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Abstract 

In this paper necessary and sufficient conditions for almost continuity of extensions and 
Cartesian products of almost continuous functions are studied. The results are generalizations of 
Lipinski Theorem of [6]. 
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Introduction 

Let us establish some terminology to be used. R denotes the real line. 

Letters X, F, Zand Twill denote topological spaces with topologies T^^jTj.,!^ 

and Xj , respectively. We consider a function f\T-^ Z and its graph (i.e. a 

subset of TxZ) to be coincident. A function f:T —^ Z \s almost continuous 

(in the sense of Stallings) iff each open neighbourhood G of/in TxZ contains 

a continuous function g:T—> Z [8], [4]. The class of all almost continuous 

functions from T into Z will be denoted by A(T,Z). By C(T,Z) and Const 

(T, Z) we denote the classes of all continuous functions from T into Z, and all 
constant functions fronm T into Z, respectively. 

For a function f:XxY -^ Z and ;c G Z , we denote by /^ the x-section 

of/, i.e. /^ is a function from Y into Z, defined by f^^iy) = f(x,y) for yeY. 

The symbol mg{f) denotes the range of/. 

For every function f:X-^Z, we denote by F^-y the function from 

XxY into Z defined by 
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Ffj{x,y) = fix) 

for (x,_y)G XxY. Note that F^y is continuous {F^y is constant) i f f / is so. 

Moreover, one can easily prove the following proposition. 

Proposition 1. Let f\X—^Z and let Y be any topological space. Then f is 

almost continuous whenever F. y is so. 

However, the fact that/is almost continuous does not imply that F^y'is 

so, even if Z = F = Z = R . In fact, J. Lipinski has proved recently the 

following theorem. 

Theorem 1. //"/iR—>R is not continuous then F. ^ is not almost continuous, 

either [6]. 
In particular, for the function / , : R - ^ R defined by 

{ 0 ifx = 0, 

the extension /^ ¡̂  is not almost continuous (this example was given by 

Lipinski [5]). However, it is well-known that if / E:A{X, Z) and F is a compact 

space, then F^y^ A{XxY,Z) (cf [7, Corollary 4.2, (1)]). The foregoing 

suggests the problem of characterization of compactness of F in terms of almost 
continuity. 

We say that a space T is countably compact iff it is a Hausdorff space 
and 

(*) for every countable descending sequence of non-empty, closed subsets 
of r, its intersection is non-empty. [3, p. 253]. 

We will write that a space T is quasi countably compact iff it satisfies condition 
(*). (Cf the definition of quasi compact spaces in [3, p. 171].) 

We say that a space T is regular iff it is a Tj-space and 
(*) for every jc G T and every closed set F c T with x ë F , there exist 

disjoint open sets U^.U^ czT, such that xeU^ and F dUj- [3, p. 58]. 
We will write that a space T is quasi regular iff it satisfies condition (*). 
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Remark 1. Evidently, every (countably) compact space is quasi countably 
compact. Moreover, if T is countably compact, then both metrizability and the 
Lindelof condition imply that T is compact. However, there exist non-compact, 
countably compact spaces [3, Examples 1-4, p. 257]. 

1. Extensions of almost continuous functions 

For topological spaces X, Y, Z we define the following conditions: 
(i) Y is quasi countably compact, 

(ii) F^y G A ( X X F, Z) for each / ^A{X, Z) 

(iii) there exists / eA{X,Z)l C(X,Z) such that F^y eAiXxY^Z), 

(iv) there exists f:X^Z, such that F^y eA(XxY,Z) and / iC(X,Z). 

Proposition 2. Assume that X and Z are first countable spaces. Then 

Proof. Let feA(X,Z). For each xeX, let (W^J^^^^ and ( ^ J„^^ be 

descending bases of X at jc and of Zai f(x), respectively. Let GczXxYxZ 

be an open neighbourhood of F^y. Note that for each xeX there exist open 

neighbourhoods W^ of JC and V^ of/(jc), such that W^xYxV^ czG. Indeed, fix 

xeX. Let U^ be the set of all yeY for which there exists an open 

neighbourhood U^ of y such that W^^xUyXV^^ c G . Then (Í/J^^A^ is an 

ascending sequence of open sets. Since for each yGY there exist an open 

neighbourhood Uy of y and neN such that W^̂  xU^X V^^ c G, 

Y = U^^^U^. By the quasi countable compactness of Y,Y = U^ for some 

meM, and we can set W, = W^, and K = K,, . 
' X m,x X m,x 

Define G, = KJ^^^ W^ x V; and G, = u^^;^ W^>^YxV^ . Note that 

/ c G,, so there exists a continuous function g:X —^ Z contained in G,. Then 

F J, is a continuous function contained in G, czG. 
D 
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Note that, in general, condition (ii) does not imply (i). Indeed, let Z be a 
discrete space. It is well-known (and easy to prove) that then for any connected 

topological 7J-space T, A{T,Z)=C{T,z) = Const{T,Z) (cf [7, Corollary 
1.2]). Therefore if Z = F = R (with Euclidean topology) then the condition (ii) 
holds, while the condition (i) fails. (Observe that Z is a metric space.) 

Condition (ii) does not imply condition (i) even if 

A(Z,Z)/C(Z,Z)9t0 . Indeed, letZ = [0,1] and 

T 2 = { A C Z : O G A } U { 0 } . 

Then for every topological space T, each function f:T—>Z is almost 

continuous. (If G c T x Z is open and GzD f, then G contains a continuous 

function g= 0, g: r —> Z.) Setting Z =F = R (with Eucliean topology) we get 

that conditions (ii)-(iv) hold, while condition (i) fails. However, Z is neither 

quasi regular, nor 7]-space. 
In the proof of the following proposition we use an idea of [6]. 

Proposition 3. Assume that x is a first countable, Hausdorff space, Y is a 
connected space and Z is a quasi regular space. Then 

Proof. Assume that Y is not quasi countably compact space, and function 

f:X -^ Z is not continuous at jc G Z . It follows by assumptions on X and Z 

that there exist a descending base of Xat x,{W^)^^j^ , a sequence {x^)„g^ in Z, 

and an open neighbourhood V of f{x) such that lim^_^^x^ = x, x^eW^X W^^^ 

and f(x^)€ V(ne N). Since Y is not quasi countably compact space, there 

exists an ascending sequence (H^)^^^ of open subsets of Y such that 

Y = ^neNH,mdH^:^H^ form^t/i.Set 

G 2 = X x F x Z \ ( { j c } x F x Z u U „ , ; v K } x r x y ) . 

G = GiUG2. 
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Then G is an open neighbouurhood of Fjr y - Indeed, for each teX, either 

t^^x and {t,y,FyY{t,y)) = it,y,f{t))EG2, or t = x and 

(t,y,Ffyit,y))eG,. 

Suppose that there exists a continuous function g:XxY--^ Z contained 

in G. Let y EY. Then g(x,y)eV, and therefore there exists an ne N such 

that g(t,y) G V for each teW^ . In particular, gix^,y) eV, so g^ {y)eV. 

Since g^ ( w ) g y for uiH^ and mg(g^O <̂  ̂ ^ ( Z \ yX^gigxJ î  ^^^ 

connected. Hence F^y ^A(XxY,Z), 
0 

Using the two above propositions we get the following theorem. 

Theorem 2. Assume that x is a first countable, Hausdorff space, Y is a 
connected space, Z is a first countable, quasi regular space, and moreover, 

A(X, Z) / C(X, Z) 9¿ (|). Then condiions (i).(iv) are equivalent. 

Corollary 1. For every connected space Y the following are equivalent: 
(a) Y is quasi countably compact, 

(b) F^y GAfRxr,Rj/or each f GAfRR ) , 

(c) there exists f eA(K ,K)/C fR ,Rj such that F^y GAfRxy,Rj, 

(d) there is f:R-^R such that f gC(R ,R) and F^y GA(Rxr ,R ), 

(e) there exists a first countable space X and afiinction / : Z —>R, such that 

f ¿C(X,R) and F^y G A ( Z X F,R). 

Remark 2. Note that there exist countably compact and connected topological 
spaces which are not compact (see [3, Example 3.10.2, p. 257]), so conditions 
(b)-(e) of Corollary 1 do not imply compactness of Y. 

However, by Remark 1, we get 

Corollary 2. Assume that Y is connected and either it is metrizable, or it is a 

T^-space which satisfies the Linde lof condition. Then the statement 
( • ) Y is compact, 
is equivalent to conditions (b)-(e) of Corollary 1. 
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Now we drop the asumption that Y is connected. First we formulate a 
general problem. 

Query 1. Characterize topological spaces Y for wich the condition (ii) 
holds. 

Though the above problem is open, we can prove some partial results. 

Proposition 4. Assume that X is a first countable, Hausdorff space and Z is a 
first countable quasi regular space. Then (iv) implies the following condition: 

(V) every component of Y is quasi countably compact. 

Proff. This follows easily from Proposition 3 and the fact that restrictions of 
almost continuous functions to closed sets are almost continuous (cf [8] ). 

D 
On the other hand, the condition (i') does not imply (ii) even if X, Y and Z are 
metrizable. 

Example. There exists a subspace Y of the plane with countably many compact 
components such that —i (iv) whenever X u a first countable, Hausdorff space 
and Z is a first countable quasi regular space. 

L e t j = ( 0 , 0 ) , î ^ = { j } , i ; = [ 0 , l ] x { l / n } f o r n G i V , a n d l e t F = U:.o>;-

Let / : X ^ Z, X, (x„ )„, ( W^ )„ and V be as in the proof of Proposition 3 and let 

i / o= [0 , l / 2 )x [0 , l ] .Se t 

G2 = Z x F x Z \ ( { 4 x F x Z u U „ , ; v K } x ^ x ^ ) ' 

Then G is an open neighbourhood of F^y 

Suppose that there exists a continuous function g:XxY-^ Z contained 

in G. Since g{x,y) G V, there exists an n >1 such that g{x^,y) e V and 

g~\V) nY^^0. Consider the function g^^ |F„ . Since g^^ (u) i V for 

UEY^MJQ md g^^(Y^)c:VuV , mg \g^^ \YJ is not connected. Hence 
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Ffy^A(XxY,Z). 
D 

However, it is easy to observe the following: 

Proposition 5. Let X and Z be first countable, let Y satisfy (V) and moreover 
assume that all components of Y are open. Then (ii) holds. 

Now we will considérer again the Lipinski example. We shall determine 

for which subspaces Y of the real line the function i^ j. is almost continuous. 

We say that a space T is an extensor for a space X if for each closed 

subset FczX and every f eC(F,T) there exists an f^€C(X,T) such that 

y * | j ^ = y*. It is well-known that every convex subset of a locally convex linear 

topological space is an extensor for every metrizable space [1]. 

Recall that / : Z —> Z is peripherally continuous if for each XEX and 

each pair of open sets U czX and V czZ such that XEU and f(x)eV, there 

exists an open subset W of U such that xeW and f(bd(W)) c V(bd(W) 
denotes the boundary of W), cf. e.g. [2]. 

Proposition 6. Assume that X and Z are first countable spaces, there exists a 

base of Z composed of extensors for X and f:X—^Z is a peripherally 
continuous function wich is discontinuous at most at one point. Suppose 
moreover that Y satisfies (V) and 

(i^) if\] is an open cover of Y such that every component of Y is contained in 
some element of IJ, then there exists a pairwise disjoint open refinement o/U. 

Then F^y ^^ almost continuous. 

Proof. Assume that fis discontinuous at x E X. 

First note that f EA(X,Z). Indeed, let G c X x Z be an open neigh

bourhood of/and let W and V be open sets such that (x,f(x)) EWXV czG 

and V is an extensor for X. Since / is peripherally continuous at x, there exists 

an open neighbourhood WQ of X such that Ŵ  c W and fibdiW^)) c V. Since 

f^bdiW^) is continuous, there exists a continuous function / * : Z - ^ V such 
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that f*\bd{W,) = f\bd{W,). Hence g = {f\{X \W,))KJ{f*\W,) is a 

continuous function and gczG. 

Now we shall verify that F^y is almost continuous. Let G be an open 

neighbourhood of F^y- Observe that, by (/% for every component L of F there 

exist open sets Wj^dX^Ui^ciY and F^ c: Z such that 

{ j c } x L x { / ( x ) } c W ^ x t / ^ x V ^ c G 

Thus the family U = {C/¿ :L is a component of Yj is an open of Y. In view of 

(¿^ ), there exists a pairwise disjoint open refinement UQ ofU. 

Note that ^ , K =U^gi7o^c/ • For each UEUQ there exist open 

neighbourhoods W^ of x and V^ of f(x) such that W^xUxV^ czG and 

f{bd{Wy)) czVy.Fix UEUQ . It Follows by the first part of the proof that 

there exists a continuous function gy'.X-^Z such that gy\(X \Wy) = 

f\(X \ Wy) and g[/1 Ŵt/ ^ ^i / ^ ^i/ • 'Th^^ ^8u,u î  ^ continuous function 

contained in G. Since elements of UQ are pairwise disjoint and open, 

g = Uueu Su is a continuous function contained in G. 
G 

Observe that the condition {i^) is satisfied for subspaces of R (obvious) 
and for countably paracompact strongly zero-dimensional normal spaces (cf 
Dowker's Theorem, [3 5.2.3] ). Thus Proposition 6 yields the following 
consequences. 

Corollary 3. Let Y be a subspace of R. Then F^^y G A ( R X F , R ) iff all 

componentess of Y are compact. 

Corollary 4t. If Y is a subspace of R then the condition (V) and (c)'(e) are 
equivalent. 

Query 2. Does the implication {i ) => {b) hold whenever X = Z = R and 
F c R ? 



ALMOST CONTINUOUS FUNCTIONS OF TWO VARIABLES 403 

2. Cartesian products of almost continuous and continuous functions 

Given functions /j :Xj -> î̂  and f^^X^-^Y^ we denote by /j X/2 the 

Cartesian product of /j and ^ , i.e. the function from Xj X X2 into 1̂  X1^ 
defined by 

Observe that Tlj ° (/i X A ) = Ff ,x ' where Tlj : Ĵ  X i^ —> î  denotes the 
projection. This fact yields that the Cartesian product of almost continuous 
functions and continuous funcions need not be almost continuous (see thee 

Lipinski example, cf [7]. However, if X2 is compact then /j x /2 is almost 

continuous whenever / GA(Xp}^) and /2 eC^X^^Y^) [7, Theorem4.1]. 
Analogously to the previous section we considérer the following 

conditions: 

(i) X2 is quasi countably compact, 

(ii) /i x /2 G A ( X I xZ2,Fi xF2)foreach / e A{X^J^) and f^ GC(X2,r2). 

(iii) there exists / G A (Zj, î  ) \C(X,, 1̂  ) such that / X /2 G 

A(ZiXZ2,î ;xF2)foreach/2GC(X2,F2) , 

(iv) there exists f{.X^-^Y^ such that / , x /2 G A(Xi xZ2 , Ĵ  X F2) for each 

/ 2 G C ( X 2 , F 2 ) a n d / ¿ C ( Z i , l ^ ) , 

(v) there exist ^X^-^ Y^ and f^ eCiX^.Y^) such that / íC(Xj, í^) and 

/ X / 2 G A ( X I X X 2 , 1 ^ X F 2 ) , 

(vi) there exists / : Xj -^ F̂  and f^ G Const (X^, F2 ) such that / ^ C(X^, Y^) 

and/i x /2 G A ( Z I X X 2 , 1 ^ X F 2 ) 

(vii) there exists / t X , - ^ i ^ such that JF^ ^̂  G A ( X J X Z 2 , F I ) and 

f,iC(X„Y,), 

Similary to the proofs of Proposition 2 and [7, Theorem 4.1] we can 
prove the following. 

Proposition 7. Assume that X^,Y^ and Y^ are first countable spaces. Then 

(0 => ill)' 
Proposition 8. We have 
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(v/)=:>(v/0-
Proof. Recall that F^^^ is the composition of the almost continuous function 

/j x /2 and the continuous function Ttj. So the Proposition is a consequence of 
the fact that such compositions are almost continuous [8]. 

D 

Corollary 5. Assume that X^ is a first countable, Hausdorjf space, X2 is a 

connected space, Y^ and 1̂  are first countable, Y^ is quasi regular, and 

moreover, A(X^ , l ^ ) \ C ( X p l ^ ) ^ 0 . Then conditions (i)'(vii) are equivalent. 
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