 

b) If E\X,\ < oo, then ||5„ - F Z i | f 4 ~ 0 a,s. 

Proof: ([1] p. 114) 
For more details see ([1]). 
We close this section with the following example of random vector: Let 

{Q,,a,P) be an arbitrary complete probability space, and let Tht the mapping: 
CO -^ Ô 0) (8 03 being the Dirac measure en œ G H ) from Q to the vector space E 
of bounded measures with finite support on O, endowed with the greatest-field 
^ which yields T measurable. By ([33]./?12l) we have: for all integer n, the 

functional defined in (Ê*,^) by: 

f^L^{Çl,a) = {EXrMf) = [\fdP^\ 

Where L^^ (O, a) denotes the vector space of all real measurables functions on 

T, is the Fourier transform of the unique probability on the separated M.V.S 
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9 is the Fourier transform of the random vector T" from the product 

space {Q.,à,Py into (fi,^) defined by r"((û,,...,a)„)= ¿ 8 . The proba-

bilily distribution of T" is: the generalized multinomiale distribution 
m^ç^~^{P,n) with parameters P and n. 

For each measurable partition Aj,.. . , A/̂  of O, the distribution of the 

random vector i<r '^, l^ >,.. . ,< T'',!^^ >j is multinomiale with parameters 

( P ( A J ) , . . . , P ( A ^ ) ) and n ([33], p 122). This implies that for all 

A G a , < r " , l ^ > is a random variable whose distribution is binomiale 

B{P{A\n) and then E[<T\\^>) = nP{Á) which imply that for all 

/ G X^(a,a),£'(< T"",f >) = nEp(f) as soon as / is P-integrable. Note that 

T" is not scalarly integrable relatively to the duality between E and 

(E,^)"^ = Xo(n,a) and it's natural to ask when it is. To obtain this it's enough 

to consider J " as a random vector with values in the vector space m(n, à) of 

bounded measures w.r to the duality < m(0,a);X^(O,a) > where L^(Q,yà) 

denotes the space of all real bounded measurable functions on (O, à). The 

weakened a-field w(m{Q.,à),L^{Q,à)) is generated by the applications 

|Li-^<|ii,l^ >=li(A),Aeà. The restriction of the functional 9 on L^{Q.,à) 

characterizes entirely the law of T" which is in this case scalarly integrable and 

integrable with JET" =nP e m{Q.,a). 

Consider the empirical probability 1P„ =—T''A?\ is an unbiased estima-
n 

tor of the law P. Let, the random vector D^ = 4n{^\ — P) which values in 

< m(Q,a), w(m(Q,a),L^(O,a)), we have 9^^ (/) —> exp — [< f^,P> 

— < f,P >^ j.That is to say, the sequence (iD^) converges in cylindrical law 

to a central Gaussian cylindrical probability on (Xl(n,5), w(Xl,-6^)jwhich 

determines a unique central Gaussian probability. 
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A.4. NORMAL LAW AND GAUSSIAN RANDOM VECTOR 

Taking into consideration the exceptional place which the normal law 
occupies, and due to its numerous aplications which is witnessed by Probability 
theory and the mathematical statistic, it is necessary in this list of mathematical 
tools to devote a place to this law and some of its characteristics. We end this 
part by the contribution which was brought by the WISHART law to the qua­
dratic analysis of some the Gaussian random functions. 

Let E and F be two linear spaces paraid by a bilinear form <., > 

Definition 7: A random vector X with values in E is Gaussian if for any linear 
functional j G F ,< X, j > is a real valued Gaussian variable. 

Definition 8: A random vector X with values in a S.M.V.S. E is Gaussian if it's 
relatively to the canonical duality < E,E^ >. 

AAA. GAUSSIAN CYLINDRICAL PROBABILITY 

Theorem 6: For all x^ e E and non-negative quadratic form Q on F, there 
exists an unique cylindrical probability J XO,Q whose Fourier transform is such 
that for every y E F 

^Yx.o W = ^^p|̂ " <^o,y> - - e ( j ) | 

Proof: (see [33] p. 78). 

y x^Q is called Gaussian cylindrical probability with mean x^ and variance the 

non-negative quadratic form Q on F. 
The terms "mean" and" variance" are the language abuse borrowed from a 
traditional terminology of Probability. 

Theorem 7: Let E^, JF] others paraid vector spaces and u the linear mapping 

fromFinto E^,ü{E,F) — a{E^,F^) continuous. Then u(y x^,Q) = yU{X^),QO'U 

Proof: It's easy: simple application of the Fourier transform. 

Definition 8: Let m be any fixed element of a real Hubert space 

H.\ifn ~ Y;„|| ||2 denotes the canonical Gaussian probability on H, whose Fou­

rier transform is: 
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(p^^(y) = oxpU<m,y>H---\\y\\l>,yEH. 

Theorem: Let [Í = (\XM)J^ be a cylindrical probability. If for any linear 

y E F, y(}x) (see [s] p. 72) is a real Gaussian probability, then ju is a Gaussian 

cylindrical probability. 

Proof: (see [8], p. 78). 

A. 4.2. GAUSSIAN PROBABILITY AND GAUSSIAN VECTOR-NORMAL LAW 

Definition 8. A probability P defined in a weak measurable vector space 

(£", w{E, F)) is said to be Gaussian if the associatied cylindrical probability 

(^M)M.(£,F)/ is Gaussian. 

In a particular, a probability P defined on a S.M.V.S {E,â) will be said 

to be Gaussian if it is on a weakned S.M.V.S ÍE, W(E, {E, of j j . 

A random vector XmE w.r to the duality < E,F > is said to be Gaus­
sian if his law Px is Gaussian. 

Definition 9: For me E and a non-negative quadratic form Q on F, a. random 
vector Z in £ is distributed as Normal law if his characteristic function is, 

yeF, (^x(y) = ^^Py < ^ ' J > —Q(y)\ 

We note X -> NE^FÍ^^Q)-

Example 2: Let 7 be a set and {X^,s ET) a. Gaussian real random function 

defined on {Q,à,P) with mean function m = {m{t),tET) and covariance 

functionK{s,t) = E({X, -m(s))(X, -m(0)), (s,t)TxT.{X^.se T) defines a 

random vector in £" = R ^ relatively to the duality between E and 

F = S R ÍR =R,ViGr ) i . e in theS.V.S (/?^, (8) 5 ( R ) ) = 

= (E,W{E,F)). The mappings ô/.x -> x{t)j E T form a base of F and the 

form Qk\ J, X.5 = S ^ ^ Kitj. ] where / is finish, defines a non negati-

ve quadratic form on F. It's abviously X —> A^£/r(m,gj^ ). Now, let T be 
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a a-compact metric space. Suppose that m and K are continuous and the pro­
cess (Xs,seT) with a.s-continuous sample paths. The associated random 
vector X is with values in a separable Frechet space C (7) of all real continuous 
functions on T, whose topological dual is identified as the space MdT) of all 
regular Borel measures with compact support on T. Moreover, the distribution 
of X is Nc(TiMc(T)i^^Qk) where Qj, is the non-negative quadratic form on 
Mc(T) defined by 

Qk{[i)= Í K{s,t)d^{s)dii{t) 
JTxT 

So that, 9;,(|i) = £(e'< '̂̂ ^>) = exp|/<m,|Li>--^Ô^(|Li)U 0) 

Conversely, let P be a Gaussian probability on {C,B{C)) and let 

m(t)=\ x{t)dP{x), K{s,0 = 1 < Jc,5,, >< X,Ô; >dP(x) - m{s)m{t). 

Then, the characteristic function of P is given by (1) ([3l], p. 303). 

A. 4.3. SUPPORT OF GAUSSIAN PROBABILITY 

This section contains the main results concerning the support of Gaussian 
probabilities which borings into evidence the important role played by the re­
producing kernel Hilbert space (RKHS). 

Theorem 9: Let S be any non empty set with N{S) < N^ the cardinality of the 
continuum; and E = ]R.^ be the complete Hausdorff separable locally convex 
space of all real functions on S endowed with the topology of pointwise con­
vergence. Let P be a centreted inner regular Gaussian on {E,B{E)). Then the 

support of P is H{K) where H{K) is the RKHS of the function K. More, 

H(K)EB(E.^) and P{H{K)) = 0 if and only if H{K) is infinite dimensio­

nal. 

Proof: ([31]). 
Theorem 10: Let P be a zero-mean Gaussian probability on {E,B{E)), where 

E is any separable Frechet space with variance the non negative quadratic form 
Q on the topological dual E\ Then there exists a separable Hilbert space H(Q) 
with following properties: 
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i) H(Q)C:E and H(Q)= suppP. 

ii) The injection map j of H(Q) into E is continuous and jiy ^,, .p J = P. 

iii) H{Q) e B(E) and P(H{Q)) = 0 if H(Q) is infinite dimensional 

Proof: See ([31]). H(Q) is the R.K.H.S where 

/^(.,0 = ̂ (ô(5,+ô^)-ô(ôjô(5j). 

A. 4.4. QUADRATIC ANALYSIS OF CERTAIN GAUSSIAN PROCESS 

This section deals with the derivation of the characteristic function of 
quadratic forms of certain real Gaussian process. 

Theorem (J.L. SOLER) 11 : Let T be a a -compact metric space and let 
{XfJ G r ) be a real Gaussian process with a.s. continuous sample paths on T 
such that: 

a- E{X,) = m(t)jeT 

b- E{X, X, ) - m{s)m{t) = K{{S, t)\ {s, t)) E TXT\ 

c- the covariance function K is continuous on TxT, 
d- the mean function m belongs to the R.K.H.S. H{K) ; 
then, for every regular Borel measure 1) with compact support on TxT such 
that \)(AJCB) = D(5JCA) for all Borel subsets A,B of 7, the characteristic function 
ofther.r.v: 

Zy = I X.Xf dxi(s,t) is given by: 
JTxT 

a G R,(p ẑ  (a) = det (l - 2iaA^ Y^'^ exp lia < m, (l - 2¿aA^ )~̂  o A^ (m) >HÍK)C \ 

where A^ is the self-adjoint nuclear operator in H(K) defined by: 

/ G HiK\ A^ (/)(.) = f fis)K{t,. )dv (s, 0; 
J TxT 

and 

E{Zy ) =< m, A^ (m) > „^K>, +Trace (A^ ) = J (m(s)m(t) + K(s, t)) d\)(s, t). 
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As a particular case, for every regular Borel measure fx with compact support 

on r, the characteristic function of the r.r.v: Y^ = I Xfd\i{t) is given by: 

a G R,cp y|̂  (a) = det(l - liaB^ ) cxmia < m, (l - liaB^ )~ o B^ (m) >H{K)C \ 

where B^ is the self-adjoint nuclear operator in H(K) defined by: 

feH(K), B^(/)(,) = I f(t)K(t,.)dii(t) 

and E{Y^ ) =< m, B^ (m) >H(K) +Trace(j5^ ) = J (m^O + ^ ( ^ 0)^^(0 

Proof:([33]) 

This theorem unifies and generalizes the known results about quadratic 
forms of Gaussian processes related to brownian motion in the central case. 
Moreover, the derivation of the characteristic function of these quadratic forms 
for a wide class of non central Gaussian processes, constitutes a progress which 
allow us to look for statistical applications in two différents fields. 

Finally, it looks to us that we dispose of enough tools that we could fo­
llow next part of our work. 

B. EMPIMCAL GENERATING FUNCTION 

The generating function may be used instead of the densities or distribu­
tion functions in problems of inferences. We shall now study some further pro­
perties of the empirical generating function and discuss its applitation in tests 
for goodness of fit. 

Consider a random variable (X,Y):{a,a,P)^{^\P{^^),P^x,Y))- Let 

(X,, Fi );. . . ;(Z„, y„ ) be iid random with distribution P^^yj) • 

Pn =""2^ Sfx F̂  be the empirical probability and G„ be the empirical genera-

ting function based on (X,, F, );...; (X ,̂, F̂  ) . 

Proposition 1: G^ is a random• vector in {C,B{C))w.r to the duality 
<CyM > scalarly integrable and integrable such that 

EG„ = G.More||G„ - G | | ^ -^ 0 a.s 

Proof: G„ : (Q, a, P) -^ (C, B(C)) 
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•y, ÁmU 

It is enough to remark that for all (w, v) G T , 

< G„,5 (ĵ  y) >= Ĝ  (M, V) = — V M '̂ V̂  is a real valued random variable. The G„ 

is a random vector in (C,fi(C)) scalarly integrable, since <G„,fi> is a r.v.r 

with £*(< G„,|J. >) =< G,|ui >. As (C,|| ||) is a separable Banach space and ||G„ || 

is integrable we know from (th. 5, A.3) that G„ integrable such that EGj^ = G. 

We can write G„ ^ - T Z,;Z, = ( . f ' Q ^ . So that £( | |ZJ|)<oo and the 
« •/=. 

n—7°° 

hypotheses of theorem 5.A3 are fulfilled we obtain ||G„ - G||^ -> 0 a. s. 

B.1.1. SUFFICIENCY 

Définition 1: Let (0 ,a ,P) be a statistical space. A sub-a -algebra 5 c a is 

called sufficient (for F ) if and only if for every A G a there is some B-
measurable g^ such that for every P G P , the conditional probability 
P{AIB)^g^ a.s. 
The essential point is that g^ does not depend on P. 
The intersted reader will find in ([5],[32]) various expositions on this subject. 

Example 1: Let (fi,a,\?) be a statistical space (í2^a®^P« = { P ® « , P G P } ) 

its n-fold product statistical space, (p„ designs the sub-a-algebra of a®" con­

sisting of sets invariant under all permutations of the coordinates. Denote by 

/ ^ : ( c û i , . . . , œ cu(y(i),...,(0t5(„)) where <5 ^S^, . f^ is a measurable iso­

morphism of {p.^,a®^^ and preserves each P®". Then for any Aea®^ and 

fi G 9 „ we have 

P^''{Ar^B) = -^Y^P^''[Ar^f,{B)) = -yP^^^{U{A)nB) 

Thus ^^'^ (>4 / 9 n ) = — X Va W ^' ̂  ̂ ®" ^"^ ^n is sufficient. 
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A present let G„ : ( N ^ ]p{^^ ) P) -> (C, B(C)) 

{^) = {{xi,yi)^<i<n)-^G,{^):(sj)-^ 

Set Sn = G~^(B(C)) . It's abvious that 5„ C(p„. Let us prove the conver­

se inclusion. For each A G ( P ( N ^ ) ) '',let5(A)= u f^(Á)e(pn • Then if 

Be(pn,s(B) = B. 

Let J = Í A G (P(N2 ))®" : ̂ (A) G S,} 

We want to prove ^ = u P ( N ^ ) j . Now jFis a montonoe class. Also, 

any finite union of sets in ^ is in ^. 
Given Ai,...,A„ in P ( N ^ ) , A I X . . . X A „ G ^ . Since the collection C of finite 
unions of such sets is an algebra; the smallest monotone class including C is 

(P(N^))^". 

CONCLUSION: G„ is a sufficient, consistent, unbiased estimator of the gene­
rating function G of the unknown law P. 

B.2. EMPIRICAL GENERATING PROCESS 

We now discuss the properties of the empirical generating process 

Note that: 
i) E{EAsj)) = 0,y{sj)sT 

11) /í((^,0;(«,v))==£(Ej5,0^„(w,v)) = n£(G„(5,0G,(w,v))-nG(5,0G(w,v) 

Í n 

= G{su,tv) - G{s,t)G{u,v) 

n 

Proposition 2: The sequence (£„ ,n > l) converges in cylindrical law to 

Proof: Let ^eM, 

9 En (M-) = ^p (^^P /<£"«» M- >)= ^p (^xp 'V^ < G„, |i > jexp- /Vñ < G, |i > 
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1 ^ 
Since <G„,\i >= — ̂  w^n{X¡,Y¡). Hence 

n 

exp--¡=<G,ii>.Ep\ exp-^m^^(X,Y) 

Put / = m^ (X, Y) e X„ (Q, à). We have 

<G,\i>=Ep{f) 

and 

•A" 

A = exp —-j=Ep{f) xEr expi 

A = l—^EJf) + 
2n yfrt 

. = (i-¿fe(/^)-.^(/)).o(i)) 

.• / / l + Í^T^-"^—+ 0 
yfñ In 

Therefore, 

lirn^ 9E„(^) = exp-l(T^^(/), where al{f) = E,{p)-{E,{f)f 

Note that a ^ (/) = J Â'(( ,̂ t)\{u, v))d\i(s, t)d\i(u, v) = g(|i) 

Thus <p£„(|Li) -> exp — = 9;^(|i) 

That's to say (E^jW > l) converges in cylindrical law to the random vector 

Of course for any finite collection (^^, i, ),. . . , (^j^, iĵ  ) G 7 - taking 

7=1 

The sequence \\En{s^,t^),,.,,En{s¡^,tk))\n>\] converges in law to 

\X{s^,t^),,,,,X{sj^Jj^)) but an example ([9]), p20) shows that the finite-

dimensional set do not form a convergence determing class. 

Let consider the random vector in C: Z = (•) (•) - G. We have 
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£ , ( | | Z | | L ) < o o a n d £ , sup 
\Zis,t)-Z{u,v)\ 2 A 

Mf.) \\{s,t)-{u,v 
< OO 

Hence by lemme 4.1 ([2l]p.7) n - ' - X ^ . = ^ n 
I = 1 

is weakly convergent in 

C and this limit is Z ^ NC,M (O» Q)-

In particular, 

(sup En{sj);n> l )-> sup X{s,t) 

Proposition 3: If the condition J?^ (X + F)^ < ©o is fulfilled, then the process 

{X{s,t);{s,t) G T) is almost surely continuous in T. 

Proof: Indeed, 

{G^{s,t)-2G(sj)G(u,v)-¥G'{u,v)) = Yaï{s^t^ -u^v^) 

Put[{s,t) - {u,v)]=sup{\s - u\,\t - v\) 

\\X(s, t) - X{u, v f < 9 2 ([(5, t) - («, v)]), with 

(p'.x-^ax ,a = \\X + Y\l so that |°°(p(e-^')í¿c < OO which that a sufficient 

condition due to X. FERNIQUE ([20J/7.77) for the sample continuity of 

{X{s,t)'Xs,t) G T); furthermore 

£^(^«M-)<oo fo r a l l a> - | | / ^L 

CONSEQUENCE fr-1 is a.s. relatively compact in C 
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[e^ = l,n = l,2;e„ = yjllog logn, n > 3). Indeed let us consider the random 

vector in C:Z = {-Yi'Y ^G. We have Ep(||Zf ) < 00. Thus we are in a po­

sition to apply theorem 4.3 ([29]p.20). 

B. 2.1. APPROXIMATION OF THE EMPIRICAL PROCESS E^{sj)\{sj)^T 

This section is mainly devoted to Brownian Bridge and Kiefer process 
approximation of the empirical process {En{s,t)\{s,t) G). We begin it with a 

well-known results for approximation of the empirical process indexed by 
functions and applications. 

The reading of survey articles about this written by M.CSÓRGO, S. 
CSÓRGO, P. PRÉVÉSZ, and D. M. MASON ([15], [l7], [19]) can be highly re­
commended. This problem is studied for arbitrary dimensions and arbitrary 
continuous distributions functions.We feel there is a chance that the method 
could be generalized for an arbitrary distribution function. First some notations 
and definitions. 

D.l. Wiener Process (W.P.): A separable Gaussian Process (G.P) 
iy(jc)={w(jci,...,x¿);0<jc¿<oo,/ = !,...,á}with EW{x) = 0 and 

R{x,.X2)=EW{x,)W{x2)=n^{x^lAx^^\x^^^^^^^ 

D.2. Brownian Bridge (B.B): 
B{x) = W{x)- jci...x¿W(l,...,1) where W()is a W.P. 

D.3 Kiefer Process (K.P.): 
K{x,y)=^K{xu...,Xd\y)=W{xu,,.,x¿\y)~Xi...XdWÍ\,...,\\y)\ 

Where W{xj,..., JĈ  ; j ) is a W.P. of {d + 1)- dimensions. 

Let Uj^ri -̂ •• ̂  Un,n dcuotc the order statistics of the first n of independent 

uniform -{OJ)(U{OJ)) random variables Uj...Un with the corresponding uni­

form empirical distribution D„ defined to be right continuous and uniform 
k-1 k 

empirical quantile funtion <2„ (s) = i/jt „, <s< — {k = l,...,n) where 
n n 

Qn{0) = (//,;Î . We define the uniform quantité process '̂ ^(•s') = 4ñ\s - Q {s)\. 

and the uniform empirical process 9 „ (s) = 4ñ{Pn{s)- s), 0 < ^ < 1 
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Theorem: With an appropriate sequence of Brownian Bridges 

\B (s);0<s<l\,on an appropriately constructed probability space 

(Q ' , a ' ,P ' )wehave 

Pr sup \tn(s)-Bn(s)\>n~^'^{alogd-{-x) 

V n 

Pr sup \%n(s)-Bn(s)\>n^^^{alogd + x) 

<be-

<be-

V n 

whenever no^d<n, 0<x<d^'^, where n^ , a,6 and c are suitably chosen 

positive constants. 

Proof: [15] 
(*): Let L denotes any class of functions 1 defined on (0,1) such that: each 1 can 
be written as 1 = 1; ~ l2 , where I; and I2 are nondecreasing left continuous 
functions defined on (0,1). Let L be a positive nonincreasing function defined 

on 0,— slowly varying near zero and define 

yV(ô) = supsup[J l , ( 5 ) |+ | l , ( i ) |+ | l , ( l - . ) | | l , ( l - i ) | )L"2 /L(5 ) 

Theorem: If UrnN(è) = 0, then on (£2' ,à',P') 
6>lO 

sup 
leL 

.1 .1-1 
¡J(s)dQ,{s)-j^^l(s)dB,(s) / L | - - | = Op(i) 

Proof: ([15]) 

At Present let F be a right continuous distribution function 

Theorem: Let A = |g;();iG[a,è]'^ I be a function class. Assum thatAsatis-

J»+oo 
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-gt(x)ydF{x) is continuous in [a,bf x[a,bf and let N¿^\\a,bf ,^ht the 

minimum number of d^-balls with centres in [a^bf and radius at most e)0 

that cover [a, b] . If in addition the metric entropy condition. 

/ ( [a ,&f,J^) = £'(logiV,,([a,èf,G)) de<oo, 

is also satisfied where ¿^ =s\x^ldj^{sj)\s,te{a,bY }, then, on the probability 

space ( n ' , a ' , F ' ) , as n -> <» 

sup 
t€{a,bY 

j ^ g , {x)dQ , (F(x)) - J^g, Ĉ >/5„ (F(x)^ = .7, (7). 

Proof: ([17]p.l7)or([15]) 

Remark: a well known sufficient condition of the metric entropy condition is 

\ {^AQT)I {hlogh'^yj dh<oo for some b>0 

where (?AQT)= supd^ and ||||^ stands for the maximum norm in R"^. 
s,tE[a,bY 

In our case, consider A = \g(s,t){x,y) = s^t^;{x,y) e^^,(s,t)eT\ 

Since j((5,0,(w,v))<||(^,0-(w,v|(E((X + F f )y^^ and (p^(8)<fcE 

(•5 (DA(E) 

It follows that , ^ ^ JE < oo for some ô >0 r 
Jo 

yjeloge'^ 

and as a consequence of Theorem 3.2 ([19]. p 1462) we obtain on the probability 

space ( a ' , a ' , P ' ) 

8{s,t) i^^ y)dQ n {F{x, y))-\ g(,,,) {x, y)dB^ {F{X, y)) 

= Op (1) a s n —> +00 
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Moreover, 

sup 
lj>0 ^ 

= o, (1) 

as n ^ + o o 
Since B„ (v) = W{v) - vW (1), we have 

( 1 - 5 X 1 - 0 I sHh{ij) = G{sj) 

a n d ( l - 5 X l - 0 l shJB(F{ij))= I ^^V^vLo..) where 

Thus, we obtain the following statement 

Proposition4: ||aEn -b\\^= Op (7) as n-^oo where 

a(sj) = {l-s){l-t) and ¿(-^,0= I shJN(O,Ü ..]-G(sj)W (1) 

The results described here follows from KOMLÓS. J, MAJOR. P, 

TUSNÁDY.G's results ([24]) proved in the case when F is the distribution 

function of the uniform distribution on (0,1). When F is continuous the gene­

ralization is trivial since F(X)is uniformly ditributed on (<?,7). It was observed 

in a conversation with P. RÉVÉSZ that the extension is also quite straightfor­

ward even F is entirely arbitraire ([18]). We hope that it could be generalized to 

more than one dimension. 

Proposition 5: There exists a sequence of jB.5(B„)and K.PK(x;y) such that 

II £„ - Z, L = 0(n-ï/2 \ogn)and\\ £„ - n-^^^L^ \\ = 0{n-^'^ log^ n) 

where 

Z,{sa) = {\-s\\-t) I sUh {F{iJ%L {s.t) = {\-s){\-t) I s'tJK {F{ij\n) 

Proof: Let a„ = 4ñ{F^ - F). We have E,(s,t)=(\- s)(\ - i) X '̂̂ ^oc (/, j) 
¿J>o ^ 
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It's enough to remark, 

I E, is, i) - Z„ (5,01 < sup I a „ (/, j)-B„ {F{i, j))\, \f(s, t)eT 

In the same way with n'^^^L^ , 

We have || £„ - Z„ ¡^ =0{n-^^^ logn) and || E^ - n-^^^L^ L = 0{n~^^^ log^ n) 

More, 

Pr(|| £„ - Z„ L > a„ (Z)) < A2 £ "̂ ^̂  where 

un (Z) = n~̂ ^̂  ((/4/ logn) + z ) for all n and Z. A;, ̂ 2, As are positive constants. 

B.2.2. Inequelity of Kahane-Khmtchine vdth standard Orlicz norm. 

This section will be devoted to the study of standar Orlicz norm-the lu-
xembourg norm-as well as the inequality of Kahane-Khintchine for empirical 
process £"„ 

/ would like to express my gratitude to Goran Peskir who sent me pre­
prints of his work and to which I was faithful. 

Proposition 6: Let a ^ (s, t)- G{s^,t^ )-G^ i^^0 • If the process (£„ (s, t); 

(sj)eT)is pregaussian: that is L^^(ç^)(a)<exp-~0^(5",i)a^, V a e R . Then 

f E^ (s t) 1 
for every C>yf2a{s,t) the sequence <̂ exp —,n>I> is uniformly inte­

grable. (L is the Laplace transform). 

Proof: Let C > ^f2o (s, t), it is enougt to show that for some p)l we have 

s{p) = sup E 
n>l 

We have: 

exp 
En(sj) 

(< 

(E,(sj) 
s u p E j e x p l — — 

Í 

2-iP ( 
= sup Pr e 

n>l ^0 

c 

exp 

du 

(En(s,t) 2\ 

>U du-

= / + sup( Pr \En(s,ti>—=^\ogu 

since by our assumption {£„ (^,Í);(5',Í)G TJis pregaussian we have 
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sup£'| 
n>l 

exp 
Enisj) J <l + 2j;exp| ,2 logW \ 

2pG^(s,t) 
du = 1 + 2] u'^du Í?' 

a = C^ /2pa^(s,t) 

we see that there exists /? G ] 1,C^ / 2a^[ for which s(p){oo , 

• II ^n (s, t) ¡^ ""^ ^ ^ a (5,0 = e{s, t). Proposition 7: 

Before proving proposition, we will go through some other facts. First, reca­
lling III denotes the standard Orlicz norm or the Luxembourg norm on 

( a 5 , F ) : 

Í ( (X\\ 1 
II X|| = Inf\ a > 0 / £ \|/ — - I f for all real valued random variables on 

"^ [ V v a y ; J 

( Q , 5 , F ) , where \|/(jc) = \|/(jc) = ê ^ - 7 VJCGR and inf0 = O 

\ÎX-^N{0,o\s,t)),\\xl=e{s,t) 

Proof: Let e^ {s, t) = || £"„ (s, t) || . In a first step assume that e{s, t) < lim e^ {s, t). 

Thus e{s, i) + 8 < „̂̂  (5, t) for some n¡ <n2 <... and some z>0 . Since 

e{s, t) > V2a {s, t). Then by proposition 6-B2.2 the sequence 

exp 
^ En{s,t) ^' 

?(5,i) + e 
,n>l\ is uniformly integrable, and 

^' . f X 
2> exp ——- <iP> f exp dP> lim \ exp 

En(s,t) ' 
e(s,t) + e 

dP> 

En,(s,t) 
dP>2. > lim exp. ^ ^ 

Thus e{s,t)<lime„{s,t)is not possible. Assume now that e(s,t)> lime„(s,t). 

Thus e(s, i) - e > e„j (5, t) for some «/ («2 (• • • and some e )0 , we also have that 

2>//mf exp "̂ •̂ '̂ ^ dP>lim\ exp "'^^'^M i/p>//m f exp — i/P 



266 

Thus e(s,t)>lim en(s,t) is not possible. 

This concludes the proof. 

Proposition 8: Let (X/,y¡), i = l,...,n be independent a.s. bounded pairs of 

random variables with generating functions GiJ = i,...,n. If 
^ G;+...+G„ 

D^ =4n(Gr, -Gnj) where G^j =• Then 

ll^«(^.ot^, 
r All 

n 

s 
s^it^i -GASA 

Proof: Let ((Z;, T, ),..., (Z„, r„ )) be a random vector defined on the same pro­

bability space (Q, a, P), such that (Z,, Fj ),..., (X„, y„ ), (Z,, T, ),..., (Z„, T„ ) are 

independent and (X¡, y¡ ), (Z,, 7] ) identically distributed. Put 

D„ = -JñyGn - G„i j where G„ is the empirical generating function of 

1 n P„ =— S 8/ \ , then we have: 
n i=l (z..r.j 

\\D„(s,t)\l <\\D„(s,t)-D„(s,t)\\^ =d(n) 

^s-t^' 

yd{n)j 
Indeed, let consider the function / : (s, t) -^ exp 

convex, for all Í G R . 

E{f[D„ (s, t), ED„ (s, i))) < Ê ( / ( D „ {S, t), D„ (s, í))) = £ exp 

Therefore 

Il D„ (s, í)||^ < d{n) = I D„ (s, t) - 5„ (s, t) 

Then t —> f(s, t) is a 

D„(5.0-D„(^,0 

í/(n) 
<2 

v Vñ 
" í' Y. y. 7 . T, 

As (s^'t^' -s^'t'^' s^"t^" -s^-t^")is sign-symetric ([22].p.8). Thus by 

theorem 6 ([27]. p.23) 

112 V 
\^n(s,t)l<^-

f n 
I A-,. K. z. r. 
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and 
A/2 

l!^«(^.oit^|^[£|k^"^-GK.,o||l) 

The proof, therefore complete. 
In particular, if (X,,y;),/ = l,...,n be independent identically distributed pair 

a.s-bounded, then 

C. GAUSSIAN RANDON FUNCTION ( X=X(s,t);(s,t) G T ) 

The main purpose of this section is to study the properties of the 
Gaussian random function {X = X(s,t);(s,t)ET) determined by its covariance 
structure, more precisely by the reproducing kernel Hilbert space (RKHS). 
Expositions on Gaussian probability measure and the RKHS have been given in 
particular in the celebrated course ([26])by J. NEVEU and also by RAJPUT. B.S. 

([31])-

Theorem: The stochastic process (X = X{s,t);{s,t)eT) admits a version 

which is measurable and separable. 

Proof: On the index set T, consider the pseudo-distance dx given by. 

dx {(s, t); («, v)) = II x(s, t) - X{u, v) ¡2 = ylG(su,tv)-Gis,t)G{u,v) 

Since dx is separable, we therefore have the result from a theorem of 

X. FERNIQUE ([22].p.38). 

C.l. THE REPRODUCING KERNEL HILBERT SPACE 

At present, we're studying the Gaussian probability, which constitues the 
law of random vector without refering to it. Let 
X : ( a , â , P ) - > R ^ , r = [0,l]x[0,l]be a Gaussian random function. For all 
function a null unless on a finite subset of T, X a(sj)x(sj) is a real 

Gaussian random variable. 
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L(X,T) = < J,a{s,t)X(s,t)\a wmïshing outside finite subset of r¡^ is a vector 

space. 

Let Hp(X,T) be the closure of L(X,T) in Û{a,à,P) (square P-integrable 

functions on (Q.,â,P)).Hp(X,T) is constitued by Gaussian random variables 

and called Gaussian space Spanned by X. 
Let J be the map from Hp(X,T) into R^ defined by J(ZXsj)= E{ZX(s,t)). 

Set H{K)= j{Hp{X,T^, then / is easily seen to be (1,1) mapping of 

Hp{XJ)ox\io H(K). 

H(K) is a Hilbert space with inner product defined by 

<f^g>H{K)=<J~'{flJ''{g)>H, 

Furthermore, 
H(K) consists of real functions honT such that 

K{(s,t);.)eHiK)y(s,t)eT, 

\/heH(K),V(sj)eT<h',K{(s,tl.)>„^j,^ = h(sj) 

Remark 1: H{K) is the closure of the sub vector space spanned by 

{K{(sj),.yXs,t)eT}. 
I 

Proposition!: H(K)ŒC(T) 

Proof: Let h e H{K). For all {s, t) and (M, V) in T. We have | h{s, t) ~ h(u, v) | < 

<\\hl.\\x(sjyx(u,v)l,. 

As K is continuous, the Gaussian random function (X = X{s, t); {s, t) G T) is 

continuous in l?. Then, 

For £ > 0,3r| > 0: V(i/, v)G r:| 5 - w |v| í - v | <r| , we have 

¡^(s,^)-X(M,V)| |^2 <]rij ^nd hence \h{s,t)-h{u,v)\<£ i.e h is 
lrll//(/^) 

continuous. 

Remark: a) The family {^((^n, t^ );.): {s^, i„ ) G 5 | is total, where 5 is a dense 

subset of T. 
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b) For h E H(K), sup \h \ < C|| h \\ ̂ ^^^ where C G R 

The next proposition treat the orthogonal expansion of a Gaussian random 
function {X = X{s, t)\ {s, t) G T) and its covariance. 

Proposition 2: For every complete orthonormal set {Ç„ ;n G N } of Hp (Z, T), 

there corresponds a sequence {/i„ ;n G N } with the property that, 

n>0 n>0 

For all i{s, t)\ (u, V))ET^ we have K((S, t); (w, v)) = X /̂ ^ («y, 0/z„ (", v) ; more the 
n>0 

convergence is uniform. 

Proof: V(sj)eT,X(s,t) = Y,an(sJl^n 
n>0 

a, (s, t) =< X(s, 0; ̂  n > H, =< K{is, t);.), /z, > = hn (s, t) 

So,X(sj)=Y,^nisJ%n and K{{SJ);.)=Y, h^{s,t% n>0 n>0 

Thus, K{{S, t)\ (u, v)) = ^ /in (5,0/i« (w, v) 
n>0 

In particular 

n>0 

Then, the monotonuous convergence of the continuous fonctions £ h^{s,t) 

n<p ^ 

when p too to the function K(^s,t);(sj)) is uniform by vertue of DIM's 

lemme. 
This shows, that the series X h (sj)h converges uniformly in (s.t). We 
write, 

n>0 

sup 
7 

A:((5,0,.)-S^«(^'^)^'^ 
n<p 

^ 0 

eventually, 



270 

sup 
TXT 

K{is, t); (u, v)) -^h„ (s, t)h„ (u, v) 
n<p 

snp\\K{(s,t),.)\\^0 as p-^0 

<sup 
T 

K{(s,t),.)-^ h„(s,t)h. 
n<p 

Corollary 1: Suppose that T endowed with the Borelian a -field T^ . Then the 

Gaussian randonm function (X = X(sj),(s,t)€ r ) admits a measurable version. 

Proof: Let (^„) be orthonormal sequence of HpQi.T), it corresponds a 

sequence {K)^ in H{K) (by J). The series X ^n^^'^^^n ^^^^^^g^s in L^ 

and almost surely. We define our version X as follows. 

XÍ¿s, Í); CO )=Urn sup ^ /i„ (5, t% „ (co ), V((5', í); co ) G Txn 
p—>« n<p 

Since, the functions hn\n>o are (T^-measurable, it follows that X is 

measurable which is the result of the corollary. 

Proposition 3: For all \ieM(T), there exists an unique element 

Z¡7e/f^(X,r) such that 

Ep{X;Y) = j ^ Ep(X(5,t)Y)diiis,t) = ¡^ J(YXs.t)dvi(s,t)\/YeHp(X,T) 

Proof: For proof of this proposition see J. NEVEU ([26]/7.45). 

Now we consider the mapping : /i ~> | h{s, t)d\i{s, i) = | < K(^S, t\.), 

h>d\i{s,t) from H(K) to R . Also there exists an unique element h^ e H{K) 

such that <h^,h>-\ < K((^S,t)\.);h>d\i{s,t). 

Therefore 

V(M, V) e r , h^ (M, V) =< h^, K{(^U, V); .)> ̂ ^^. = f A:((á:, 0, («» v))j|i (5, i). 

Thus /iji coincides with the function I ^^((5",t)\?^\i{s,t)= j{\ X{s,t)d\i {s,t)\ 
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Remark 3: a-Since /i^ = j(x^ ), / / ' = {/î , |i € MJ-is dense in H(K) 

b-V(5,0€r ,4^ ,^=/^(( . ,0 ; . ) . 

c- V | i €M,V(5 ,0e r 

/n(*y'0=J A:((5,0;(«,v))ú?^l(M,v) = cov(5^í^m^(X,F)). 

Proposition 4: Let H(K)he the RKHS of the covariance K, then H(K)is 

isomorphic to a vector subspace of Û ( N ^ , /7(N^ ), P) . 

Proof: To prove this, let a denotes the map from / / ' into 

Û ( N ^ , /?(N2 ) p) defined by 

• a is linear 
• a preserves the norm. Indeed, for all ¡leM we have 

On the other hand, || /^ || < /^ ; /^ > = J (̂(«y, ^); (î , v))J|j,(5', t)d\x(u, v) 

More precisely, if be an element of H{K)a.nd (/„) a sequence in / / ' such that 

fn-^f- Since ||/„ ~ /m II=II CT| /n ) - CT (/^ ) II, it follows that, the sequence 

(a(/„))is a Cauchy sequence and it's convergent. Let g= limcifn), we set 

g = o{f). 

Not we prove that a ( / ) is independent of the sequence (/„ ) . Let (/„ ) and 

(g„)in //'such that (/„),(§„)-»/• Assume that (a (/„))-> a and 

(CTU„))^P. 

then a = p . 
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Finally we define a on H(K)hy: 0 (/) = / /ma (/„) where ( / „ ) c / i ' a n d 

if„)-^f. More | | a ( / ) | | 
^2(^2)-||/||//(/^)- Let L denotes G{H(K)). For 

(cLij ) c L we have ^ Pya^ = 0 and ^ /?,ya,y <00. 
Í J 

Proposition 5: The injection map7 of H(K) into C is continuous and 

Px = ^c,M (0. Ô) = J (Y 0,11 II ) where y Q H . H is the canonical Gaussian 

cylindrical probability. 

Proof: Let |LI G M, j ( /^ )(w, v) = J K{(U, V); (5, i))i|i (5, t) 

\Mu,v)\=\<f^;K{(u,v),)>\^f^^^^^ 

K is continuous on a compact TxT, hence it's bounded. We have 

I i^ (w, v) I < M\ f^ II yfp,eH' and || j{f^ ) ||^ < M|| /^ |j which be enough to say j 

continuous. 
Let Y 0,11;̂ /ĵ ) be the canonical Gaussian cylindrical probability on H{K). 

We have /lYnii 11 l = Y 11 11 

For 

= < / n í A >H{K)=<f\x'^ ^J\M>H{K) 

Thus ^7(^)= A and || %X)f =\\f^f =Q{%) 

<H(K),H(K)> 
ji to 

{ C, M) 
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D. * APPLICATION 
D.l. * TEST OF SEPARATE FAMILIES DISTRIBUTIONS 
D.2. * GOODNESS OF FIT TESTS 

Some alternative procedures for testing hypotheses are discussed here. 
These procedures are based on the probability generating function. 

While most of the attention has been directed toward the use of the 
empirical characteristic function, we suggest the use of the sample generating 
function to test hypotheses concerning discrete random variables. 

D.l. A TEST OF SEPARATE FAMILIES OF DISTRIBUTION 

In testing an hypothesis that a population has a specified distribution 

against the alternative that its distribution belongs to a separate family in the 

sens that an arbitrary simple hypothesis in H^ cannot be obtained as a limit of 

simple hypotheses in Hi, it is well known that the likelihood ratio does no 

apply. COX.D.R. ([l2], [l3]) proposed a test based on the difference in the 

maximum loglikelihoods of the sample under H^ and Hi. The test was further 

studied by JACKSON ([27]) and developed by ATKINSON ([3]), but was shown 

by PEREIRA ([30]) to be not always consistent. 

Denote the random variable to be observed by (X,Y) and let H^ and Hi 
be respectively the hypotheses that the probability generating function is 
go (• ; 9 ) and gi (. ; a ), where 0 and a are unknown parameters with 
9 G 0 c R^ and a e a c R^. Actually, we are concerned with the problem of 
testing /f o : " g = go (., 6 );e G 0 c R * " against the alternative //, : " g = gi (., a ) 
a G a c R ^ ". 

We impose the following regularity conditions Q : 

a-9 must be estimated from the data. Let "!9„;n[be a sequence of maximum 

likelihood estimators. 

è-(a/a9,)/o((jc,>^);9)existsforeach / = l,...,it;9 G0and {x,y)^^'^. 

d 
^Q/Ái^-y)'^) <oo for each / = 1,...,A: and 9 G 0 . 
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d- The function 9 -> log /^ ((JC, y); 9 ) is continuous uniformly in 
39^39^. 

{x,y)and EQ(fd^ / dB ¡dB j)logf„ ((X,Y),e ))<oo, For all l<i ,7 <it and all 6 

e-The matrix I(B)=EQ iog/4(x,ne) 

(log/, {(X,Y),B)),l<iJ<L is positive definite for all 9 . The matrix 7(6)is 

called the FISHER information matrix. 

f - The map 9 ->(3 /dBi)go{(s,t),B) is continuous uniformly in (s,t) for all 

i = l,...,k. 

If we denote by S((X,y),9)the vector of partial derivatives 

u ^^ ^ 
K^^iJ 

loëf„{liX,Y),Qy,i = l,...,k then 6„ is a solution of the system of 
J 

equation ^ S{{X¡,Y¡);e) = 0. 
1=1 

1 " 
Define the A:-dimensional vectors a„(i) = —j^y" S((X|,yi);9 )and the kxk 

matnce 

Bn(e)--
de¡dej , 

;£iog/„((x„y,),0) According to C„ , 

-¡\<i,j<k. 

E,{B„(e))=-i(e). 

RESULT. 1: Let íé„ jbe a sequence of maximum likelhood estimators. Then, 

L V^(é„-e) -A^(o,/-'(e)). 
n—>oo 
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Proof: Let ^„(e) designate the log-likelihood gradient I 5Í(Xj,Fj);e) . 

Then, g„(6„) = g„(9) + nB„Í9;iU9^-O) where 9„ is a point on the line 

segement between 9„ and 0 . Thus we can write 

-~Vi^a„(9)=.n5„(9,).(9„-9) 

•5n(en)=Bn(e)+(Sn(en)-fin(e)) 

Since £ft 
89;a9y 

log fo ((X, F),9 j <oo, V9 e 0 , by the Kolmogorov 

t - ^ o o 

theorem 
5n(9)->-/(9)a.s as n->oo. 

••fi«(0«)-5n(0)"^O a.s as n 

Indeed, 9„ =\)9„+(1-1))9 forsome 0<'U <land ^9„ j - > 9 a.s., 

(
^ \ n—>oo 

Qn) -> 0 a.s. 

r 
More, the function 9 ~> 

(^.3')-

, 3 9 , 3 9 ; , 
log/o((jc,>');9 ) is continuous uniformly en 

9„ j = - / (9) + £„ with ( E „ ) -> 0 as. /(0) is positive definite, this 

implies the nonsingularity of i8„Í9„j; with probability one, for sufficiently 

large n. Thus for sufficiently large n we can write 

Finally we obtain 

V^(9„-9) = -B-^(9„).a,(9) a.s. 

Vn(9„-9)->A^(0,/-»(9)), as n-

A present, consider the statistic H(s, t) = JñÍGn (s, t)- g^ ((s, t);ê „ n 
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We have yí^{G„(s,t)-g„{(s,ty,e ))^^^N{0;g„{{s\t^yQ)-g^„(is,ty,e )) 

Let Dg„((s,iy,Q)={(d /dQ¡)g„{(s,ty,ey,i = l,...,k). 

Since go[(s,ty,ê„) = g„{(s,ty,e ) +Dg„((^s,ty,ë).(è„ - e ) where è„ is a point on 

the line segment connecting 9 „ and 9 . 

*ê„-e=Op(\) 

It occurs that, 

yi^[go((s,ty,ê„)-g„{{s,ty,e)) = yi^Dg„{(s,ty,e ).(ê„ -0 )+Y„ with 

( Y „ ) ^ 0 as 

Therefore 

^i^(g„((s,tlè„)-g„{iis,tle))-^^N[o,Dg„{lis,t),e )/-'(e )'Dg„{(s,tye )) 

Finally H(s,t) -> N(0,al((s,t),e )) with 

ol({s,t),Q))=g4s\t'ye)-gl{(s,ty,Q)-¿a,i-^V((.,0;e/-|-l ((,,i);e) 
, ^ 1^30,./ [dQjf 

Where /-•(e)=(a,),^,. .^, 

As, 9 -^00 ((5*,r);0)is continuous, we obtain the follow result 

RESULT 2: 

The statistic vn(G„(5",i)-go(('S",0'^n))/^o((*^'0î^/i)^^'^^^^g^s in law 

to A^(0,l),forall {s,t)eT so that 0<Gl{(s,t);Q)<c<y 

We reject the hypothesis H,, if 

I A{s,t)\>Ua where Pr(| N(o,l^>Ua) = a and A(5',i) = — ^ { 
a,,((5,i);0;,) 
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D.2. QUADRATIC TEST 

We now discuss another applications of the empirical generating 
function to the problem of test the hypothesis that a random variable (X, Y) has 
a specified generating function G. Our first exposition is taken from J.L. SOLER 
([33]) to which we refer for a more complete exposition. 

After the work of ANDERSON and DARLING ([2]), several authors have 

used a similar procedure to that of Cramer-von Mises for various hypotheses 
testing problems and the bibliography in this domain is large. 

Briefly, for testing some hypothesis H^ on the basis of a n-sample of a 

random variable they use a criterion which is based on some properties of the 
test under /f̂  as n -> «>, they show that r„ converges in distribution to a r.r.v. 

of the form Z= | X^(Í)\|Í(Í)<¿Í where {X(í);í€[0,l]}is a zero-mean real 
•'0 

Gaussian process with known covariance function and \|/ is some fixed 

measurable positive function on [0,l] verifying others conditions, as the case 

my be. 
Actually, we are concerned with the problem of testing the hypotesis 

/fo ' "0 = Ô o " against //i : "9 9̂= 0 ̂  " in the Gaussian statistical space: 

(c(r);B(C(r)));{A^c(r)(9'Ô/^);Q ^ ^ W } ) • Without loss of generality we can 

assume that 9 ^ = 0 . 

Definition 1: A quadratic test of //^:"9 =9/'against Hii^Q^Qo" in the 

previous statistical space will any test of the form x e C(T), (j) ̂  / (jc) = 1 r i 
I j _ I 
I 2 I 

where 9n(jc)=j x^(t)dyi(t), ^eMc(T): positive cone of all regular Borel 

measure with compact support on T, and some positive real number 1. 

Expression of the power function 

Let | ibe such that J h)^ (x) u/x <«» where (plj is the characteristic 

function of the r.r.v Y^ = q^ (X). Then, by a classical theorem on characteristic 

functions, the d.f. F^ of Y^ is everywhere derivable and it is given by: 
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So that the power function of the quadratic test (t)̂ ^ is given for every 

e € H(K) by: 

¿n j-°° —IX 

In particular, the significance level of the test is given by: 

1 i'"'"°° ^' — 1 / \ - l / 2 

« = P(D̂ .L ( ^ ) = 1 J _ - — det (]l - 2ixB^) dx 

which theoretically gives 1 = l(a, |i) 

Continuity: 1-For fixed 1 and | i , the power function 9->P(p ,(6) is 

continuous on H(K). 

2 - For fixed 1 and 9, the functional |i —> P̂ j, , (0) is continuous on 

the positive cone Mç{T) endowed with its vague topology. 

Proposition 1: For every a,0 <a < 1, there exists an unbiased quadratic test of 
size a for testing /^o-"Q=0" against H^\"(di^O". 

Proof: Taking for the Dirac measure ô̂ ^ at some fixed point t^ sT, the test 

It is similar unbiased for testing the linear hypothesis //o-"0(ir;) = O" against 

//] :"e(io) =ï̂  0", for, it coincides with the U.M.P.B. test. 

Proposition 2: For every a ,0 <a < 1, (|) is the U.M.P.B test of the size a if 

and only if, for all 0 e H{K), \i{{tG 7 :0(0^ 0})> 0 . 
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Proof: See 033]p.ll8). 

Finally, quadratic criteria may be used to derive tests of equality of mean 
functions based on observed samples x and jc' of two independent Gaussian 
processes X and Z* with same known covariance function. 

Indeed, by similar arguments to that used abov, any test of the form 

e^j(x,X')=l Yx,x'eC(T) 

PW/)-x')(/)J#(o '̂2)>ij 

will be similar for testing / f ^ : "e=e ' " against Hi'.^d^Q''' in the product 

statistical space: 

[ciT),B{CiT%{Nc^r)irn,QKl^ 

{Nc^T){Q\Qjcle'eH(K)}) since X-X'^iVc:( r ) (e-e ' ,Ô2ir) . 

D. 2.1. GOODNESS OF FIT TESTS FOR DISCRETE DISTRIBUTION 
IN THE STATISTICAL SPACE ( N ^ P ( N 2 ) P ) . 

In the statistical space (>î^,P(>î^),P)''corresponding to an n-sample, it 

is desired to test the null hypothesis H^'.^'P^xj) =/^"against the alternative 

^i'"^(x,y) ^ Z'". It's equivalent to test the hypothesis Ho'-^G^xj) =G" against 

Hi : " G(x,F) ^ G ". We suggest the quadratic test 

(p ((X,, F, );...;(^n, i ;)) = 1 jj^ ^2(,,,)^^,>,2¡^critical region 

If a ,0 < a <1, is the size of the test cp, the value !„ so that I¿ = aF~2 (1 — oc) 

is the approximate value of 1 for n sufficienthy large, where 

a=\ a^(sj)dsdt, o^(sj)=G(s^,t^)-G^(sj)md F^i the cumulative 

distribution function of the chi-square distribution with one degree of freedom. 

The test statistic r„ = | £^ (s,t)dsdt is expressed by 7„ =ôn.i -^Qn,2 +Ôn,3 

where Ônj " - + 
n 

^1 n[tí(2X,+i)(2Y:+¡) ,.f-, {X, + Xj + iXr, + l'y +1). 
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n 1 

í2n.2=wí G^{s,t)dsdt 
JT 

Now we test the independence of components. Specifically, we wish to 
test the null hypothesis H^ that the two variables X and Y are independents, 

that is G = Gi X G2 

Note that E^=^(G„ - G,,2 ) where Gi,2 (5,0 = Gj {s)G2 (i), V(5, i) e T 

The test is ^ ((Zi,yi);...;(X„,y„))=lry,,^^2i. T'n and 1 are the same as before 

with little modification: g„3 = nI J Gj {s)ds ][ J G2 {t)dt J. 

Remark 1: If the probability generating function is exponential type we 
suggest a graphical method for testing H^'.^G^xj)"^^" against 

/fi :"G(;^y) 9^G". Indeed for all (5,i)G T,(logG„(5,i))^ converges almost 

surely to log G(s,t), and if almost surely we can fit the function 

(s,t)-^ logGn{s,t) to the function (sj)-^ logG(s,t) we accept the hypothesis 

•o 

D.2.2. APPLICATION TO THE POISSON DISTRIBUTION 

Let ( N ^ , P ( > Í ^ ) , P ) be a statistical space corresponding to a n-sample 

and P^ the family of Poisson distributions. All P in P^ has point probability of 

the form 

The problem now is to test the hypothesis that the true distribution belongs to a 
given family P^ from the remaining n observations. 
One can use the test 

(p((x„r,);-;(^«.i'«))=i{r„>,^} 

the statistic r„ can also be expressed as r„ = Q^^ - 2j2„ 2 + Qn,3 • 
Qni conserves his expression 
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Qn,2 = ¿ Ĵ  ̂ ""'̂ "̂  exp (a (5- - l )+p( í - l ) )¿5¿ í = ¿ /„.x. /p. Y2 

For this term, as it easy to verify the relations. 

/a,O=-(l-^-">/M=70-^"^) a p 

_ (l-,-2aXl-e-^P) 

ESTIMATION 

In this section we consider the problem of the estimation of the 

parameters in the statistical space ( N 2 , P ( N 2 ) , P O ) " . If (Xi,F,);...;(X„,y„) 

are independent identically distributed random variables with distribution given 
by, 

^-(a+P) ; ( jc , j )eN^; a ,p>O.A complete sufficient (this follows 
xlyl 

easily from NEYMAN'S criterion for sufficiency) statistic is the sample total 

T = 
r^ n - n ^ 
x = i : z . , y = I Y. Therefore, as Gn{s,t)is an unbiased estimator of 

G(sj), the conditional expectation function Gn{sj)^) = E{Gn{sj)I Tyis the 

uniformly minimun variance unibiased (U.M.V.U) estimator of G{s, t) (see [5]. 

Chap VI2). The conditional distribution of (X, Y) given Tis 

i : ( X , r ) / ( x , F ) = B Í x , - ] ® B ( y , - ] . B{.,.) is the Binomial distribution. 

It follows that 

G„(5,í)(7)=E(G„(5,0/r)=£(5^í>'/r)=(^i+^j''(^i+^J 
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In particular the U.M.V.U. estimator of e-(«+P) is [ l - - J [ l - ) • I" the 

same way 11 

Po)-

-if resp.j 1 — 
Y\ 

is an U.M.V.U. estimator of Pg . (resp. 

Now we trow to another estimator 

GÍ'''''\s,tXT)=E{p\q\C^C^s''-Pt^-'' /T) p<X<lC;q<Y<Y 

* ^ . \ 1 . 
Gi'-'\s,tXt) = ± 2 pî '.ClC/'CiCf.̂ -i'-̂ Q] g ] ['-Ïf['~^ 

k=p 1=9 

y-l 

— (x,y) 

= , = t„cîc.'.*-'(^)'(.-if"' iqtcic^-iel'fi-i""' 
ny V w 

as C^Cl^C^Cj'Jp set k-p = a where a e j O , . . . , ! - / ? } . We obtain 

vJC-P 

finally 

Remark2: GÍ''-''\s,tXT) = id''*'' /dsPdsi){G„(s,tXr)) 

p+g / I ^X-p /' ^ \y-(i 

(".?)/'. ,VT^-„l^.^p^W 11 i ,_l l (,_1 ;x>p,?>^,r=(x,7) 

The statistic 
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'^{iX„Y,y,...;{X„,Y„))=p\q\C^q[^j í) P+Q / l\^~^/ l\^~^ 
. 1 1 - - (X>p,Y>g] 

is an U.M.V.M. estimator of ^"("'•P^a^p^ . 

D. 2.3. COMPARAISON OF TWO DISTRIBUTIONS 

Let (X,y)and (Z,T) be two iid random variables with probability 

generating functions respectively Gi, G2. Let ((Xi, î );... ; (X„, F„ )) and 

{{Zi,T^);...;{Z^,T^)) be two samples of (X,y)and (Z , r ) . Gl and G^ be 

the corresponding empirical generating function and define a new empirical 
process E^^^ by: 

En,m = (^'^ / (n + m)) (G¿ - G^ ) . Suppose that — = a . 
n 

It's easy to verify that £"„;„ is a random vector scalarly integrable and 

integrable. More, under the hypothesis H^ :" Ĝ  = G = G2 " we have 

E{E,,m(s,t)) = 0 V(s,t)ET 

E{Er,,rn {s. t)E^,m (", v)) = K{{S, t)\ (w, v)) V(5, i), (", v) G 7 

Proposition: Under the hypothesis //^ ,(£'n,m) converges in cylindrical law 

to the Gaussian random vector X -^ Â C,M (0, Q). 

Proof: Let fi G M, 

I \n-^-mJ 

as, G\=E\I 4ñ-¥G and Gl= El / ^-{-G. Wc have 

n,m->oo l V l + « i V V l + « i 

Thus ( E ^ ^ ) converges in cylindrical law to X -^ NC,M (O, Q) . 
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The quadratic test for testing the hypothesis H„:"G] = G = G2 " against 

//, :"G, ^Ga" is 

Where the approximate value of 1 for n sufficiently large is 

la = ^Ki (1 - a X O < a <l);a = Í a^(s,t)ds dt and 

CONCLUSION 

This work, as we see forms a new way of approaching some well-Known 
mathematical statistic problems. However the set up object is restricted. So, we 
have not tackle the independence of two random variables by the empirical 
generating function as like as it has been dealt in the continuous case by BLUM 
et al ([6]) and so the approximation by Brownian Bridge and the Kiefer process 
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