Relations between Daniell integral analogues

POR HANS GÜNZLER*

Recibido: 3 de Marzo de 1993

Summary

Recently introduced integral extensions \bar{B} and L are compared with Daniell's L^{1}. Always $\bar{B} \subset L^{1}+$ nulfunctions of \bar{B}; an analogue for L however is not true, also the conjecture $L=\bar{B}+$ nulfunctions of L is shown to be false.
Finally several sufficient conditions for this decomposition of L are given.
Mathematics subject classification: 28 C 05 .

Introducción

Recently abstract spaces of integrable functions \bar{B} and (more general) L have been introduced in [3], [5], which are constructed similar to the Daniell L^{1} and which coincide with L^{1} in the classical case and also with Bourbaki's L^{τ}, but for which, contrary to the L^{1} and L^{τ} cases, no continuity conditions on the starting elementary integral $I \| B$ are needed.

Here we obtain first $\bar{B} \subset L^{1}+\{\bar{B}-$ nulfunctions $\}$, and analogue to [4] concerning an abstract Riemann integral. The corresponding conjecture for the Schäfke localisation L of $\bar{B}, L \subset L_{1}+\{L$-nulfunctions $\}$ is refuted by a counterexample. This gives even codim of $L_{1} \cap L+\bar{B}+\{L-$ nulfunctions $\}$ in L is infinite, so another natural conjecture, $L=\bar{B}+\{L$-nulfunctions $\}$, is also false in general. Nevertheless, we give several sufficient conditions for

[^0]$L=\bar{B}+\{L-$ nulfunctions $\}$, which subsume practically all known applications and examples up to now.

1. Assumptions and notations.

In the following X is an arbitrary set $\neq \phi$, and we assume always, with pointwise $=,+, \leq$, etc. everywhere on X (see [9], (3)).
(1) B function vector lattice $\subset \mathbf{R}^{X}, I: B \rightarrow \mathbf{R}$ linear, $I(f) \geq 0$ if $0 \leq f \in B$. In the next two sections we also use Daniell's condition.
(2) (1) and $I\left(h_{n}\right) \rightarrow 0$ if $0 \leq h_{n+1} \leq h_{n} \in B$ and $h_{n} \rightarrow 0$ pointwise on X (IIB σ-continuous, see Floret [7] p. 43).

We extend the usual + in $\overline{\mathbf{R}}$ to $\overline{\mathbf{R}} \times \overline{\mathbf{R}}$ by $r-r:=r+(-r):=0$ if $r= \pm \infty$; though + is not associative one has $(\wedge=\min)$.
(3) $|(a+b)-(c+d)| \leq|a-c|+|b-d|,|a \wedge t-b \wedge t| \leq|a-b|$
for $a, b, c, d \in \overline{\mathbf{R}}, 0\left\langle t \in \overline{\mathbf{R}}\right.$ ([1],[7]). $+M:=\{k \in M: k \geq 0\}$ if $M \subset \overline{\mathbf{R}}^{X}$.
Using only (1), Bobillo and Carrillo [3] introduced $B^{+}:=\left\{g \in \overline{\mathbf{R}}^{X}\right.$ to each $x \in X$ exist $\left.h_{n} \in B, \quad h_{n} \leq g, \quad h_{n}(x) \rightarrow g(x)\right\}, \quad I^{+}(k):=\sup \{I(h): B \ni h \leq k\}$, $B_{+}:=\left\{g \in B^{+}: I^{+}(g+1)=I^{+}(g)+I^{+}(1)\right.$ for all $\left.l \in B^{+}\right\}$, $\bar{I}(k):=\inf \left\{I^{+}(g): k \leq g \in B_{+}\right\}$for $k \in \overline{\mathbf{R}}^{X}$, and $\bar{B}:=\left\{f \in \overline{\mathbf{R}}^{X}:-\bar{I}(f)=\bar{I}(f) \in \mathbf{R}\right\}$. \bar{B} is the closure of B in $\overline{\mathbf{R}}^{X}$ with respect to the "integral metric" $\bar{I} \mid[0, \infty]^{X}, \bar{B}$ is closed with respect to + , a., , , । I, \bar{I} extends I।B and is additive, Rhomogeneous and monotone on \bar{B};
$\bar{B}_{n}:=\left\{f \in \overline{\mathbf{R}}^{X}: \bar{I}(|f|)=0\right\} \subset \bar{B}(\bar{B}-$ or $\bar{I}-$ nulfunctions; see [1] or [6]).
With (2) also the space $L^{1}:=L^{1}(I \mid B)$ of Daniell I-integrable $f: X \rightarrow \overline{\mathbf{R}}$ and the Daniell integral $I_{D}: L^{1} \rightarrow \mathbf{R}$ are well defined; $L_{n}^{1}:=\left\{f \in L^{1}: I_{D}(|f|)=0\right\}$ ([1], [7]).

2. The Bobillo-Carrillo integral.

Lemma 1. To $g \in B_{(+)}:=\left\{g \in B_{+}: I^{+}(g)\langle\infty\}\right.$ there exist $q \in L^{1} \cap B_{(+)}, p \in+\bar{B}_{n}$ with $g=q+p, q \leq g, I_{D}(q)=I^{+}(q)=\bar{I}(q)=I^{+}(g)=\bar{I}(g)$. If $g \geq 0, q \geq 0$ is possible.
Proof: There exist $h_{n} \in B$ with $h_{n} \leq h_{n+1} \leq g, I\left(h_{n}\right) \rightarrow I^{+}(g)=\bar{I}(g) \in \mathbf{R}$. Then q : pointwise $\lim h_{n} \leq g, q \in L^{1}, I_{D}(q)=I^{+}(q)$ by L^{1}-theory. $h_{n} \leq q \leq g$ imply $\bar{I}\left(\left|q-h_{n}\right|\right) \leq \bar{I}\left(\left|g-h_{n}\right|\right)=I^{+}\left(g-h_{n}\right) \rightarrow 0, q \in \bar{B}$. Since $q \in B^{+}, q \in B_{(+)}$by a result of [4], p. 261, (a). With $p: g-q$ the rest follows since $p, q \neq-\infty$.

Lemma 2

If $a, b \in L^{1} \cap B_{(+)}, c, d \in+\bar{B}_{n}, a+c \leq b+d, I^{+}(a)=I_{D}(a), I^{+}(b)=I_{D}(b)$, there is $p \in+\bar{B}_{n}$ with $a+c=a \wedge b+p, a \wedge b \in L^{1} \cap B_{(+)}, I_{D}(a)=I_{D}(a \wedge b)=$ $=I^{+}(a \wedge b)$.

Proof: L^{1} and $B_{(+)}$are \wedge-closed ([3] p. 248, 2)). If $p:=(a+c)-(a \wedge b)$, a simple discussion $(a, b \neq-\infty)$ gives $0 \leq p \leq c+d, a+c=(a \wedge b)+p$, so $p \in+\bar{B}_{n}$.
$I_{D}(a \wedge b) \leq I_{D}(a)=I^{+}(a)=\bar{I}(a)=\bar{I}(a+c)=\bar{I}(a \wedge b+p)=\bar{I}(a \wedge b)=I^{+}(a \wedge b) \leq I_{D}(a \wedge b)$
Lemma 3. If $f \in L^{1}, g \in \bar{B}, f \leq g$, then $I_{D}(f) \leq \bar{I}(g)$.
Proof: By the definition of \bar{B} we can assume $g \in B_{(+)}$. By definition of L^{1}, for every $\varepsilon>0$ there is $k \in B^{+} \cap L^{1}$ with $-k \leq f$ and $I_{D}(f)-\varepsilon\left\langle-I_{D}(k)=-I^{+}(k)\right.$; then
$0 \leq f+k \leq g+k, 0 \leq I^{+}(g+k)=I^{+}(g)+I^{+}(k), I_{D}(f)-\varepsilon \leq I^{+}(g)=\bar{I}(g)$.
Theorem. If (2) holds, $\bar{B}=L^{1} \cap \bar{B} \cap \mathbf{R}^{X}+\bar{B}_{n}$, i.e. to each $f \in \bar{B}$ exist $p \in \bar{B}_{n}$ and an \mathbf{R}-valued $q \in L^{\prime} \cap \bar{B}$ with $f=q+q \cdot I_{D}(g)=\bar{I}(g)$ for any $g \in L^{1} \cap \bar{B}$.

From the example 3 of [9], $\bar{B} \subset L^{1}$ is false even for probability spaces (X, Ω, μ).
Proof: First for $0 \leq f \in \bar{B}$: There exist $k_{n}, l_{n} \in B_{(+)}$with $0 \leq-k_{n} \leq-k_{n+1} \leq f \leq$ $\leq l_{n+1} \leq l_{n}$ and $I^{+}\left(l_{n}\right) \rightarrow \bar{I}(f),-I^{+}\left(k_{n}\right) \rightarrow \bar{I}(f)$. From Lemma 1 and 2 there exist $a_{n}, b_{n} \in L^{1} \cap B_{(+)}, c_{n}, d_{n} \in+\bar{B}_{n}$ with $k_{n}=a_{n}+c_{n}, l_{n}=b_{n}+d_{n}, a_{n+1} \leq a_{n} \leq$ $k_{n} \leq 0,0 \leq b_{n+1} \leq b_{n}, I^{+}\left(k_{n}\right)=I^{+}\left(a_{n}\right)=I_{D}\left(a_{n}\right), I^{+}\left(l_{n}\right)=I^{+}\left(b_{n}\right)=I_{D}\left(b_{n}\right)$. If a: $=\lim a_{n}, b:=\lim b_{n}$, then $a, b \in L^{1}$ with $-I_{D}(a)=\bar{I}(f)=I_{D}(b)$ from the Monotone Convergence Theorem for L^{1} (e.g. [1] p. 450). With $u:=(f+a)_{a}, v:=(b-f)_{+}$we hare
(4) $a \leq 0 \leq f \leq(-a)+u, 0 \leq b \leq f+v, I_{D}(-a)=\bar{I}(f)=I_{D}(b)$. $u, v \in+\bar{B}_{n}: b-f \leq b_{n}-f \leq\left(b_{n}+d_{n}\right)-f, 0 \leq v \leq l_{n}-f \in+\bar{B}$, $\bar{I}\left(l_{n}-f\right)==\bar{I}\left(l_{n}\right)-\bar{I}(f) \rightarrow 0$, so $\bar{I}(|v|)=0$; similary $u \in+\bar{B}_{n}$. $(a+b)_{+} \in \bar{B}_{n} \cap L_{n}^{1}: a+b \leq a+(f+v) \leq a+(((-a)+u)+v) \leq u+v \quad$ with (3), thus $0 \leq(a+b)_{+} \in \bar{B}_{n}$; Lemma 3 gives $I_{D}\left((a+b)_{+}\right)=0 . I_{D}(a+b)=0$ yields then $(a+b)_{-} \in L_{n}^{1}, a+b \in L_{n}^{1}$.
If now $b_{e}:=0$ where $|b|=\infty,:=b$ else, also $0 \leq b_{e} \in L^{1}, I_{D}\left(b_{e}\right)=I_{D}(b)$,
$b-b_{e} \in L_{n}^{1}\left(\left|b-b_{e}\right| \leq|b-h|, L^{1}=\right.$ suitable B^{q} by [1], p. 448: Stone's axiom is not needed): whit $\left|b_{e}+a\right| \leq|a+b|+\left|b-b_{e}\right|$ one gets $b_{e}+a \in L_{n}^{1}$.
Define now $r:=f-\left(b_{e}+u\right)$ where $f \succ b_{e}+u,:=0$ else, $g:=b_{e}+r, p:=f-g$; then (5) $0 \leq r \leq f, p \leq f, 0 \leq g, f=g+p, g \in L^{1} \cap \bar{B}, p \in \bar{B}_{n}$:
(Here $g \leq f$ resp. $0 \leq p$ is in general not possible, e.g. in ex. 3 of [9].) $r \in L_{n}^{1}, g \in L^{1}$: Where $r \succ 0, r=f-\left(b_{e}+u\right) \leq((-a)+u)-\left(b_{e}+u\right) \leq\left|a+b_{e}\right|$ by (3), thus $0 \leq r \leq\left|a+b_{e}\right|$ or $r \in L_{n}^{1}$; then $g \in L^{1}$.
$|p| \leq u+v$, so $p \in \bar{B}_{n}$: If $f \leq b_{e}$, there $|p|=b_{e}-f \leq v$; if $b_{e} \prec f \leq b_{e}+u,|p|=$ $=f-b_{e} \leq u$; if $b_{e}+u \prec f,|p|=\left|f-\left(b_{e}+\left(f-\left(b_{e}+u\right)\right)\right)\right|$; since $u \neq \infty$, the cases $f=\infty, f \neq \infty$ yield there $|p| \leq u . f=g+p$, since $f \prec \infty$ implies $r \prec \infty, g \prec \infty$.

Since $g=f-p$ except where $f=p=\infty, g \in \bar{B}$ by theorem 5.2. of [2]. This gives (5).
For general $f \in \bar{B}$ one can write $f=f_{e}+f_{u}$ with $f_{e} \in \bar{B} \cap R^{X}$ and $f_{u} \in \bar{B}_{n}$ as above (see [6], Cor. II). $f_{e}=f_{e+}-f_{e^{-}}$with $f_{e \pm} \in+\mathbf{R}^{X} \cap \bar{B}$, (5) and $g=b_{e}+r$ gives $\quad g_{i} \in+L^{1} \cap \bar{B} \cap \overline{\mathbf{R}}^{X}, p_{i} \in \bar{B}_{n} \cap \overline{\mathbf{R}}^{X} \quad$ with $f_{e}=\left(g_{1}+p_{1}\right)-\left(g_{2}+p_{2}\right)=g+q$ $, g:=g_{1}-g_{2} \in \bar{B} \cap L^{1} \mathbf{R}^{X}, f=(g+q)+f_{u}=g+\left(q+f_{u}\right), q+f_{u} \in \bar{B}_{n}$. One even has $f(x)=p(x)$ where $|f(x)|=\infty$.
$I_{D}=\bar{I}$ on $L^{1} \cap \bar{B}$ follows from Lemma 3 for \pm.

3. An extension of the Bobillo-Carrillo integral.

The integral $\bar{I} \mid \bar{B}$ has been extended to $J \mid L$ in [5] with Schäfke's [11] local integral norm $\bar{I}_{B}: \bar{I}_{B}(k):=\sup \{\bar{I}(k \wedge h): h \in+B\}, L:=L(I \mid B):=$ $=\bar{I}_{B}$-closure of B in $\bar{R}^{X}\left(=R(B, I)\right.$ in [5], $J:=$ unique \bar{I}_{B}-continuous extension of $I \mid B$ to $L . J=\bar{I}_{B}$ on $L, J: L \rightarrow \mathbf{R}$ is "linear" and monotone, $\bar{B} \subset L$ with $J=\bar{I}$ on \bar{B}, the convergence theorems of [9] for \bar{B} extend to $J \mid L$, in even better form. Looking at this and the definition of L it is natural to conjecture that an analogue to the Theorem of section 2 should be true for L, especially since this is true in all the examples in the literature (see section 4).

In general however L is bigger than such an analogue would allow; this is shown by the following.

Example. There is a set X, a ring Ω of subsets of X and a σ-additive $\mu: \Omega \rightarrow[0, \infty)$ sucht that with $B=B_{\Omega}:=$ real-valued step functions over Ω and $I=I_{\mu}:=\int \ldots d \mu$ (see [9] after (17)) one has
(6) $L \not \subset L_{1}+L_{n}$ and $L^{1} \not \subset L+L_{1, n}$.

Here $\quad L:=L\left(I_{\mu} \mid B_{\Omega}\right), L_{n}:=\left\{k \in \bar{R}^{X}: \bar{I}_{B}(|k|)=0\right\}, \subset L, L^{1}=L^{1}\left(I_{\mu} \mid B_{\Omega}\right)=\quad$ usual $L^{1}(\mu \mid \Omega, \overline{\mathbf{R}}), L_{1}:=$ localized $L^{1}=L^{1}+L_{1, n}($ see [9], section 6),
$L_{1, n}=\left\{k \in \bar{R}^{X}: k=0 \mu\right.$-a.e.on each $\left.A \in \Omega\right\}$:
$X:=I \times I \quad$ with $\quad I:=[0,1] \subset R ; \Omega:=\quad$ ring \quad containing all $\{s\} \times E,\{s\} \times(I-E), F \times\{t\},(I-F) \times\{t\} \quad$ with $\quad 0\langle s \leq 1, \quad E \quad$ finite $\subset I, t \in I, 0 \notin F$ finite $\subset I$;
$\mu(\{s\} \times I):=1, \mu(I \times\{t\}):=t^{2}, \mu(\{s\} \times E):=0=: \mu(F \times\{t\})$ defines a σ-additive $\mu: \Omega \rightarrow I$. Therefore $I_{D}\left|L^{1}, L_{1}, L_{1}, \bar{I}\right| \bar{B}$ and $J \mid L$ are well defined, (2) holds.

If $f:=1 T=$ characteristic function of $T:=\left\{\left(0, \frac{1}{n}\right): n \in \mathbf{N}\right\}$, then $f \in L$, but $f \notin L_{1}+L_{n}:$
Since $f_{n}:=1\{(0,1 / m): 1 \leq m \leq n\} \rightarrow f(\bar{I}, B)$ (see (15) below) and $\bar{I}_{B}\left(\left|f_{r}-f_{n}\right|\right)<$ $\left\langle\sum_{n}^{\infty} m^{-2}\right.$ if $n\langle r$, for $f \in L$ only $1\{(0, t)\} \in L$ has to be proved by Theorem 1 of [5]. But $1:=1((0,1] \times\{t\}) \in B^{+}$and $I^{+}(k+1)=I^{+}(k)=I^{+}(k)+I^{+}(1)$ for any $k \in B^{+}$by definition of $B^{+} I^{+}, \Omega$, so $l \in B_{(+)} \subset \bar{B}, 1\{(0, t)\}=$ $=1(I \times\{t\})-l \in B_{(-)} \subset \bar{B}$.
If $f=g+p$ with $g \in L_{1} p \in L_{n}$, one can show first that $p(0, t)=0$ for $0\langle t \in I$, so $g\left(0, \frac{1}{n}\right)=1$ for $n \in N$. If $q:=g$ on $A:=I x\left\{\frac{1}{n}\right\},: 0$ else, then $q \in L^{1}$, there are $h_{m} \in B$ with $I_{D}\left(\left|h_{m}-q\right|\right) \rightarrow 0, h_{m}=0$ outside A and $h_{m} \rightarrow q$ except on a countable $M \subset A$ with $(0,1 / n) \notin M\left(L^{1}=L^{1}(\mu \mid \Omega, \bar{R})\right)$. Therefore there exists a countable $P \subset I$ with $0 \notin P$ such that $g\left(s, \frac{1}{n}\right) 1$ for $s \in I-P$ and $n \in N$.

This gives a $s_{o} \in(0,1]$ with $p\left(s_{o}, \frac{1}{n}=-1\right)$ for $n \in N$.

Now if $r:=|p|$ on $C:=\left\{s_{o}\right\} \times I,:=0$ else, then $r \in B^{+} \cap L_{n}, C \bar{B}_{(+)}$by Theorem 9 of [5], $r \in B_{(+)}, I^{+}(r)=\bar{I}(r)=0$. If now $k\left(s_{o}, \frac{1}{n}\right):=0, k:=1$ else in $C,:=0$ outside C, then $k \in B^{+}, I^{+}(k)=0$; this gives $1 \leq I^{+}(k+r)=I^{+}(k)+I^{+}(r)$, a contradiction.

The second part of (6) follows with $f=1\left(U_{1}^{\infty}\left(I \times\left\{\frac{1}{n}\right\}\right)\right) \in L^{1}, \notin L+L_{1, n}$, along similar lines, we omit the details.
Furthermore one can even show that the codimension of $L_{1} \cap L+L_{n}$ in L is infinite in this example. See also (11) below.
For measure spaces the situation is different, his will be treated in Corollary IV below.

4. Relations between the preceding integrals.

Proposition 1. If $I \mid B$ is $\sigma-\operatorname{continuous(2),~then~} \bar{B}+L_{n}=\left(L^{1} \cap \bar{B}\right)+L_{n}$.
This follows from Theorem of section $2, \bar{B}+L_{n}=\left(\left(\bar{B} \cap L^{1} \cap \mathbf{R}^{X}\right)+\bar{B}_{n}\right)+L_{n}=$ $=\left(\bar{B} \cap L^{1} \cap \mathbf{R}^{X}\right)+\left(\bar{B}_{n}+L_{n}\right)$ (though + is not associative), $\subset \bar{B} \cap L^{1}+L_{n}$ (see (18)).

Corollary I. If $I \mid B$ is σ-continuous, $(8) \Leftrightarrow(9) \Rightarrow(10) \Leftrightarrow\left(10^{\prime}\right)$, where
(8) $L=\bar{B}+L_{n} \quad$ (8') $\quad L \subset \bar{B}+\left(L_{n}+L_{1, n}\right) \quad$ (see (18))
(9) $L=\left(L^{1} \cap \bar{B}\right)+L_{n}$
(10) $L=\left(L^{1} \cap L\right)+L_{n} \quad\left(10^{\prime}\right) L \subset L_{1}+L_{n}$.

Proof: (8) $\Leftrightarrow(9)$ by Prop. 1. If $f=g+(p+q)$ with $g \in \bar{B}, p \in L_{n}, q \in L_{1, n}$, the \pm-closedness of L by [5], p. 81 gives $p+q \in L, q \in L \cap L_{1}$; then $|q| \wedge h \in \bar{B} \cap L_{n}^{1}$ if $h \in+B$ by [5], (1.- p. 82), so $q \in L_{n}$ with $I_{D}=\bar{I}$ on $\bar{L}^{1} \cap B$ of the Theorem above, $\left(8^{\prime}\right) \Rightarrow(8)$. If $0 \leq f \in L \cap L_{1}$, there are $h_{n} \in+B$ with
$J\left(\left|f-h_{n}\right|\right) \rightarrow 0, f_{n}:=V_{1}^{n}\left(f \wedge h_{m}\right) \rightarrow: g$ pointwise $\leq f, f_{n} \in \bar{B} \cap L^{1}$,
$\bar{I}_{B}\left(\left|g-f_{n}\right|\right) \leq J\left(f-f_{n}\right)=J\left(f \wedge f-f \wedge h_{n}\right) \leq J\left(\left|f-h_{n}\right|\right) \rightarrow 0$, so $g \in L \cap L^{1}$,
$f-g \in L_{n}$; this implies $\left(10^{\prime}\right) \Rightarrow(10)$.

Corollary II. In general (8) is false, even for $I_{\mu} \mid B_{\Omega}$ with σ-additive $\mu \mid \Omega$.
Proof: (9) is false by (16) for the example in section 3, so also (8) by Cor. II; explicitly the $1 T$ of this example $\in L, \notin \bar{B}+L_{n}$. A closer look at this example even yields there
(11) $L_{n}=\bar{B}_{n}, R_{1}(\mu, \overline{\mathbf{R}}) \underset{\neq}{\subset} \bar{B} \subset L$, codim of $\bar{B}+L_{n}+L \cap L_{1}$ in L is infinite.

Proposition 2. If B satisfies Stone's axiom ($h \wedge 1 \in B$ if $h \in+B$) and
$I\left(h \wedge \frac{1}{n}\right) \rightarrow 0, I(h-h \wedge n) \rightarrow \infty, h \in+B$, then the following four conditions are equivalent:
(8) $L=\bar{B}+L_{n} \quad$ (8') $L=\left(\bar{B} \wedge \mathbf{R}^{X}\right)+L_{n}$
(12) $0 \leq f$ bounded $\in L \Rightarrow f \in \bar{B}+L_{n}$
(13) $M \subset X, 1 M \in L \Rightarrow 1 M \in \bar{B}+L_{n}$.
$(12) \Rightarrow(8)$ is an extension of Theorem 3 of [9], for this $I\left(h \wedge \frac{1}{n}\right) \rightarrow 0$ is not needed.
$(13) \Rightarrow$ (12) uses the countability of the "spectrum" of a $f \in+L$ (see [2], Lemme 1 , for the \bar{B} case) and the closedness of \bar{B} with respect to uniform convergence.
$M=U_{1}^{\infty} M_{n}$ with $1 M_{n} \in \bar{B}$ and $J\left(1 M-1 M_{n}\right) \rightarrow 0$ suffice in (13). We omit the somewhat lengthy details.

Proposition 3. For arbitrary $I \mid B$ with(1) one has $L=\bar{B}+L_{n}$, if o $n e$ of the following four conditions is true:
(14) $I \mid B \sigma$-continuous, $L^{1} \subset \bar{B}+\left(L_{n}+L_{1, n}\right)$ (see (18)).
(15) $\quad B$ satisfies Stone's axiom, $I(h-h \wedge n) \rightarrow 0$ if $h \in+B$, there exits a indexed set $\left(b_{s}\right)_{s \in S}$ with $b_{s} \in+B_{(+)}$such that $\sum_{s \in e} b_{s} \leq 1$ for each finite
$e \subset S$ and $\sum_{e} b_{s} \rightarrow 1 X(\bar{I}, B)$ with respect to the net of finite $e \subset S$ (i.e.
$\bar{I}\left(\left|1 X-\sum_{e} b_{s}\right| \wedge h\right) \rightarrow 0$ for each $\left.h \in+B\right)$
(16) B satisfies Stone's axiom, $I(h-h \wedge n) \rightarrow 0$ if $h \in+B, I^{+}(1 X)<\infty$
(17) All $1\{x\} \in B^{+}, x \in X$.
(16) implies even $L=\bar{B}$; (17) $\Rightarrow \bar{B}=R_{1}=L \Rightarrow \bar{B} \subset R_{1} \Leftrightarrow L=R_{1} \Rightarrow$ $\Rightarrow L=\bar{B}+R_{1, n}$.
Most known examples are subsumed by Proposition 3:

Corollary III. If $I \mid B$ is τ-continuous $=$ Bourbaki's continuity condition, then $L^{1} \subset \bar{B}=L^{\tau}=L^{1}+\bar{B}_{n} \subset L=\bar{B}+L_{n}, L_{1} \subset L$.
Special case: $B=C_{o}(X, \mathbf{R}), X$ locally compact, I arbitrary linear ≥ 0; if X is σ compact (e.g. open or closed $\subset \mathbf{R}^{n}$), then $L=\bar{B}=L^{1}=L_{1}$, see Cor. IV.
Proof: By [3], p. 247, $\bar{B}=L^{\tau}$ (see also [9], (33)); since always $L^{1} \subset L^{\tau}, B=L^{1}+\bar{B}_{n}$ by section 2 and (14) holds.-

Corollary IV. If Ω is a ∂-ring and $\mu: \Omega \rightarrow[0, \infty)$ is ∂-additive, then
$L_{1}=R_{1} \subset \bar{B}+L_{n}=L \subset L^{1}+L_{n}$.
Proof, with $B=\operatorname{step}$ functions $B_{\Omega}, I=I_{\mu}$ as before (6) for $\bar{B}, L, R_{1}=R_{1}(\mu, \overline{\mathbf{R}})$
of [8], $=R_{1}\left(B_{\Omega,} I_{\mu}\right)$ of [10]: $L_{1}=R_{1}$ by [8], p. 265.
$R_{1} \subset \bar{B}+R_{1, n}$ by [4]. $R_{1, n} \subset L_{n}$ by [5], p. 82, so $L^{1} \subset L_{1} \subset \bar{B}+L_{n}$, (14) holds.For further inclusion of this type, see (58) of [6].

Corollary V. If B satisfies $h \wedge 1 \in B, I(h-h \wedge n) \rightarrow 0, I\left(h \wedge \frac{1}{n}\right) \rightarrow 0$ if $h \in+B$, and B is I-separable (i.e. there exists a at most countable $M \subset B$ such that to each $h \in B$ and $\varepsilon\rangle 0$ there is $k \in M$ with $I(|h-k|)\langle\varepsilon)$, then $L=\bar{B}+L_{n}$.

Proof: If $\left.M=\left\{q_{n}: n \in N\right\}, p_{n}:=1 \wedge\left(V_{1}^{n} q_{m}\right), \varepsilon\right\rangle 0, h \in+B$, there is m with

$$
\begin{aligned}
& I\left(h \wedge \frac{1}{m}\right)\left\langle\varepsilon, \text { then } n \text { with } I\left(\left|m\left(h \wedge \frac{1}{m}\right)-q_{n}\right|\right)\langle\varepsilon ; h \wedge| 1 X_{1}-p_{n}\right| \leq h \wedge\left|1 X-q_{n}\right| \leq \\
& \leq h \wedge \left\lvert\, 1 X-m\left(h \wedge \frac { 1 } { m } \left|+\left|m\left(h \wedge \frac{1}{m}\right)-c_{n}\right| \leq h \wedge \frac{1}{m}+\left|m\left(h \wedge \frac{1}{m}\right)-q_{n}\right|,\right.\right. \text { i.e. }\right. \\
& p_{n} \rightarrow 1 X(\bar{I}, B) ; S:=\mathbf{N}, b_{n}:=p_{n}-p_{n-1}, p_{o}:=0 \text { gives (15).- }
\end{aligned}
$$

Special cases: B finite dimensional, $B=C_{o}\left(\mathbf{R}^{n}, \mathbf{R}\right), B=B_{\Omega} \quad$ with at most countable Ω; or

Corollary VI. If X open $\subset \mathbf{R}^{n}, \Omega=$ semiring of Lebesgue measurable sets with finite measure $\subset X, B=$ step functions $B_{\Omega}, I=\int . . d \mu_{L}^{n}$, then $L=\bar{B}+L_{n}$; if $\Omega=\{$ all intervals $\{\mathrm{a}, \mathrm{b}) \subset X\}$ or $=\{$ all L-measurable sets with finite measure $\subset X\}$, then even $L^{1}=$ usual $L^{1}(X, \overline{\mathbf{R}})=L_{1}=\bar{B}=L$.
Proof: Ω is ' μ-separable', so B_{Ω} is I-separable, Cor. V gives the first statement. (38) of [9] gives the first three ' $=$ ' in the last statement.
If $p \in L_{n}, h \in+B$, then $|p| \wedge h \in \bar{B}_{n}=L_{n}^{1} \quad$ by [5], 1.- p. 82 ; this implies $p \in L_{1, n}=L_{n}^{1} \subset L^{1}$ or $L_{n} \subset L^{1}=\bar{B}$.

Corollary VII. If, besides $I(h-h \wedge n) \rightarrow 0$ on $+, \mathrm{B}, 1 X \in B=$ Stonean, or $X \in \Omega$, or $\mu: \Omega \rightarrow[0, \infty)$ is bounded on the ring Ω, then $L=\bar{B}$.
Special case: X in Corollary VI has finite Lebesgue measure.
Proof: Here (16) is true.-
Corollary VIII. (2) and any of the asumptions in Cor. III - VII or Proposition 3 imply $L=L^{1} \cap \bar{B}+L_{n}$.

Proof: Use the Theorem of section 2 and $\left(L^{1} \cap \bar{B}+\bar{B}_{n}\right)+L_{n}=L^{1} \cap \bar{B}+L_{n}$.-
Proof of Proposition 3, case (14): If $f \in+L$ there are $h_{n} \in+B$ with
$J\left(\left|f-h_{n}\right|\right) \rightarrow 0$; then $f_{m}:=f \wedge h_{m} \in+\bar{B} \cap \mathbf{R}^{X}$ by 1.- p. 82 of [5],
$J\left(\left|f-f_{m}\right|\right) \rightarrow 0$; one can assume $f_{m} \leq f_{m+1} \leq f$. With (5) and $g=b_{e}+r$ one
gets $f_{m}=g_{m}+p_{m}$ with $g_{m} \in+L^{1} \cap \bar{B} \cap \mathbf{R}^{X}, p_{m} \in \bar{B}_{n} \cap \mathbf{R}^{X}$; with an analogue to Lemma 2 one can assume $g_{m} \leq g_{m+1}, m \in \mathbf{N}$. Then $g_{m} \rightarrow: g \in L^{1}$ by the Monotone Convergence Theorem for L^{1} ([1] p. 450) and Lemma 3. One has $f \leq g+p$ with $p:=(f-g)_{+}, p \leq\left(f-f_{m}\right)+\left|p_{m}\right|=: q_{m} \in L$, so $\bar{I}_{B}(|p|) \leq J\left(q_{m}\right) \rightarrow 0, p \in+L_{n}$. With (14) one gets $0 \leq f \leq(1+q+r)+p \leq|1|+$ $+|q|+|r|+p=: a+b+c$ with $a \in+\bar{B}, b \in+L_{n}, c \in+L_{1, n}$.
With $d:=f-f \wedge a$ we have $f=f \wedge a+d, f \wedge a \in \bar{B}, 0 \leq d \leq b+c$ so if $h \in+B, d \wedge h \leq b \wedge h+c \wedge h$ with $d \wedge h \in \bar{B}, b \wedge h \in \bar{B}_{n}, c \wedge h \in L_{n}^{1}$; Lemma 3 gives $0=I_{D}(-c \wedge h) \leq \bar{I}(b \wedge h-d \wedge)=-\bar{I}(d \wedge h) \leq 0$, then $\bar{I}_{B}(|d|)=0$,
$d \in+L_{n}$, or $+L \subset(+\bar{B})+\left(+L_{n}\right)$.
$L=\bar{B}+L_{n}$ follows from $f=f_{+}-f_{-}$, since the supports of $f_{ \pm}$are disjoint. Though we did not need it, let us remark that one can show
(18) $\bar{B}+\left(L_{n}+L_{1, n}\right)=\left(\bar{B}+L_{n}\right)+L_{1, n}=\left(\bar{B}+L_{1, n}\right)+L_{n}$.

Case (15): We assume first only $g_{e}:=\sum_{s \in e} b_{s} \rightarrow 1(\bar{I}, B), b_{s} \in+B_{(+)} \cap \mathbf{R}^{X}$, $g_{e} \leq 1$, with $l \in+\overline{\mathbf{R}}^{X}$; then we will show
(19) $f \wedge 1 \in(+\bar{B})+\left(+L_{n}\right)$ if $f \in+L$:
$\bar{I}_{B}\left(\left|f \wedge 1-f \wedge g_{e}\right|\right) \rightarrow 0 \quad$ and $f \wedge 1 \in L, f \wedge g_{e} \in \bar{B} \quad$ by (3), the Legesgue Convergence Theorem for L of [5], p. 82 and 1.- p.82. If only finitely many e's are needed, $f \wedge l-f \wedge g_{e_{o}} \in L_{n}$, (19) follows. Else there are pairwise different $s_{m} \in S$ with $g_{n}:=b_{s_{1}}+\ldots+b_{s_{n}} \in B_{(+)}$and $\bar{I}_{B}\left(\left|f \wedge l-f \wedge g_{n}\right|\right) \rightarrow 0$.
If $g_{M}:=\sum_{s \in M} b_{s}:=\sup \left\{\sum_{s \in e} b_{s}:\right.$ finite $\left.\subset M\right\}$ pointwise, then to $h \in+B$ and $\varepsilon>0$ there is e_{ε} with
(20) $\bar{I}\left(g_{S-e \varepsilon} \wedge h\right)=\bar{I}\left(\left(g_{S}-g_{e_{\varepsilon}}\right) \wedge h\right) \leq \bar{I}\left(\left|l-g_{e_{\varepsilon}}\right| \wedge h\right)\langle\varepsilon$;
also there is $n_{\varepsilon} \in \mathbf{N}$ with $s_{n} \notin e_{\varepsilon}$ if $\left.n\right\rangle n_{\varepsilon}$.

Since $0 \leq k_{n}:=f \wedge g_{n}-f \wedge g_{n-1} \leq b_{s_{n}} \quad$ by (3) and $B_{(+)} \quad$ is \wedge-closed ([3] p. 248), there exist $t_{n} \in+B_{(+)}$with $k_{n} \leq t_{n} \leq b_{s_{n}}$ and $\bar{I}\left(t_{n}\right)\left\langle\bar{I}\left(k_{n}\right)+2^{-n}\right.$;
$t:=\sum_{1}^{\infty} t_{n} \in B^{+}$. (20) and $\left|t-\sum_{1}^{n} t_{m}\right|=\sum_{n+1}^{\infty} t_{m} \leq \sum_{n+1}^{\infty} s_{m} \leq g_{S-e_{\varepsilon}}$
if $n \geq n_{\varepsilon}$ give $\sum_{1}^{n} t_{m} \rightarrow t(\bar{I}, B)$; since $\bar{I}\left(\sum_{1}^{n} t_{m}\right) \leq \sum_{1}^{n-}\left(k_{m}\right)+1=$ $\bar{I}\left(f \wedge g_{n}\right)+1 \leq J(f)+1$ for $n \in \mathbf{N}, t \in B^{+} \cap \bar{B}\left(=B_{(+)}\right)$by Theorem 2 of [9].

But then $f \wedge t \in \bar{B}([5] 1 .-p .82)$. Since $0 \leq t \leq 1,0 \leq f \wedge t-f \wedge\left(\sum_{1}^{n} t_{m}\right) \leq$
$\leq f \wedge l-f \wedge\left(\sum_{1}^{n} k_{m}\right)=f \wedge g_{n}$, so
$J(f \wedge l) \geq \bar{I}(f \wedge t)=\lim \bar{I}\left(f \wedge \sum_{1}^{n} t_{m}\right) \geq \lim \bar{I}\left(f \wedge g_{n}\right)=J(f \wedge l)$,
or $p:=f \wedge l-f \wedge t \in+L_{n} \cdot f \wedge t+p$ gives (19).
If now (15) holds and $0 \leq f$ bounded $\leq r, f \in L$, then $l=r X$ in (19) gives $f \in(+\bar{B})+\left(+L_{n}\right)$. Then $L=\bar{B}+L_{n}$ with $(12) \Rightarrow(8)$ of Proposition 2.

If $I \mid B$ satisfies additionally $I\left(h \wedge \frac{1}{n}\right) \rightarrow 0$ for $h \in+B$, then $\sum_{e} b_{s} \rightarrow 1 X(\bar{I}, B)$ in (15) can be replaced by
(21) $\bar{I}\left(h \wedge \sum_{e} b_{s}\right) \rightarrow I(h)$ for each $h \in B$ with $0 \leq h \leq 1$.

Case (16): If $r:=I^{+}(1 X)\left\langle\infty\right.$, there are $h_{n} \in+B$ with $h_{n} \leq h_{n+1} \leq 1, I\left(h_{n}\right) \rightarrow r$.
Then $h_{n} \rightarrow 1 X(\bar{I}, B)$, since if $\left.\bar{I}\left(\left(1 X-h_{n}\right) \wedge h_{o}\right) \wedge \varepsilon_{o}\right\rangle 0$ for $n \in \mathbb{N}$, with $\left(1 X-h_{n}\right) \wedge h_{o}=\left(h_{n}+h_{o}\right) \wedge 1-h_{n}$ one would get a contradiction.
(15) holds with $S:=\mathbf{N}, b_{n}:=h_{n}-h_{n-1}$. Without Prop. 2, $1 X \in B_{(+)} \subset \bar{B}$ by Theorem 2 of [9], $s c|f| \wedge n \in \bar{B}$ if $f \in L$ by $|5|$, 1.- P. 82; Theorem 3 of [9] gives $L=\bar{B}$.

Case (17): Then $+\bar{R}^{X} \subset B^{+}$, so $+L \subset L \cap B^{+}=B_{(+)} \subset \bar{B}$ by Theorem 9 of [6], $L=\bar{B}=B_{(+)}-B_{(+)} \cdot \bar{B} \subset R_{1}$ follows from (20) of [9] and prop. 1.4 of [10b], at least for $I_{\mu} \mid B_{\Omega}$.
$L=R_{1} \Rightarrow L=\bar{B}+R_{1, n}$ follows from [10b] p. 45 (see [6], 38).-
With suitable examples (see [9]) one can show that the 'c' in Cor. III and IV are in general strict; no part of the asumptions in Prop. 3 and its corollaries can be omitted, e.g. $b_{s} \in+\bar{B}$ instead of $b_{s} \in+B_{(+)}$in (15) does not give $L=\bar{B}+L_{n}\left(b_{s}=1\{s\} \times I\right.$ and $\left.1\{(0, s-1)\}\right), S=(0,2]$, in the example of section 3). $(10) \Rightarrow(8)$ however is open.

References

[1] AUMANN, G., Integralerweiterungen mittels Normen. Archiv. d. Math. 3, 441-450 (1952).
[2] BOBILLO GUERRERO, P. et M. DÍAZ CARRILLO, Sur les fonctions mesurables par rapport a un system de Loomis quelquonque. Bull. Soc. Roy. Sci. Liège 54, 114-118 1985).
[3] BOBILLO GUERRERO, P. and M. DÍAZ CARRILLO, Summable and integrable functions with respect to any Loomis system. Archiv. d. Math. 49, 245-256 (1987).
[4] BOBILLO GUERRERO, P. and M. DÍAZ CARRILLO, On the summability of certain μ-integrable functions. Archiv. d. Math. 52, 258-264 (1989).
[5] DÍAZ CARRILLO, M. and H. GÜNZLER, Finitely additive Integration II. Extracta Matematicae 4, n. 2, 81-83 (1989).
[6] DÍAZ CARRILLO, M. and H. GÜNZLER, Local integral metrics and Daniell-Loomis integrals. To appear
[7] FLORET, K., Ma β-und Integrationstheorie. Teubner, Stuttgart 1981.
[8] GÜNZLER, H. Integration. Bibliograph. Institut Manneheim 1985.
[9] GÜNZLER, H. Convergence theorems for a Daniell-Loomis integral. Mathematica Pannonica 2, 77-94 (1991).
[10a] MUÑOZ RIVAS, P., Integracion finitamente aditiva: extension integral con convergencia I-local, Diss. Univ. Granada, 1990.
[10b] MUÑOZ RIVAS, P. and M. DÍAZ CARRILLO, Locally integral extensión for linear functionals. C.R. Math. Rep. Sci. Canada XII, N ${ }^{\circ}$ 1, 41-46 (1990).
[11] SCHÄFKE, F.W., Lokale Integralnormen und verallgemeinerte uneigentliche Riemann-Stieltjes-Integrale. J. reine angew. Math. 289, 118-134 (1977).

[^0]: * Mathematisches Seminar. Christian-Albrechts-Universität Zu Kiel.

