Flujos geodésicos de caleidoscopios (orbifolds)

POR MARÍA TERESA LOZANO*

Presentada en la Sesión Científica del día 3 de marzo de 1.993

Abstract

The geodesic flow of a compact hyperbolic 2-orbifold is described. It is a Singular Anosov flow in a Seifert orbifold ([LM]).

El propósito de esta conferencia es describir los flujos geodésicos de 2-caleidoscopios hiperbólicos que pertenecen a una clase de flujos en variedades de dimensión tres (*flujos Anosov singulares*) que generalizan los flujos de Anosov. Los flujos de Anosov singulares fueron definidos y estudiados en [LM].

Flujos geodésicos de superficies orientables de curvatura constante negativa. Sea F_g una superficie orientable de género g>1. En F_g se considera una métrica de curvatura constante negativa. Designamos por $ST(F_g)$ el espacio total del fibrado esférico tangente sobre F_g , formado por vectores unitarios tangentes a la superficie F_g . En esta variedad se define el flujo geodésico $\phi: \mathbb{R} \times ST(F_g) \to ST(F_g)$ asociando a (t,v), donde $v \in T_pF_g$, el vector tangente a la geodésica que parte de p en dirección p, en el punto p, en el punto p, en el punto p, en el punto después por este nombre a todos los flujos de características similares, es decir un flujo de Anosov es aquel para el que la variedad ambiente p es un conjunto hiperbólico: el fibrado tangente a p, se descompone en una suma directa p es p

^{*} Universidad de Zaragoza

invariante por dX_t para cada $t \in R$, E^{φ} es tangente al flujo y existen $\lambda > 1$ y c > 0 tales que si $v \in E^u$, $v' \in E^s$ y $t \ge 0$, entonces

$$\|d\varphi_{t}(v)\| \ge c\lambda^{-t}\|v\|$$
 $y \|d\varphi_{t}(v')\| \le c\lambda^{t}\|v'\|$.

Otros ejemplos de flujos de Anosov: 1. Flujos suspensión de difeomorfismos de Anosov. Dado un difeomorfismo $f: M \to M$ en una variedad M se puede definir el flujo suspensión de f en la variedad $N = M \times I/(p,0) \sim (f(p),1)$ por la condición $\phi((p,s),t) = (f^{[t]}(p),s+t-[t+s])$ donde $(p,s) \in N$ y [(-)] denota la parte entera de (-). El flujo suspensión de un difeomorfismo de Anosov, es un flujo de Anosov.

En particular, si M es una superficie compacta (necesariamente el toro F_1) y $f \in Dif(F_1)$ es de Anosov, el flujo suspensión es un flujo de Anosov en una 3-variedad que es un fibrado sobre la circunferencia S^1 con fibra el toro F_1 .

- 2. Flujos algebraicos. Sea M un espacio homogéneo compacto y conexo, es decir, $M = \Gamma \setminus G / K$, donde G es un grupo de Lie, K un subgrupo compacto, y Γ un subgrupo discreto de G, actuando a izquierda y dando cociente compacto. Entonces para cada elemento α del álgebra de Lie $\mathfrak G$ de G, existe un subgrupo uniparamétrico exp αt de G que actúa en M y en $N = \Gamma \setminus G$ dando lugar a un flujo. Concretamente la acción en N está dada por $\Phi: N \times \mathbb{R} \to N$ donde $\Phi(\Gamma g, t) = \Gamma g \exp(\alpha t)$. Este flujo se denomina flujo algebraico.
- 3. Flujos de Anosov no algebraicos. Handel y Thurston [HT] construyeron un flujo de Anosov en una variedad M de grafo, identificando sendos toros del borde de dos variedades de Seifert, S_1 y S_2 , mediante un difeomorfismo de Anosov. Otros ejemplos de flujos de Anosov no algebraicos se construyen por un proceso que produce cirugía de Dehn en órbitas periódicas. Este método fue utilizado primero por Goodman en [G], y posteriormente por otros autores [Chr], [LM].

Marguilis [M] probó que si una 3-variedadd M posee un flujo de Anosov, su grupo fundamental $\pi_1(M)$ tiene crecimiento exponencial. Por tanto, no toda 3-variedad admite un flujo de Anosov: Las 3-variedades con grupo fundamental finito (S^3 , lentes, etc.) no poseen tales flujos.

En STH^2 (esférico tangente de H^2) está también definido el flujo geodésico φ . La variedad STH^2 puede ser identificada con $H^2 \times S^1$ por el difeomorfismo $STH^2 \to H^2 \times S^1$, donde la imagen de (x,v) es (x,θ) y $\theta \in \partial H^2$ es el α -límite de (x,v) ($\theta = \lim_{t \to \infty} \gamma_x^v(t)$, donde γ_x^v es la geodésica definida por (x,v)). El flujo geodésico define una foliación de STH^2 con hojas difeomorfas a \mathbb{R} , tal que cada $H^2 \times \{\theta\}$ está foliada por todas las geodésicas de H^2 que apunta a θ . Se trata de un flujo de Anosov.

Si g es una isometría de \mathbb{H}^2 , entonces g actúa en $ST\mathbb{H}^2$ por g(x,v)=(g(x),dg(v)) y como pasa geodésicas a geodésicas, preserva el flujo geodésico. La línea del flujo $\varphi((x,v),t)$ que es $\gamma_x^v(t)$ en $\mathbb{H}^2\times\{\theta\}$ pasa mediante g a $\varphi((g(x),dg(v)),t)$ que es $\gamma_{g(x)}^{dg(v)}(t)$ en $\mathbb{H}^2\times\{\theta'\}$. Nótese que g actua en $\partial\mathbb{H}^2$; entonces $\theta'=g(\theta)$.

Flujo geodésico en ST(Q): Sea Γ un grupo de isometrías discreto de \mathbb{H}^2 , tal que el cociente $\Gamma \backslash \mathbb{H}^2$ es una orbifold Q compacta (se dice que Γ es cocompacto). Entonces $ST(Q) = \Gamma \backslash ST(\mathbb{H}^2)$, [M;pg.91], y el flujo geodésico en ST(Q) es el cociente del flujo geodésico de $ST(\mathbb{H}^2)$ por la acción de Γ .

Si Γ actúa libremente en \mathbb{H}^2 , también lo hace en $ST(\mathbb{H}^2)$. En este caso Q es una superficie orientable o no orientable, y su flujo geodésico es un flujo de Anosov.

Las isometrías de \mathbb{H}^2 que actúan con puntos fijos son: reflexiones y giros. Veamos cómo actúa cada una de ellas en $ST(\mathbb{H}^2)$ y cómo se proyecta el flujo geodésico.

Sea $g \in \Gamma$ una reflexión en una geodésica γ de \mathbb{H}^2 . Entonces g fija dos lineas en $ST(\mathbb{H}^2)$ punto a punto, que son $\gamma_x^{\nu} \subset \mathbb{H}^2 \times \{\theta\}$ y $\gamma_x^{-\nu} \subset \mathbb{H}^2 \times \{\theta'\}$, donde $x \in \gamma$ y ν es el vector tangente a γ en x. Los ángulos θ y θ' son los puntos del infinito extremos de la geodésica γ . Como γ_x^{ν} y $\gamma_x^{-\nu}$ son órbitas del flujo geodésico, el flujo cociente pierde la hiperbolicidad en estas órbitas y pasan a ser localmente del tipo espina.

Sea $g \in \Gamma$ un giro en torno a un punto P de \mathbb{H}^2 de ángulo $\alpha = \frac{2\pi}{n}$. Entonces g actúa en $ST(\mathbb{H}^2)$ sin puntos fijos, y por tanto no se altera en ningún punto la hiperbolicidad del flujo geodésico.

Deducimos que el flujo geodésico en $\Gamma \backslash ST(\mathbb{H}^2)$, donde $Q = \Gamma \backslash \mathbb{H}^2$ es compacto, es un flujo Anosov fuera de un número finito de órbitas que son del tipo espina. Pertenecen al tipo de flujos que se llaman Anosov singular [LM].

Notemos que si Q es una orbifold con superficie subyacente orientable y sin aristas espejo, el grupo Γ asociado ($Q = \Gamma \backslash \mathbb{H}^2$) es un grupo fuchsiano y el flujo geodésico (de Anosov) que se obtiene con la construcción anterior, se puede obtener también como flujo de Anosov algebraico. Es suficiente considerar que fijado un vector unitario v_0 en un punto x_0 del plano hiperbólico \mathbb{H}^2 , existe una aplicación biyectiva entre los puntos de $ST(\mathbb{H}^2)$ y las isometrias que conservan la orientación en \mathbb{H}^2 , Iso^+ (\mathbb{H}^2), que es el grupo de Lie PSL (2, \mathbb{R}). La imagen de la acción de Γ en $ST(\mathbb{H}^2)$ por esta biyección es la acción del subgrupo Γ en el grupo PSL (2, \mathbb{R}). Luego $ST(Q) = \Gamma \backslash PSL(2,\mathbb{R})$. El flujo geodésico en este caso es un grupo algebraico.

Sin embargo, si el grupo Γ en un grupo NEC no fuchsiano (grupo discreto cocompacto que contiene elementos que invierten la orientación), no es subgrupo de $PSL(2,\mathbb{R})$, y por tanto no sirve la construcción de flujo algebraico. No obstante, hemos visto en la construcción directa sobre $ST(\mathbb{H}^2)=PSL(2,\mathbb{R})$, que Γ actúa en $PSL(2,\mathbb{R})$, a veces con puntos fijos.

Las variedades ST(Q) son el espacio subyacente de una orbifold fibrado de Seifert cociente de la estructura de S^1 -fibrado de $ST(\mathbb{H}^2) = \mathbb{H}^2 \times S^1$. Esto es, en la variedad ST(Q) se tiene una descomposición en circunferencias S^1 y en intervalos compactos I, que corresponden a las fibras del fibrado tangente, y cuya base es la 2-orbifold Q. Este tipo de 3-variedades fueron estudiadas y clasificadas por Bonahon y Siebenmann. La clasificación se hace mediante una "signatura" [BS], que generaliza la signatura de variedades de Seifert, para el caso de orbifolds fibrado de Seifert orientables. En este caso la signatura de ST(Q) es facilmente calculable a partir de Q.

El conocimiento de la signatura de ST(Q) permite dar una presentación por cirugía de la 3-variedad subyacente con la información adicional de las espinas del flujo de Anosov singular.

En particular se pueden estudiar los casos en que el espacio subyacente de ST(Q), que denotamos por |ST(Q)|, es S^3 . Este es el caso en que Q es un polígono hiperbolico. El enlace que forma la singularidad, que ya sabemos es tipo espina, es un enlace de Montesinos.

Referencias

- [A] ANOSOV, D.V. "Geodesic Flows on Closed Riemann Manifolds with Negative Curvature". Preceding of the Steklov Institute of Math. #90 (1967).
- [BS] BONAHON, F. and SIEBENMANN, L. "The classification of Seifert fibred 3-orbifolds". in *Low Dimensional Topology*. LMS. Lecture Note Series **95**(1985), 19-85.
- [Chr] CHRISTY, J.P. "Anosov Flows on three-Manifolds". Ph.D. Thesis. University of California, Berkeley, 1984.
- [G] GOODMAN, SUE. "Dehn surgery on Anosov flows". In *Geometric Dynamics*, SLN 1007, Springer, New York, (1983).
- [HT] HANDEL, M. and THURSTON, W. "Anosov flows on New three Manifolds". Invent. Math. (1980), 95-103.
- [LM] LOZANO, M.T. y MONTESINOS-AMILIBIA, J.M.: "Singular Anosov Flows and universal orbifolds". Preprint 1992.
- [M] MARGULIS, G.A. "Y-Flows on three-dimensional manifolds". Appendix to Anosov-Sinai: "Some smooth ergodic systems". Uspekhi Math. Nauk 22(1967), 107-172; Russian Math. Surveys 22(1967), 103-168.
- [M] MONTESINOS, J.M. Classical Tesselations and Three-Manifolds. Springer-Verlag (1987).