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Abstract 

In this paper we analyze the discretization in time of semidiscretized parabolic initial-
boundary-value problems whose solutions blow up in finite time. We focus on collocation using 
piecewise linear functions and discuss the choice of the time step sequence (as a function of the 
collocation parameter). In addition, we present corresponding error bounds and convergence 
results. Numerical examples (including problems with delay arguments) illustrate the analysis 

1. Introduction 

In this paper we consider semilinear parabolic problems of the type 

(P) 

Uf (jc, 0 = A M (jc, 0 + / (w) in D X (0, T), 

u (jc,0= Oond Dx{0,T), 

u (x,0) = UQ {X) > 0 in A 

where D c z R ^ is a bounded domain with smooth boundary 3D, and 
/ : R ^ —> R^ satisfies the following conditions: 

(F-1) / is locally Lipschitz continuous and non-decreasing; 
(F.2) Im^^^ fis)/s = 00; 
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(F-3) f ds 

fis) 

The initial function u^ is assumed to be sufficiently regular on D to 
guarantee the existence of a local (classical) solution. It is well known that for 
large u^ no solution can exist globally in time: for such initial functions u^ the 
solution u(xj) of ( P ) blows up in finite time; i.e. there exists a T̂  <oo such 
that u{xj) exists for all (xj) with x e D, t < Tj^ ,bnt 

Urn sup u{xj) =00 
t-^T; D 

(see [11, 16] and the references mentioned in these papers). 

The purpose of this paper is to analyze the blow-up properties of a class 
of simple discretization schemes (based on collocation in time) for the given 
problem (P). This analysis can easily be extended to problems where the 
Laplace operator is replaced by a more general elliptic operator of second order 
with time-independent coefficients. Our work generalizes results obtained in 
[17, 4, 5] in several ways; for example, we do not assume singlepoint blow-up 
(cf. [11, 5, 6]), and instead of employing the explicit Euler method and/or a 
discretization of the right-hand side of (P) which is linear in its implicit part our 
method is fully implicit. We note in passing that the existence and non­
existence of solutions of certain elementary difference schemes for a related 
blow-up problem based on 

u^{x,t)={u''^'{x,t))^+u', 

with a > 0 and p >1, has been analyzed in [12, 13]. 

We shall give an error estimate for the difference between u{xj) and 

the approximate solution. This estimate will imply that the blow-up time 7Í, of 

the discretized problem converges to r¿. However, we have not yet been able to 

derive a realistic error bound for T^ -7^ . Compare also [2, 5, 8, 9], as well as 

[19] (blow-up in ODEs), for similar analyses and difficulties. Although some 

results exist ([partial 17, 18]), many problems remain open. 
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2, Setting of the approximating problems 

Consider in R ^ a rectangular grid with mesh length h>0, parallel to the 
axes of the Cartesian coordinate system, and denote by e^ the unit vector in the 
direction of the x^ axis. Let {J^ } be the set of grid points and extend u(xj) 
to the whole space R ^ by setting u(xj) = 0 for xiD . Assume that 
Pi,...,P^ denote the grid points contained in the domain D. At such a grid 
point Pi we shall replace the derivative Uj,^^^ by 

D¡u: = h~^ '{u{P. +hej^,t)-2u{P^j)-¥u{P¡ -he^^^t)) 

The spatially discretized version of (P) is then given by 

iP)u 

Ù{Pi,t) = J^l__^DlU{P,,t)+f{U{P,,t)) = :G,{U), 

U{P¡,t)=Oif P¡iD, 

U{P,,0) = u„{P¡){i = l,...,r) 

In the following, let U (t) denote the vector whose components are given by 
C/(i^.,0(/ = l , . . . , r ) . 

We now approximate U(t) by piecewise linear functions V{t) in 

C^(0 , r ) . Consider a variable grid for [o,T]:0=t^ <t^ <..,<t^ = T, with 

ini'' = tm+\ ~^m » ^̂ ^̂  Ict c G [o,l] bc a givcu coUocatiou parameter. We assume 

that the approximating linear spline function Y{t): = {V{Pi,t),...,V{Pr,t)) 

has its knots at i j , . . . , t¡^_^ , and that in [ i^, î +j ] it is determined by 

(2.1) V{P,,t)=V{P,,îJ+ t^(v{P^,t^^^)-V{P,,tJ), 

and the collocation equation 

(2.2) V{P„t„ +CT„) = ¿ DI V{P,,t^ +cx„)+f{y{P,j^ +cx„)) 
k=\ 

(m = 0 , . . . ,M-1 ) . For P.^ ED, the collocation equation (2.2), together with 

(2.1), leads to the system. 
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ViPnLJ=V{P,jJ 

iP)v\ ^^n.'f(v{PnÜ + c(v{P,J^J^V{P,jj)) 

V ( / ^ . , í J = 0 if P,iD{k = U,..,M) 

V{P.,o) = u^{P.) for / = l,...,r 

Equation {P)y and (2.1) together represent a continuous one-stage implicit 

Runge-Kutta method for the time-discretization of (P)^ 

Three specific finite-difference methods known in the literature (forward 
Euler, a variant of Crank-Nicolson, and backward Euler) are particular cases of 
{P)y corresponding to collocation employing c = 0, c = 1 / 2, and c = 1, res­
pectively. 

3. Discussion of the approximating problems 

Let us first focus on Problem (P)^ . 

Lemma 3.1. For any initial function u^ >0, {P)u possesses a nonnegative 
local solution U which ceases to exist when blow-up occurs. 

Proof: Let U^ be the solution of (P)u with initial data u^ +B(E>0) and 
boundary data e . With this particular choice, the classical theory for ordinary 
differential equations implies that there exists a unique solution for small t. 
This solution is positive. Moreover, Ug achieves its minimum either at í = 0 or 
at the boundary dDx{oj]j), where t'„ is the maximal time for which U^ 
exists. Suppose the contrary and let {P\t' ) G Dx{0,t^) be the point where 
the minimum is attained. Then 

i / , (P ' , r )<0 , J^D¡UeÍP\t')>0, and / ( i / , ( P ' , r ) ) > 0 . 
(k) 

If f\Ue {P\t')) >0, {P)y yields a contradiction immediately. Otherwise we 

deduce that Y DlUe{P\t')=0 and thus U,{P'±hej,t')=0 for all 
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j = l,..,,N. Repetition of this argument leads to a contradiction, and hence we 
have Ue{P\t)>E . Since U^ depends continuously on £ we obtain 

U: = limU^>0 for te{o,r) 
e—>o 

This establishes the assertion. 

Remark: Lemma 3.1 remains true if f(s) is is replaced by /(s) — p^, (3 >0 . 
By (F-2) there exists a function M^ (8) >0 such that 

— < 8 for s>M(E). 

h'fis) 

Theorem 3.2 Assume that (F-1) - (F-3) hold. Suppose that 
max U{P.,t')=M^{E) forsome E<1 and i ' >0 , 

(0 

and let 

T\E):= sup u > 0 : maxU{Pi,t)< M^{E)\<OO 
(0 

Then blow-up occurs at some finite time T^ which can be estimated by 

J ds ^ ^ ^ , . X ^ f °° ds — < T;, - r (e) < 

Proof: Set x(t): = max^^^ U{P.,t). It is aLipschitz function satisfying 
2N 

(3.1) f{x)>X^- — X+f{x)-
h^ 

Observe that % >0 if % >M^(e), e < l . Consequently, if 

-^x(0+/(xW)>(i-^)/(xW) 
a 

holds for some t„ > r ' ( e ) , then this inequality is also true for all t>t^^ . The 
proof follows now immediately from (3.1). n 

Remark: The above theorem holds for all functions f which are positive and 
Lipschitz continuous on R^ 

Consider now problem {P)y . Put 



208 

and 
zAP:)- = V{P,,t„,)+cd„,{P^. 

We shall first address the question regarding the existence of a solution to 
(P)^. In order to do so let us distinguish between two cases. 
Case (i): c = 0 
This corresponds to the explicit Euler method. Given V{P^,0), we can compute 

successively y(f;,i, ),y(f;,^2),•.• 
Case(ii): cj^O. 
The equations for z„j are of the form 

(3.2) zAP,)=c^mI,D¡zAP:) + cxj(zAP^) + V{P,,tJ 
(k) 

Write 

and correspondingly 

V{;tJ\^=max\viP,,tJ\ 
I (0 ' ' 

(0 ' ' 

Given V{P^,t^) for all P. e D, (3.2) represents a nonlinear system of 
algebraic equations for the unknowns Zm{Pi)^ / = l,...,r (recall that r denotes 
the number of grid points lying in D; by assumption on D, r is finite). Existence 
will be proved by means of a fixed-point argument. For this purpose define the 
map / / : R ^ —> R'^ whose ith component is given by 

H,{w): = CT^J^Dlw{P,)+cxj(w{P,))+V{P,jJ, 
(k) 

with w: = {w{P,),,..,w{P,)Y. The vector z^: = (z^ (P, ),...,z^ ( P j ) ^ is 

then a fixed point of this map. It is readily seen that for x^ and P- = | ^ ( s ^ m ) | ^ 

sufficiently large, (3.2) does not have a solution. Since we are especially 
interested in large solutions (near blow-up), we must allow x^ to be small. 

Define, for given a > 1, the ball 

fi(ap): = {wGR' : | v i ; | <ap} . 

For w G 5 ( a p ) we have 



209 

(3.3) | / f ( w ) | ^ < c x ^ í ^ a p + / ( a p ) j + p 

This estimate leads to the following 

Theorem 3.3 If 

t^ < 
p(oc-l) 

c{4Nap/h' -\-fiap))' 

then {P)y has a solution in B{ap). 

Proof: The above assertion is a direct consequence of Brouwer's fixed-point 
theorem. n 

In general, however, the solution of {P)y is not unique. We have 
certainly uniqueness if ^ is a contraction mapping. 

Theorem 3.4 Let L{M) denote the Lipschitz constant of fin [ OMl- If 

( « ~ l ) p \ 

c(4A^ap//i ' + / ( a p ) ) ' c(4N/h^ +L{ap)) 
x^ < mm < 

then H:B{ap) —>B(ap) is a contraction. 

Proof: Observe first that 

H(w)-H{v)l<cx^ 
( 

ANIh^ + 
/(w)-/(v)L 

V w-v\ 
\w — v 

If w,v G fi(ap), then by (F-1) we have | / ( w ) - / ( v ) | ^ < L(ap)- | v v - v | ^ . 

The assertion is now obvious. D 

Remark: The above result remains true for large ap if f{s) is replaced by 
/(^)-p^,p>0. 

Illustration: 

For / (w) =w^-pM (p >l ,p > o) the inequality of Theorem 3.4 may be 
written as 

file://-/-fiap))'
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T.., < min i • —7 j ^ r , —7 2 \ 

« c(4N/h'-^{apY~')''^ c(4N/h'+p{apY~' -^) 

or, for brevity, as 
x^ < min{B^,B^}, 

with obvious meaning of B^,B^. We have 5, = B^ if a is a root of 

, p ,_, , ^-4N/h' 
a' a*̂  + - : r =0. 

p-i (P-OP"- ' 

If, for efficient numerical computation, we want x^ to be as large as possible, 

then we must choose a to be the smallest positive root. Let this root be 

denoted by a . (Note that a depends on m, a* = a ^ , since we have 

P = | y{-Jm)\ =Pm)-If /? = 2, then 

(3.4) a* =l+-^ l + ( 4 A ^ / / z ^ - p ) / p . 

Remarks: 

(1) Under the above conditions, the fixed point z^ depends continuously on 

the collocation parameter c. 

(2) It follows immediately from {P)y and (F-2) that, if 

max^i^Zm{Pi)=''Zni{Ps) is sufficiently large, then 

V{P,,t^J-V{P,,O>0 
(3) If p^ -^ oo, as m —> oo, then (F-2) implies that x^ —> 0. 

(4) If | y ( i ^ ) | oo = p^ _>oo, as m - ^ o o , and if ^ ^ ^ ^ p ^ / / ( a p ^ ) < o o , 

then ^ T^ < oo. Consequently, {P)y has finite blow-up time. Other 

criteria which guarantee that the approximate blow-up time is finite can 

be found in [17] (for Â  = 1,/(w) = M^ and c = o); [18] (finite 

element method of lumped type on D and explicit Euler (c = 0)); [4] (Â  

= 1), method implicit in linear part only, with /(u) = u^). 
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4 Error estimates 

We first derive an error estimate for e{t):= U{t) — V{t) where U{t) 

and V{t) are, respectively, the solutions of problems {P)y and {P)y (i.e. e{t) 

is the collocation error corresponding to the collocation solution V{t) to 

Lemma 4.1 Assume ( F — l), and suppose that 

0<\Uit)l\V{t)\<M for Í G ( 0 , Í ' ] . 

Set 
m: = min{k:t¡^>t} and i : :=max{x;} 

l<m 

Then 

\e{t)\<Bx for t<t\ 

for some finite constant B = B{M,t^) 

Proof: By (2.1) we have 

(4.1) V{t^+STj = V^+s{V^,,-V„), V,:=V{tJ,se[0,l] 

Using Taylor's formula we may write 
(4.2) U{P¡,t„+sx„) = U{Pi,t„) + sx„Ú{Pi,t„) + R„{Pi,s), 

where 

R„{P¡,s)=sx^ [Ú{P¡ ,C)-Ú{P¡,t„ )] 

for some í„ = t'„ {P¡ )e[t^,t^+ 5x„ ]. Thus, in view of (P)^ , 

(4.3) RÁPi^s)=sxJ^h-'f^Dl(u(P„t^)-U{P.,,tj) 

k=\ 

+ Áu(PnL))-f(u{P,,Ü)] 

By(F-l), \f{s,)-f{s,)\<L{M)\s,-s,\ for all ^ , ,5 , e [ o , M ] . By apply-

ing once more Taylor's formula and observing the differential equation in 
Problem (P),, we conclude that 

\R^{P„s)\_^<{sx„y{QM + CJ{M) 

(4.4) +C,L{M)M + C,L{M)f{M)] 



212 

Here, the C, are structural constants. If we write Û(t)=G(U(t)){cf.(P)u), 

then e{t) satisfies 

¿(im +cx„) = G{U{t„ +ct„))-G(V(i„ +cx„)). 

Let e.{t): = U{P¡,t)-V{P¡,t) be the ith component of e{t). By (4.1) and 
(4.2), 

ei{t„+sx^)=e¡{t„) + s':„Ú{Pi,t^)+R^{P¡,s) 

MviPnt^J-ViPnO)^ 
which we write as 

(4.5) e,{t„+sxJ=eXtJ + sxJ„_XPt) + RAPn^)-

Also, 

where by (4.2) 

\R„{P¡,s)\<sT^{C,M + CJ(M) + QL{M)M + C,L(M)f(M)}. 

It follows from (4.5) that 

+f(u{P,,tJ + cxJ-f{v{P,,t„+cxJ) 

= l,Dl[eXt^+cxJ^,,{P,) + R„{P,,c)] 

^f{u{p^,t^+crj-f{v{p^,t^+crj) 

U{P,,t^+cxJ-V{P,,t^+cxJ 

= :G'[Ü^)[e,{t^) + cx„^„_,{P¡)]+xl,R{P¡,c) 

Hence, 

(4.6) (l - CT „G' (¿/))p „_, {P> ) = C (¿/„ )e¡ (í„ ) + r„, 
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where 
\r„\<xlK{M). 

Observe that upon setting 5 = 1 in the above expressions for e. (̂ „ + ^t^ ) we 

find 

and 
m-\ m-l 

l=o 1=0 

Inserting this last excpression in (4.6) we obtain 

l=o 
m-l 

l=o 

Set P„_, :=(p„_, (P , ) , . . . ,P„_, (Pj r . Then 

|G'(¿/„)P„-,(/Í)|<^(M)|P„_,|OO. 

If cx^k{M) < I, then we have the estimate 
m - l 

|P.-,NC„TXIP/-.I+Í^.^ 
í=0 

The discrete version of Gronwall's Lemma yields 

|(3,_, |<qT-exp(C,mT)=:5,T 
Hence, 

m - l 

\e{tJ\<B„xJ^x, + C,T = x{Bj„ + Cj=:B,z 
1=0 

and consequently, 

\e{t^+sxJ\<\e{tJ\ + x\^^_,\ + C,x'<Bx, 

where B = B{MJ*). This completes the proof. G 

Remark: If c = 1/2 then the collocation method corresponds to the one stage 
Runge-Kutta-Gauss method, and the resulting order is two: 
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\e{t)\<Bx\ 

While Runge-Kutta-Gauss methods with s > 1 stages exhibit order reduction 
(from p = 2s to p = s) when applied to stiff systems or semilinear systems 
with stiff linear part (compare [3], this order reduction does not arise for 5" = 1 
([7,14]). 

Let us now study the connection between {P)y and (P). We have 

u{Pi-hhe,,t) = u{P,j) + u,^(P,,t)h-¥u,^,^{Pi,t)h' /2-hR^ 

and 
u{P,-he,,t)^u{P.,t)-u^^{P^,t)h + u^^^^{p.,t)h'/2 + R-, 

and hence 
D¡u{P,j) = u^^JP,j) + R,/h' 

lf\u{x,t)\<M in £> x [ o , r ' ] , then according to the Schauder estimates for 

parabolic equations ([lO])we have/?^ = o(/í^).Therefore,M(/-,í),/= l,. . . ,r, 

solves a system of the form 

(F) ü{P¡,t)^f^D¡u{P¡,t) + f{u{P¡,t)) + (fi 

where co -^ 0 as /i —> 0. The order of Co(/i) depends on the regularity of/. 

In order to compare the solutions of (P) to those of {P)^j we shall 

discuss some maximum principles for (P)^^ . These are discrete versions of the 

well-known maximum principles for the continuous case (P ) . In the following 

we write W > Í7 for two elements in R'̂  if the inequality holds for each of the 
components. 

Lemma 4.2 Let and W solve, respectively, Ù = G{U) and W > G{W) in 

( o , r ).If W(o)>[ / (o) , then W{t)>U{t) for all t^{oX). 

Proof: Set 

M:=max{sui)J<7L,sui)JW|^}. 

S ince / is Lipschitz in (o,M), there exists a real number L > 0 such that 

fis)- Ls is stricly decreasing in (o,M). Observe that U:= exp(-Lf)i/ and 

W: = ùxp{-Lt)W satisfy 
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dÛldt = exp (-L/)í> -LÛ = exp {-Ltp{U) -LU 

and 

dW/dt^ exp (-Lt)W -LW> exp (-Li)G(\y) - LW , 

or, equivalently, 

^^^=J^D^AM + exp(-Ltif{U{P,,t))-LU{P,,t)) 
^^ (k) 

(4.7) 

Suppose that the assertion is false. Then W{Pi,t)-U{Pi,t) takes in {0,T ) its 

negative minimum at some point [PjJ^). At this point, 

— {W-Û)< and ^D¡{W-UYPÍJ)>0, 
dt (k) 

and, because of the strict monotonicity of /(s) — Ls, wo have 
f{W)-f{U)-L{W-U)>0 

This is obviously impossible. D 

Let us go back to Problem (P) .If |CÛ|̂  <ô in (0 , í ' ) , then 

w(jF-,í)solves 

(4.8) G(u)-q<ù<G(u) + q, \qi\:=b. 

Lemma 43 Suppose (F-l) and \u\^ <M for t <t\ Then we have 

\u{P.^a)'-U{P^j)\<c{M,t)?> (/ = l , , . . ,r) whenever t <t\ 

Proof: Consider the function r{t): = q tx-ç{L{M)t)-qI L{M), where 

L{M) > 1 is the Lipschitz constant of/ in the interval [o,M]. This function is 

positive and satisfies f = Lr + q. For W = w + r{t) we obtain 
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>Y,DlW{P,j) + f{w{P,a)-^r)^Lr 
ik) 

>G,(W{P,J)) 

(cf. Problem ÍP)y)- By Lemma 4.1, W>U. Similary, we show that Z <£/, 

where Z:= u-r{t). This completes the proof. D 

If we now combine the results of Lemma 4.1«and Lemma 4.3 we obtain 

Theorem 4.4. Assume ( F — l). Let M > 0 be any given real number and 
suppose that u{x,t), U{t) and V{t) satisfy 

| M ( - , Í ) L , | C / ( 0 L | ^ ( 0 L <^ for te{oj{M)). 

Then 

\u{P,j)-V{P-j)\<B{Mj')x + C{Mj')h, 

where T:= max^^^ x̂  . 

Remarks: If T^ < ^ is the blow-up time for (P) and r¿,(/z,t) is the blow-up 

time for the corresponding discretized problem {P)y , then 

lim T,{h,x) = T,. 

Note that in general t' ( M ) is unknown since it depends on u{x,t) and U{t) 
for which only the approximation V{t) is given. An estimate can be obtained in 
the following way. Observe that the solution of 

¿ = f(z), z(0)=maxMo(x)=:m 

is an upper solution for {P)^ . Hence, 

u{x,t)<z{t)<M if í < r - ^ = : í - . 
Jm f{s) 

Similary, the function W{t) with W¡ {t) = z{t) satisfies 

W{t)=G{W(t)) in (0,r"), W(0)>[/(0). 

By Lemma4.2, f / ( i ) < W ( 0 in (o, i") . Consequently if | y (OL ^ M in 

(o,F), then í'>min(í",F),. 
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5. Further remarks: extensions 

The analysis of the preceding sections can be readily extended to 
semilinear parabolic problems where the reaction term f{u) contains a delay 
argument, or where f{u) is replaced by a memory term. 

Consider first the problem 

(PD) 

\uf{x,t) = Au{x,t) + fi{u{x,t))-f2{u{x,t-r)) in D x ( o , r ) , 

u{x,t)=0 ondDx{o,T), 

u{xj)=A^{x,t)>0 on Z)x[~r ,0] 

Here, the reaction term f{u) of (P) is replaced by the difference of / , (u) and 

a delayed reaction term f2{u{'J-r)), where r > 0 is a given constant delay. 

The initial function (|) is assumed to be sufficiently regular on its domain. 

The (analytical and approximate) blow-up results obtained in [15] are 
similar to those for (P) and its discretizations. We refer to this thesis for 
details. However, since [15] does not contain any numerical examples, we 
illustrate the blow-up behavior of (PD) and its discretization corresponding to 
(P)^ by means of an example (Example 6.2 below). 

In [1] the blow-up results for (P) were generalized to 

(PM) 

\ut{x,t) = Au{xj)+\a{t-s)f{u{x,s))ds in Dx{o,T)A 

u{xj)=0 on 3 D x ( o , r ) , 

u{x,o) = Uo{x)>0 in D 

Here, the memory kernel a{t) is assumed to be strictly positive and nonin-
creasing. 

It is clear from the foregoing discussion that our analysis will carry over 
to (PM), except that we have to deal with an additional discretization step, 
namely the approximatioin by suitable quadrature formulas of the memory 
term. Details of this analysis will be given elswehere. 

6. Numerical examples 

Example 6.1: We consider problem (P) with N = 1, D = {0,l), and 



218 

f{u) = u^ -|3w (whit p > 1, P >0) . Let the initial function u^ be given by 

(6.1) uAx) = 
\A ún{nx/{2x^)) if 0 < ; c < x ^ 

A COS{K{X-Xa)/{2(1-x^))) if ̂ ^ < ; c < l 

Here, x, G ( 0 , 1 ) is given; in the numerical examples it will be chosen as 
Xa = 0 . 2 . The above initial function leads to single-point blow-up at JC/, = 0.5 
for any x^ G (0, l) . 

The (uniform) spatial grid in {P)y is determined by h = l/M, and the 
sequence {x^} of time steps was selected according to Theorem 3.4 (with 
< replaced by = ); the value of the parameter a ( = a ; „ ) is as in (3.4). We 
computed approximations corresponding to the values c = 1 / 2 and c = 1 
(backward Euler) of the collocation parameter; as can be seen from the result in 
Theorem 3.4, using c = 1 requires twice the number of time steps needed for 
c = l / 2 . 

In Tables 1-4 we list a sample of computed blow-up times T^ 

correspondings to the values A = 14, p = 2 and (î = 0, P = 1, respectively; 

the "blow-up thresholds" M. were chosen as M^ =4-10^ and M^ =10^. 

The number of time steps needed to reach the blow-up threshold M- is denoted 

byn(M,) 

1 M 
80 

1 160 
Tab] 

1 M 
80 

1 160 

ñ{M„) 
0.19731 

0.19751 

e 1: ExampU 

ñ{M„) 
,0.19751 

0.19756 

ñ{M,) 
0.19745 

0.19766 

z6.1:A = \A, 

ft{M,) 
0.19766 

0.19772 

ÁM^ 
5415 

20936 

p = 2,p =0 

ÁM„) 
2711 

10471 

ÁMJ 
5424 

20961 1 
,c=\ 

AM,) 1 
2716 

10484 1 
Table 2: Example 6.7: A = 14, p = 2, p = 0, c = 0.5 
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I^M 
80 

1 160 

I ñ{M„) 
0.27447 

1 0.27479 

1 ñ(M,) 
0.27462 

1 0.27494 

[ V(MJ 
7491 

1 29048 

1 ^t(M,) 
7500 

1 29074 1 
Table 3: Example 6.1: A = 14, p = 2, ^ = 1, c = 1 

1 ̂  1 
80 

160 1 

ft{M„) 1 
0.27468 

0.27485 1 

ñ(M,) 1 
0.27484 

0.27501 [ 

ÁMJ 
3749 

14528 1 

AM,) 1 
3754 

14541 1 
Table 4: Example 6.7: A = 14, /? = 2, P = 1, c = 0.5 

Example 6.2: For N = 2, the numerical computations we are aware of were 
carried out for the case where D is a disk and the solution u is radially 
symmetric (compare [5,8,9]). In this example we consider (P) with 
Â  = 2, D = (0 , l )x (0,1), and / ( w ) = w^-pw(p > l,p >0) . The initial 
function is 

where 

u^'M: = 
ism{nXi/{2a.)) if 0<jc,. <a. 

]^cos(n{x.-a.)/(2{l-a,))) if a. <x,<l 

It has a peak of height A aï x^ = (flj, «2 ) ; the a. are given parameters in (0,1 ). 

We are using a uniform (rectangular) spatial grid with h = \ / M, and the 
time step sequence {x^} will be chosen as described in Theorem 3.4, with 
(optimal) value of a ( = a^ ) given by 

a* = l + ^ l + ( 8 / / i ' - p ) / p 

(recall (3.4)). A selection of numerical results is given in Tables 5-8. 
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1 M 
20 

40 

50 

f,{M„) 
4.6296 D-02 

4.6537 D-02 

4.6566 D-02 

ñ(A/,) 
4.6346 D-02 

4.6592 D-02 

4.6662 D-02 

ÁM„) 
111 

363 

545 

ÁM,) 1 
112 

365 

547 1 

Table 5: Example 6.2: A = 40, p = 2, p =0,x^= (0.5, 0.5), c = 0.5 

r w 
20 

40 

1 50 

ñ{M,) 
6.4017 D-02 

6.4374 D-02 

6.4422 D-02 

ñiM,) 
6.4069 D-02 

6.4429 D-02 

6.4477 D-02 

AM J 
147 

493 

743 

H(M,) 

148 

495 

745 1 
Table 6: Example 6.2: A = 40, p = 2, p =0,x^ =(0.1,0.1), c= 0.5 

1 M 
20 

40 

1 50 
Table 7: i 

%{M,) 
1.3128-D-03 

1.3150 D-03 

1.3154 D-03 

Example 6.2: A 

fb{M,) 
1.3128 D-03 

1.3151 D-03 

1.3154 D-03 

i = 20;p = 3, p 

^t(MJ 
346 

1180 

1788 

= 1. x„ = (0 

n(M,) 
350 

1185 

1794 1 
5,0.5), c = 0.5 

1 M 
20 

40 

50 
Table 8: 

ñ{M,) 
1.3674 D-03 

1.3519 D-03 

1.4507 D-03 

Example 6.3: i 

ñ{M,) 
1.3674 D-03 

1.3519 D-03 

1.3507 D-03 

\ = 20,p = 3,\ 

AM J 
353 

1205 

1823 

3 = 1, Jc„ =(0 

n(M,) 1 
357 

1210 

1830 1 
1,0.1) c = 0.5 

Example 6.3: We consider the delay problem (PD) with Â  = l, D = (0,l), 
/, (u) = uP and /s (w) = u. Let the initial function (j) (xj) be given by 

(|)(x,i) = u„(x)^^(t) {x e (0,l),i G [-/^jO]), where u^ (x) is as in (6.1) and 

^,(/) = exp(YO, Y^O (/G[-r,0]) 
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As in Example 6.1, this choice of the initial function leads to single-point 
blow-up at x = x^ = 0 . 5 (cf. [15]). 

The spatial grid in (P)^ is again determined by h = i/M, and the 

sequence {x^} of time steps was selected according to Theorem 3.4 (with < 

replaced by = ); the value of the parameter a (= a;„ ) is as in (3.4) (with p = 0). 

The computed approximations correspond to the values c = 1/2 and c = 1 
(backward Euler) of the collocation parameter. 

In Tables 9 and 10 we list a sample of computed blow-up times r¿, 

corresponding to the values /? = 2, A = 14, r = 0.5, and y = 0, 10, respectively; 

as before, the "blow-up thresholds" M. were chosen as M^ =4-10^ and 

M=10\ 

M 

80 

1 160 

ñ{M„) 
0.26299 

0.26315 

ñ{M,) 
0.26315 

0.26331 

ÁMj 
3591 

13912 

7(M,) 
3596 

13925 1 
Table 9: Example 6.3: A = 14, p = 2, y = O, c = 0.5 

1 M 
80 

1 160 
Ta 

%{M„) 
0.19795 

0.19801 

ble 10: Examp 

ñ{M,) 
0.19811 

0.19817 

le 6.3: A = 14, 

ÁMj 
27 n 

10495 

P = 2, Y = 10, 

7(M,) 
2722 

10508 1 
c = 0.5 
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