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Abstract 

At the end of last century the 'solitary wave', the 'wave of translation' or The wave, was an 
exotic (and to some like Airy an impossible) object in wave theory. Lamb's treatise on 
Hydrodynamics, the 'bible' of the early part of this century did only mention it slightly although 
great minds as Lord Rayleigh and Boussinesq, and subsequently Korteweg and de Vries and 
McCowan among others, did pay due attention and tribute to the August 1834 discovery by J. 
Scott Russell at "Turning Point" along Union Canal near Edinburgh. The situation drastically 
changed with the advent of computers and when in 1965 the soliton concept was coined and its 
properties described in the study of ideal, dissipation-free nonlinear integrable systems like the 
Korteweg-de Vries equation and later on other equations, Toda's lattice, etc. Originally appearing 
as solitary waves, eventually established by an appropriate (local) balance between nonlinearity 
and dispersion, their peculiar properties of invariance upon translation with energy conservation 
and elastic (overtaking) collisions experiencing at most a phase shift in trajectories led Zabusky 
and Kruskal to consider them as particle-like ('perfect' particles/molecules/hard spheres). In the 
past few years I have been engaged in establishing, analytically, numerically and experimentally, 
the existence of dissipative solitons as a consequence of instability and thus when no energy is 
conserved but there is however appropriate balance between energy supply/pumping/production 
ussualy at long wavelengths and dissipation at shorter ones by viscosity. As an illustration I take 
the onset and sustainment of solitonic waves in an open shallow liquid layer heated from the air 
side or with appropriate surfactant adsorption or desorption (a similar situation occurs with 
internal waves in the sheared stably stratified amosphere in the ocean). Created and maintained 
following an instability threshold, these propagating localized structures/pulses, 'imperfect'/van 
der Waals-like molecules/dissipatíve solitonic waves feature elastic and inelastic head-on and 
oblique collisions, wall reflections with and without formation of Mach stems, bound states and 
chaos. 

* Instituto Pluridisciplinar, Universidad Complutense. Paseo Juan XXIII, n° 1. Madrid-
28040. 
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1. Introduction 

Since the discovery of the 'solitary wave', the 'wave of translation' or The 
Wave by J. Scott Russell [1] in August 1834 at "Turning Point" along Union 
Canal near Edinburgh, the theory developped by Lagrange, Boussinesq [2], 
Lord Rayleigh [3] and others like Korteweg and de Vries [4] and McCowan [5], 
and later on the invention of the "soliton" concept by Zabusky and Krustal [6] 
following their numerical integration of the Korteweg-de Vries (KdV) equation 
and the breakthrough by Gardner and colleagues [7] and Lax [8] on its 
integrability a wealth of results and even an entire body of doctrine exists about 
soliton-bearing integrable equations. Very litle, however, is known concerning 
soliton stability and much less about solitons in viscous fluids and dissipative 
media in general. 

Zabusky and Kruskal numerical computations or computer experiment, 
as well as the related pioneering work by Fermi, Pasta and Ulam [9], revealed 
new and unexpected results. First, they discovered that the KdV equation not 
only sustains solitary propagating localized structures but that large-amplitude 
waves tend to break into a spatial series of pulses with different amplitudes and 
velocities. The second discovery was that these pulses retained their identity 
upon collision and that the only effect of their interaction was a shift in their 
space-time lines, corresponding to a temporary 'acceleration'. Hence their 
coinage of the term soliton to describe a solitary, uniformly propagating 
(localized) disturbance/pulse which preserves its structure and velocity after an 
interaction with another soliton like stable 'perfect' particles/molecules/hard 
spheres do. 

The KdV equation was the first to undergo numerical investigation 
unravelling the particle-like behavior of its localized solutions. Since then a 
variety of conservation properties have been proved and a good deal of 
analytical techniques for solitons is now available for the the KdV equation and 
other soliton-bearing, integrable equations. Thus the KdV equation was not an 
isolated curiosity (for reviews biassed towards Fluid Physics see, e.g., Refs [10-
15]). 

Completely different is the case when dissipation is taken into account as 
it could have been the case had Zabusky and Kruskal considered collisions in 
their kinetic plasma model. The presence of dissipation immediately spoils 
integrability and little can be done analytically, but who cares about 
integrability? [16]. Moreover, dissipation usually enters with high-order 
derivatives which means that considering it as a perturbation yields singular 
expansions that are only valid either for short time scales or on short distances. 
Yet we may think in terms of practical existence over (long enough) time or 
space inerváis scaled with the inverse smallness parameter introduced by the 
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dissipation. Recent experimental results support the utility of such an 
approximation [23-25,32]. 

For an energy conserving system like the KdV equation the soliton is a 
consequence of a (local) balance between (inertial) nonlinearity and dispersion 
[17]. In the past few years I have been engaged in establishing the existence of 
solitons as a consequence of instability and thus when no energy is conserved 
but there is however balance between energy supply usually at long 
wavelengths and dissipation at shorter ones by viscosity. Such possibility has 
been analytically and numerically established for dissipation modified KdV and 
Boussinesq equations as well as experimentally observed [18-33]. 

Section 2 deals with the energy balance for dissipation-modified (KdV 
and Boussinesq) equations. Section 3 recalls some of the solitonic signatures 
and the predictions of a three-dimensional description. Section 4 describes 
some recent numerical findings concerning inelastic and elastic collisions with 
the KdV and Boussinesq equations when dissipation is present or not. Section 5 
shows how 'solitons' correspond to periodic or aperiodic motions of nonlinear 
oscillators. Section 6 describes how solitary waves and periodic wave trains 
(series of solitonic crests) appear in a dissipation-modified KdV equation. 
Section 7 summarizes some recent experimental results and their relation to 
theoretical predictions. Finally, in Section 8 we provide some conclusions and 
comments. 

2. Instability, the onset of propagating localized structures and the energy 
balance. 

Solitons in integrable systems appear as a consequence of initial 
conditions. When energy is not conserved but rather there is for instance a 
steady energy balance the possibility exists of exciting, to a large extent 
irrespective of initial conditions, traveling localized dissipative 
structures/solitary waves or nonlinear periodic wave trains as a result of 
instability. Indeed, such was the theoretical prediction made in Refs. [18, 19] 
where a KdV-Burgers equation was derived for various heat and viscous 
boundary conditions (b.c) in Marangoni-Bénard convection [34-38].The 
coefficient of the Burgers term., a second derivative in space containing the 
(kinematic) viscosity and the energy input could be set to zero, positive or 
negative with appopriate tuning of the external constraint, i.e. by the Marangoni 
effect [39] through heating a Bénard liquid layer from the air side or with 
suitable surfactant adsorption or desorption processes. Past the instability 
threshold the KdV-B equation needs to be augmented with saturation terms in 
order to account for the evolution of the solitonic structure [sec 27 for a 
discussion on asymptotics]. The theoretical prediction of an instability 
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threshold leading to long wavelength solitonic excitations is well supported by 
experiment.[23-25, 32]. 

For instance for the Bénard geometry [36] the 2D evolution of a long 
wavelength surface wave or periodic wave train disturbance is described by the 
dissipation modified KdV equation [20, 27, 33]. 

h,^b,hh^-hb^h^-hb,h^+b,h^-^b,(hhJ + b,h = 0 (1) 

where h(xj) accounts for surface deformation and the e¿(/ = l —6) are 
coefficients which incorporate all parameters of the problem (in particular 
Prandtl, Bond, Galileo, capillary, Biot-like bottom friction and Marangoni 
numbers) whose explicit expressions are not needed here. A similar result has 
been found for internal waves in shallow atmospheres [40, 41]. Eq. (1) can be 
considered either as a generalization of the KdV equation or a generalization of 
the Kuramoto-Sivashinsky equation [42-45]. 

At variance with the KdV equation, here dissipation yields wave speed 
selection and thus in the supercritical state all excited solitary waves or crests 
in a wave train have equal phase velocity and consequently equal amplitude. 
Their actual values are determined by the experimental value given to the 
external constraint measured by a dimensionsless Marangoni number [20]. 

The energy balance follows immediately from Eq. (1). It suffices to 
multiply it by h and integrate over the entire available space. For an infinite 
support we have 

^ 4-00 

E = -jh^dx (2) 

wich not being conserved leads to the following balance equation* 

+ 0 0 -Í-00 + 0 0 + 0 0 

dEldt = b^^hl dx-b^jhl^ dx + b^jhh^ dx-b^jh^dx (3) 
—oo —oo —oo —oo 

where the first term in the r.h.s. describes the energy input at rather long 
wavelengths, the second term accounts for energy dissipation at shorter ones, 
the third one produces nonlinear feedback to the long wavelength energy input. 

A more complete description demands consideration in the energy balance of the 
dissipation at the upper and lower boundary layers hence leading to a theory better suited for 
comparison with experiment. However, for simplicity, I shall not dwell on this matther here. 
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positive or negative according to the sing of b^ or h (positive for elevation and 

negative otherwise) and the fourth accounts for dissipation by friction at the 

bottom (for stress-free b.c. b^ =0) . 
For the 3D geometry the nonlinear evolution of surface waves in Bénard 

layers heated firom above is a generalization of a Boussinesq system [2,10,28]. 
In compact form we have [27]. 

M 
h,=V^-[il-\-h)u]+—V¿(l + h)h]-^BA^(V^'U)-hDA\h (4.a) 

6 

+I{V ^'U)S7 ̂ h +JhV ^{V ^u) (4.b) 

where h{x,y\t), as before, denotes surface deformation and u{x,y\t) accounts 

for 2D velocity disturbances. V2 and A2 are (x,3;)-2D gradient and laplacian, 

respectively. The coefficients A-L have similar content as the b^ in Eq. (1). In 
particular M is the Marangoni number, P is the Prandtl number and G is the 
Galileo number [27]. From the system (4) follows the linear (dispersion-less) 
wave equation, the standard and dissipation modified KdV and (quasi 3D) 
Kadomtsev-Petviashvili equations [15,22,27]. Moreover although again we 
only have waves with a single wave speed and correspondingly with a single 
wave amplitude dictated by the (experimental) value of the constraint we can 
account for solitary wave or wave crest solitonic collisions at arbitrary angles 
which includes head-on collisions and with a suitable mathematical trick 
overtaking collisions and wall reflections at arbitrary angles. 

3. Predictions of a three-dimensional theory, and some solitonic signatures. 

The system (4) describes the onset and sustainment of interfacial solitary 
waves moving in arbitrary directions as a consequence of longwave oscillatory 
Marangoni instability [20,27,32,33]. The form of these solitary waves, near the 
instability threshold, resembles the form of ideal KdV solitons but with 
asymmetric shape. In contrast to ideal KdV solitons, which can have arbitrary 
amplitudes, and corresponding widths and wave velocities, the amplitudes of all 
Marangoni-driven "solitons" here described are strictly equal and related to the 
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level of the thermal constraint, i.e. to the value of the (actual, supercritical and 
experimentally controllable) Marangoni number. 

The (oblique) collision between solitary waves propagating in different 
directions with finite angle between the normal vectors to the wave fronts leads 
to a phase shift in position of the "solitons" that depends on the incident 
collision angle, a result that extends to driven dissipative systems the earlier 
theory for viscous-free, ideal systems [11]. The phase shift can change sign and 

indeed a critical collision angle (approximately K/2) is predicted at which 
there is no phase shift thus separating regions of negative and positive phase 
shifts for angles acute enough and obtuse enough, respectively [27]. 

For head-on collisions the predictions [27] from the 2D reduction of the 
Boussinesq system (4) is that to a first approximation for humps/positive waves 
the interaction leaves the waves or wave crests practically unchanged with a 
mere positive phase shift, opposite to the negative phase shift found in 
overtaking collisions with the KdV equation. 

Other aspects of the collision dynamics have also been investigated. 
Elastic and inelastic events as well as the formation of bound states and chaotic 
behavior have been predicted [30,31]. Indeed the dissipative terms in Eqs. (1) 
and (4) not only lead to wave velocity selection but also produce 'imperfect' 
solitons with wavy heads hence behaving like 'molecules' with infinitely long 
range, exponentially weak Kac-like potentials typical for the van der Waals gas 
[46]. 

The theoretical study of (strong) resonant collisions and wall reflections 
at arbitrary angles is still underway. There are some experimental results [25] 
that point to similarities with oblique angle and head-on collisions as indeed a 
reflection at a wall could very well be thought as a collision of an incoming 
soliton with its mirror image. 

4. Inelastic collisions of solitons with or without dissipation. 

When dissipation and Marangoni stresses and hence instability are 
disregarded in Eq. (4) the system reduces to an equation that in the context of 
Boussinesq paradigm [28] we consider valid for waves propagating in boh 
directions*. We have either 

h,=h^^a(h^)^-¥^h^ (5) 

* Strictly speaking Boussinesq equation (5) or (6) is only valid for one-side propagating 
waves. See, however, a discussion of the universal features of Boussinesq paradigm in Ref. [28]. 
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(with a and j3 are some given parameters, whose values are not needed here; 
the latter one incorporates surface tension or in dimensionsless form the Bond 
number [20, 27] or 

\ = / i ^ - a ( / i ' ) ^ + p / i ^ , (6) 

where the last term shows mixed derivatives introduced to endow well 

possednes to Eq. (5) for all values, of p . Eqs. (5) and (6) are called in the 

literature the "good" (for P semidefinite negative) or Proper Boussinesq 
Equation (PBE) and the Regularized Long Wave Equation (RLWE), 
respectively [28,47]. 

Solutions of Eqs. (5) and (6) are respectively 

and 

h = '-(3/2)[(c^-l)/a]sech^{[(x--ct)/2]^[ic^--l)/^]] (7) 

h = -(3/2)[(c^-l)/a]sech^{[ix--ct)/2c]^[(c^-l)/^]} (8) 

where c denotes the (linear) wave velocity [10,15]. Note that as earlier stated 
the mathematically correct Boussinesq equation corresponds to P semidefinite 
negative and hence necessarily subsonic solitary negative/depression capillary 
waves. The hump/positive wave of Russell [1] is better described by solution 
(8) which is supersonic as expected. 

For both the PBE and the RLWE mass and (pseudo) energy can be 
defined which are conserved in evolution. Recent numerical exploration of 
collisions of those solutions show that subsonic negative depression sèches of 
the PBE are subject to positive phase shift while perfectly retaining their shapes 
after they remerge from collision. Supersonic positive humps of the RLWE 
undergo elastic or inelastic collisions depending on their wave velocities. When 
very slightly supersonic they behave elastically while inelasticiy (due to the non 
semidefinite positive nature of the pseudo-energy) and negative phase shift 
upon collision show up if they have 'high' (supersonic) velocities [28]. 

Again within the Boussinesq paradigm [28] similar computer 
experiments have been conducted with solutions of Eq. (1) for its two extreme 
cases [29]: (i) a KdV equation slightly perturbed (on a scale of a smallness 
parameter 8 ) by the last four terms in Eq. (1) (due to dissipation and the 
Marangoni stresses) and (ii) a dissipation dominated KdV equation when all 
terms are of order unity and Eq. (1) is essentially a modification of a parabolic 
(fourth-order derivative) Kuramoto-Sivashinsky equation [26,42]. 
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In case (i) although the sech solution of the KdV equation is not a 
solution of Eq. (1) the mismatch for small 8 is small and its impact is only felt 

at time distances of order 1 / £. An important item is that if we start with an 
arbitrary sech below the instability threshold the i.e. decays to zero while if we 
place ourselves above threshold the i.e. grows until the sech corresponding to 
the actual value of the constraint and its appropriate velocity are attained. We 

have (practically) stable permanent waves in the scale 1 / 8. Yet however small 
8 might be, the dissipative terms controlled by 8 in Eq. (1) select a single 
wave velocity and consequently a single value for the wave amplitude (for a 
solitary wave or for the crests of a periodic wave train) in the otherwise 
available one-parameter family of solutions of the KdV equation. Suitably 
introduced overtaking collisions are esentially elastic with phase shift like in 
the KdV problem. Formation of bound states and chaotic behavior is also 
numerically observed in this case [29] but this result demands further 
discussion beyond the scope of this paper. 

In the second case (ii) sèches and (undular) sèches are not solutions of 
Eq. (1). Rather (undular) kinks/bores/hydraulic jumps are the appropriate 
solutions very much like the solutions of a KdV-Burges equation [48]. Then 
collisions are completely inelastic. Further details about the numerics and 
results can be found in Refs. [26, 28, 29]. 

5. A dynamical systems approach. The underlying nonlinear dissipative os
cillator. 

Search of steady solutions, propagating waves of permanent form of the 
standard KdV equation reduce the problem to the finding of fixed points of an 
underlying dynamical system. Indeed by a Galilean transformation to the 
moving frame, integration over one space variable and suitable reconsideration 
of the space coordinate as time leads to the frictionless (nonlinear) Helmholtz 
oscillator with asymétrie cubic potential [49]. The third derivative dispersive 
term reduces to a second time derivative. The fixed point in phase space is a 
saddle and the humps/positive sèches are simply the result of the 
stable/unstable character of the saddle. A similar situation occurs with 
Boussinesq equations (PBE and RLWE). If dissipation is added and 
consideration is given to the KdV-Burgers equation then we arrive at a 
Helmholtz oscillator with damping [49]. The Burgers second space derivative 
brings the damping term. Instability can also be incorporated into the picture 
and a dissipative hydrodynamic oscillator is obtained. This approach has 
already proved useful for a description of linear (harmonic) waves as well as 
nonlinear ones like undular bores in driven systems [48,50-56]. 
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The dissipation modified KdV equation (1) or its reduction to the KS 
equation can also be described in terms of dynamical systems with however a 
higher order phase space due to the presence of fourth derivatives [26,30,31]-

The KS case and Eq. (1) without the Marangoni nonlinearity (b^ = 0 ) have 

been extensively studied in the literature (a rather complete list of papers 
appears in Ref. [30,31]). Let us now sketch the approach to the full Eq. (1). In 

the moving frame let us consider the new space coordinate ^ = jc + CQ í, with CQ 

the phase velocity of the expected wave traveling for convenience right to left. 

Upon integration of (1) from "-̂ <̂̂  to the traveling ^ — coordinate we obtain the 
following three nonlinear ordinary differential equations: 

h = y (9.a) 

y = z (9.b) 

yz = -^z-ahy-vy-F(h) (9.c) 

where the 'dot' denotes differentiation with respect to ^ . 

F(h) =ch-t h^ / 2,c = CQ / b^,V = b^ / b^, ̂ ^b^l b^.y^b^l b^ and 

a = b^ / b^ . With respect to the KdV equation here the fourth-order derivative 
in (1) leads to a third order "time"-derivative in the compact form of the 
dynamical system (4) (see also [26]). 

The steady solutions or fixed points of (4) are Oj =(—2c,0,0) and 

O2 =(0,0 ,0) in the space G:{h,y,z}*0^ is saddle-focus when Y^Y^ ^ith 

X.3 > 0, Re A. ,< 0, ImX. ĵ i: 0,(i = 1,2) whereas it is saddle when Y >Y.v with 

X 3> 0, Re X .< 0, Im X ,= 0 (/ = 1,2). We have used 

Y^={~(v - -2ac ) [9pc + 2 ( v - 2 a c ) ] + 2 [ ( v ' - 2 a c ) ' + 3 p c f ' } / 2 7 c ' ( 1 0 ) 

The X . denote the roots of the characteristic equation for Oj, i.e. the solutions 
of 

X3+ 
TJ 

x'+ 
fv+ah„ 

) 
X+ ^ = 0 (11) 

Y 
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Let the stable and unstable manifolds around Oj be called Ŵ^̂  and W "̂̂ , 

respectively. Then W" is a one-dimensional curve which crosses O^ and 

consists of two unstable séparatrices Ŵ " and Ŵ" located on either side of W^. 

The second fixed point Oj is asymptotically stable when y <bv / c and 

characteristic roots K3 < 0, ReK. < 0(/ = 1,2), and unstable when y>bv/c 

and K3 < 0 , RcK. > 0 ( / = l,2). 

Changes in the qualitative structure of the neighborhood of O2 are 
determined by the sign of 

/ = ^ ^ ' ( P ' + ^ ) 
Sp^ip'+4q)Aly 

[-(p^ + 8^) + a p(p^ +10^) - 2a^ p^q] (12) 

with AQ=(qy^^(q^ +rp), p = Çi/y,q = v/y and r = c/yJ may be either 

positive or negative on the y = P / cv-surface. Then if the Y = P / cv-surface is 
intersected we have an Andronov-Hopf bifurcation, i.e., a stable limit cycle 

grows from O2 when / < 0 ; otherwise, with / > 0 we have a saddle. As a 
consequence of this behavior periodic traveling waves are the expected 
solutions of Eq. (1). 

To assess the stability of the stationary solutions one considers suitable 

Lyapunov funcions [30,31]. It can be shown that the separatrix surface W^^ of 

Oi splits the phase space G in two regions Q^ and Q~ such that all trajectories 

of the system (4) including the separatrix Ŵ " tend to (92 as ^ —> +00 in the 

region Q^ while all trajectories in the region Q~, including the separatrix W2 

go to infinity as ^ —> +00. it can also be shown that all trajectories of (4), with 

the exception of those on the separatrix surface W^ and two ID séparatrices 

extending to O2, go o infinity as ^ —> +«>. 

Predictions are that a single soliton whose velocity is specified by the 

parameters of the model may propagate at y < a ¡3 for all V. The situation is 

dractically diferent if Y>OCp. When V<Vi, where Vj is some well defined 
value, a single velocity and a simple soliton correspond to each V. For 

VQ < V < V| the soliton has an oscillating head as expected in view of the 
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(linear) dissipative term in Eq. (1). When Vj < V<V2, where V2 is another 
well defined value, each V corresponds to a countable set of values of c which 
specify the velocity of propagation of 'soliton' trains corresponding to 
multiloop homoclinic trajectories. Such 'solitons' may be treated as bound states 
of model (1). An arbitrary number of "elementary" states may take part in the 
formation of a wave train with a series of solitons for there may exist 
trajectories with an arbitrary number of loops. Hence, depending on the initial 
conditions (i.e.), a bound state of a certain form propagatins with a definite 

velocity is realized for Vi<V<V2. In this respect, model (1) is highly 

sensitive to i.e. because there exists at each V G ( V I , V 2 ) a countable set of 
'soliton' trains. In other words, we can speak about chaos of 'soliton' bound 

states for V G ( V I , V 2 ) . When Vj > V2 there are no bound states and solitons of 
simple form may propagate. Further details about the qualitative mathematical 
reasoning and technique as well as a other results can be found in Ref. [30,31]. 

6. Wave trains with solitonic crests (series of solitons) in dissipative media. 

Eq. (1) yields a dispersion relation 

X=ib^k^+ ¿3 k^ -b^k^-b^ (13) 

where here A. = Re A, + /û). Re A. is the 'time constant' that determines instabi

lity and k denotes the Fourier wavenumber of a disturbance. Thus the neutral 

curve (Re A. = 0) possesses the minimum off the zero wave number axis which 

is only attained when b^—0 (it corresponds to stress-free b.c. at the bottom of 

the layer). The (first) excitable Fourier mode is k^=b^/ b^, hence the larger b^ 

the more the excitation rather than a solitary wave is a wave train with crest-to-

crest distance/periodicity proporcional to the inverse of k^. We cannot consider 

b^ too large to avoid violation of the long wavelength/shallow layer assumption 
used in the derivation of Eq. (1). 

Then the natural solutions to seek for Eq. (1) are periodic cnoidal waves 
(recall that the sech is a limit value of such wave train). Solutions of this kind 
have been obtaind [33] by approximate means when the dissipative terms in Eq. 
(1) are of order £ relative to the original KdV terms of order uniy. The crests 
of cnoidal wave trains possess solitonic signatures and a train is thus a series of 
periodically spaced 'solitons'. 
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7. Some experimental results. 

Motivated by the theoretical insight so far obtained and sketched in the 
preceding sections, experiments have been performed in thin liquid layers with 
the surface open to air wich was either heated or full of surfactant vapor [23-
25,32]. Let us recall results in the latter case, for instance, with liquid layer 
thickness of ISnrni and lateral dimensions of 49mmX49mm. Above the liquid 
layer, there is a space of 70mm thickness full of hexane vapor, which is 
adsorbed at the surface and transferred into benzene liquid. Hexane is a surface 
active substance for a hexane-benzene (vapor-liquid) surface, such that 

do/dC<0, i.e. the interfacial tension, a , decreases with the increase of its 
concentration, C. As soon as the hexane vapor is adsorbed and transferred i.e. 
absorbed into the benzene liquid layer, surface oscillations and wave motions 
due to the Marangoni efrect appear on the liquid surface. At the initial stage, 
due to very steep concentration gradient near the surface and thus high 
Marangoni number, complex and irregular waves embodied in turbulent 
convection appear; often wave trains can be recognized. Then, approximately 
40 seconds after initiation, the convective waves behave more regulary as the 
concentration gradient becomes moderate and the system shows two pairs of 
waves. Each wave pair is approximately parallel to one pair of side-walls in the 
vessel. The waves in a pair move in the same direction or in opposite 
directions. When they propagate in opposite directions, they interact 
somewhere in the vessel, and quite often in the center part of the vessel, then 
separate and approach the w^l. Both of them are reflected back by the walls 
and move toward each other again: The damping effect due to the interaction 
with walls is generally negligible so that these waves appear very stable; some 
of them can still survive after 8 collisions with the wall and 8 collisions with 
another wave or even more. After some time, as the driving force fades away, 
there is only one pair of waves, and later on a single wave. Finally, no wave can 
be observed ant the liquid layer becomes quiescent as the Marangoni stresses 
become undercritical. Similar behavior occurs with cylindrical or annular 
cylindrical containers where a pair of counterrotating periodic wave trains have 
been observed and its collision dynamics studied [32]. 

To a qualitative level the apparent shape of the wave, most surely a 
hump, as well as fluid motions within the wave are clearly asymmetrical. The 
wave has a short head and a long tail. In the short head part, there is relatively 
large surface deformation and strong fluid riiotion which is mainly a tangential 
flow with the same direction^ a% the wave. In the long tail part, surface 
deformation and fluid motion are w e ^ and become weaker and weaker as we 
go away from the head. The penetration length of the Marangoni flow is small. 
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Indeed it is linked to the viscous penetration thus illustrating the major role 
played by dissipation in the liquid layer. 

The interaction between two solitary waves can be classified into five 
different (experimental and theoretical) cases according to the angle measured 
just before the "collision" [24]: 
(a) head-on collision: two solitary waves travel in opposite directions, collide 
in the central part of the vessel, and separate after collision. 
(b) "acute" oblique interaction: two waves travel in different directions, 
obliquely crossing each other and interacting with an angle smaller than a 
"critical" angle to be defined below (see also Sect. 3 above). 
(c) zero phase shift collision which defines a "critical" angle for an oblique 
interaction. 
(d) "obtuse" oblique interaction. When the crossing angle is larger than the 
"critical" angle the phase shift is of opposite sign to that in the case (b). Notice 
that the use of the words "acute" and "obtuse" does not depend on its relation 

with the 71/2 angle. Rather these concepts are relative to the "critical" angle 
defined in case (c), although in some of our experiments this critical angle was 

quite close to 7C / 2 (as predicted by theory [27]). 
(e) overtaking collision: two solitary waves travelling in the same direction but 
with different celerities and different initial positions along the same path are 
such that the fast wave overtakes the slow one. This is the case extensively 
studied since the pioneering work of Zabusky and Kruskal [6] .In our ex
periment there is no chance to observe this case. Indeed the balance between 
the driving force (Marangoni stresses) and dissipation uniformly exists in the 
horizontal extent of the vessel and the velocities of all the (solitary) waves are 
the same at a time [23,24,32]. 

Head-on collisions have been observed and relevant details measured. 
For instance the phase shift varies fron -7mm to -4m with average value -5.1 
mm. As the crossing angle increases to a non-zero but small value, we have the 
case of "acute" oblique interaction. The phase shift in this case is negative. 
Moreover, its absolute value decreases as the crossing angle increases. When 
the crossing angle reaches a certain value -the "critical" angle- the phase shift is 
zero. Further increasing the crossing angle leads to the "obtuse" oblique 
interaction region and positive phase shifts. Notice that the magnitude of both 
positive and negative phase shifts are apparently of the same order, 0(1). For 
wider and wider supercritical oblique interaction angles, the appearance of the 
positive phase shift is instantaneous, or at least very fast. As soon as two wave 
fronts interact, they jump to the new positions, and a third wave -the Mach 
stem- is formed. This third wave is very stable; it survives after interaction with 
another wave. 
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In a head-on collision soon after the two heads separate, but with the tails 
of the two solitary waves still interacting, the positions of wave fronts have 
been recorded. It appears that the velocity of each wave is significantly 
lowered. Normally the minimum velocity measured is only half of that before 
interaction. The velocity increases from this minimum until it reaches the 
original value before interaction, then it moves away wih the same velocity as if 
nothing happened, very much as "ideal" solitons do. The outgoing trajectory of 
a wave after interaction is parallel to the incoming trajectory before the 
interaction. Although no measure has been possible yet the velocity during a 
short time interval when two heads of tavelling solitary waves collide head-on, 
an estimate comes from its knowledge before collision and right after the 
collision. There seems to be a very rapid decrease of velocity in this short time 
interval. Thus the head-on collision process seems to proceed in two stages: the 
initial stage of short duration and rapid decrease of velocity; and the final stage 
lasting a very long time with smooth increase of the velocity. Such 
deceleration-acceleration process during a head-on collision justifies the phase 
lag (or negative phase shift) after interaction in the cases under consideration. 
This process of deceleration-acceleration during the head-on interaction of two 
solitary waves can also be seen in "acute" oblique interaction processes. The 
similarity between a head-on interaction and an "acute" oblique interaction 
already gives us the hint that there must be some connection between these two 
cases. In fact, the celerities before and after the crossing point in the "acute" 
oblique interaction correspond to those before collision and after initial stage of 
collision in head-on interaction, respectively (the head-on collision can be 
considered as a special case of the "acute" oblique interaction with vanishing 

crossing angle). If we use a and p to denote the half of the crossing (bisector) 
angle before and after the crossing point, according to the standard deflection 
law, the relation between the the velocities before and after the crossing point is 

^outgoing / ^incoming ~ siu^lsiua, Thus thc vclocity is Obtained from the shape of 
the wave front near the crossing point. It appears drastically lowered after the 
crossing point. Then, it gradually increases until it recovers its initial value 
before interaction. The similarity between these two classes of interactions 
makes the trajectory of head-on collisions in x-t space quite like those of wave 
fronts in x-y space in "acute" oblique interactions. It appears that for "acute" 
oblique interactions, this ratio is always less than unity, which corresponds to 
the deceleration in the early stage of interaction. This ratio increases with 
increasing crossing angles. When the crossing angle reaches the early defined 
"critical" value, the velocity ratio is equal to unity. 

Evidence has been found of reflections at walls which according to the 
value of the incident angle lead to a reflected wave with or without Mach stem 
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[25]. When a solitary wave obliquely approaches a vertical wall, the result 

depends on the incident angle a¿ . On the one hand, when the incident angle is 

large enough (71:2 ̂ OC. >7i:/4), the reflecting wave is always observed, with a 

reflection angle, a^ , generally larger than the incident one. Considering the 
solitary wave 'colliding' with its mirror image wave, one expects from the 
observations made for two acute obliquely interacting solitary waves that the 

crossing angle before interaction, 2 a , would be larger than the crossing angle 

after collision, 2 P, /. e., 2 a > 2 p ( a > (3 ). However systematically 

a^ <a^ ( a = 7 l /2-a^ . an<iP = 7i ; /2~a^) . On the other hand, when the 

incident angle is small enough, say a . < 71/4, the Mach stem appears. The 

Mach stem initiates at the leading edge of the wall where the solitary wave is 
interacting with. Its length increases from zero to finally reach a finite constant 
value, which is about several millimeters long. It appears that the transition 
time (or distance) from zero stem length at the leading edge to this constant 
value, depends on the incident angle. Generally, the larger the incident angle is, 
the faster the stem length becomes constant. 

If one relates the oblique reflection process with the oblique coUison of 
two solitary waves with obtuse crossing angle, one would expect the reflection 
angle to be the same as the incident. However, in the experiments one always 
observes a reflection angle larger than the incident one. The image of the 
reflected wave becomes weaker and weaker as the incident angle decreases. 
Finally, when the incident angle is smaller than about 25°, the reflected wave 
becomes unobservable. The interaction pattern of a solitary wave with a wall 
consists of only the incident wave and a Mach stem [25]. 

From a plot of the ratio of wave speeds after and 
before reflection as function of the incident angle 

(^wflve velocity after reflection ^ Kave velocity before reflection ~ ^^^P ^ ^iu tt) W a V C S p C C d S a r C 

obtained by measuring angles. From the data obtained it appears that after 
reflection, the velocity goes down, even in the case of resonant interaction 
(Mach stem). One can also see that the ratio of wave velocities (reflected and 
incident, respectively) first increases as the incident angle decreases, then 
proceeds to a maximum of 0.7 at about 40°, to finally decrease. This could be 
explained as follows: if for a shallow water solitary wave, the wave speed is 
related to the wave amplitude or strength then the 'weaker' the wave is, the 
slower the wave speed becomes. As the incident angle becomes smaller, the 
reflected wave becomes weaker and thus slower. In order to catch up and to 
have a stationary reflection pattern, the reflection angle has to increase. Hence 
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the ratio goes down at small incident angles (or large a ) . Since the strength of 
the reflected wave tends to zero below a certain critically small incident angle 

a¿ (or large a = 7i;/2 —a¿), thus leading to zero velocity for the reflected 
wave. Unfortunately, the accurate determination of this angle is very difficult in 
the experiments due to difficulties in visualizing weak waves. Extrapolation of 

the available data gives 25° as an estimate of this angle. A plot of p versus a 

shows always below the diagonal ( p = a is the regular reflection law for 
waves) which means that the angle of reflection of dissipative solitary waves is 
always larger than the incident one [25]. 

8. Conclusion and outlook. 

Analytical, numerical and experimental evidence has been provided to 
support the 'reality' of solitons and solitonic wave trains in non-integrable, 
dissipative systems. Companion to a (local) balance between nonlinearity and 
dispersion sustaining permanent solitary waves and periodic wave trains in 
dissipation-free systems I have introduced the input/pumping/production-
dissipation energy balance allowing past an instability threshold for the onset 
and eventual supercritical sustainment of similar solitary waves and wave 
trains. I have illustrated the kind of soliton signatures, bound states and chaotic 
behavior exhibited by solutions of non integrable equations that incorporate 
dissipative elements as a (weak) perturbation of originally integrable, 
dissipation-free equations. I have indicated how such properties have been 
experimentally observed in the laboratory. Certainly neither I have provided a 
complete body of doctrine nor it was my pretension for in nonlinear 
nonequilibrium systems little thermodynamic land has been explored [57]. A 
new continent is in front of us. Hopefully, however, we have provided enough 
evidence to attract interest among researchers. 
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