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§1. INTRODUCCIÓN 

This paper deals with the evolution of generalized solutions of equations 
in the form 

Ut+[A{t,x,ü)]x+Bit,x,ü)^Q. (1.1) 

Here A{t, x, u), B{t, x, u) are continuous functions on their arguments, suf
ficiently smooth in t, x; A(t, x, 0) = B(t, x, 0) = 0; Au ^ 0, A(t, x, u) is con
vex in u and B(t,x,ü) is nondecreasing in u. The essential dependence 
A(t,x,u),B(t,x,ü) on t,x may be present. For example, these functions 
may tend to zero or infinity as t converges to +oo . 

It is well known, that there is an intersection of characteristic's projec
tions on the plane {t^x) for the equation (1.1) even for very smooth initial 
data. So, there is no classical global solutions and one needs the concept of 
generahzed solutions. The main peculiarity of such solutions is the occurence 
of discontinuities even for smooth initial data. It is the same difficulty than 
with gas dynamics system. So, (1.1) can be regarded as the simplest model 
of gas dynamics equations. 

Beginning with the paper [7] several particular cases of (1.1) were stud
ied by different authors (see for example [15],[22]). The complete theory of 
equations in the form (1.1) with A{t,x,ti) convex in u was constructed by 
O.A.Oleinik in [16],[17]. There the physically relevant definition of general
ized solution to Cauchy problem was given and its correctness was proved. 
Some properties of such solutions were studied later. In [23] the Cauchy prob
lem for (1.1) with nonconvex A{t,x,ü) in u was solved, provided an initial 
function with bounded variation. Finally, S.N.Kruzhkov [11] constructed a 
complete theory of Cauchy problem for equation (1.1) and its multydimen
sional generalization with an arbitrary smooth A(t,x,ú) and measurable 
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bounded initial datum. The improvements that followed were connected with 
the discontinuity ofA^ [10] and with locally unbounded initial function [12], 
[2], [4]. One can become acquainted with the theory of discontinuous solu
tions of (1.1) and its generalizations using the surveys [17], [6], the lectures 
notes [13] and books [18], [21]. 

Many authors have studied the behaviour of generalized solutions to 
Cauchy problem for equations in the form (1.1) as t converges to +oo . For 
example one can indicate [14], [8], [11], [1], [9] and their references. As a rule 
those authors supposed that A = A(u), B = 0, the initial function converges 
to some constants as x converges to ± cx) and they compared the generalized 
solution with some self-similar (or some particular) solutions. 

This work involves another set of questions connected with the Cauchy 
problem for (1.1). With the help of comparison theorems we investigate 
several phenomena such as finite extinction time of generalized solutions and 
the locaUzation of perturbations. Formerly these effects have been studied 
mainly for second order quasilinear degenerate parabolic equations. But the 
used methods are invalid for first order quasilinear equations, because one 
must use discontinuous comparison functions to obtain precise results. 

We shall consider the above mentioned phenomena for the model equa
tion 

Liu = ut + ^ i ( l ^if{ir\ +^2(1 + 0 ' w " = 0, (1.2) 

where A\ =:const > 0, A2 =const > 0, m > l,/2 > 0,/2 ^ 1,/? G R ? e IR. 
The case n - \ has been investigated in [20]. One can easily generalize the 
obtained results to the equations (1.1) provided appropriate estimates on 
nonlinear terms hold true. 

In §2 the definition of generalized solution of Cauchy problem for (1.1) 
is given and a comparison theorem is proved. 

§3 is devoted to the investigation of the finite extinction time property. 

Definition 1.1 

Suppose u{t, x) is a generalized solution of Cauchy problem for (1.2). One 
says that extinction occurs, if there exists some T > 0 such that u{t, x) = 0 
for Í ^ r . One says that extinction does not occur, if for every T > 0 we 
have u{t, x)4 0 for O T, 

This question have been dealt with in [5], where sufficient conditions for 
the existence of a finite extinction time have been given in the case/? = ^ = 0. 
But in general the situation is more complicate because of the essential 
dependence on t. So, in the case ^ < - l , 0 < « < l the extinction presence 
depends on the Loo —norm of the initial function. In case the extinction does 
not occur the localization phenomenon is investigated (see below Definition 
1.2). Estimates for the extinction time will appear in a forthcoming paper. 

In §4 questions concerning the presence and absence of localization for 
(1.2) in the case n > 1 are studied. 
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Definition 1.2 

Suppose u(t,x) is a generalized solution of Cauchy problem for (1.2). 
One says that spatial localization occurs, if there exists some X > 0 such 
that u(t, x)= 0 for \x\ ^ X, One says that localization does not occur, if for 
every sufficiently large x* > 0 there exists some t* > 0 such that u(t, x)^ 0 
in a neighbourhood of (i*,x*). 

In [5] sufficient conditions for the presence of localization for (1.2) are 
given for the autonomous case. In §4 the general case p e% q eKis investi
gated and sufficient conditions for the presence or absence of localization are 
given. These conditions contain all meanings exponents m > l,n > l,p e 
R, Í G IL 

Our technique allows to consider some results in the case of essential 
dependence on x in (1.1). For example in §5 we consider the Cauchy problem 
for the equation 

L2U =:Ut+ (j/^)x + B(x)i/' = 0 (1.3) 

where 

m > 1,0 < « < 1; Bix) = A(l +xy, s < - 1 , for x ^ 0; (1.4) 

B(x) is bounded and sufficiently smooth for jc ^ 0. In this case sufficient 
conditions for the extinction property will be stated. Unlike (1.2) here the 
initial function is supposed to be bounded from below by some power func
tion with fixed parameters. 

§2. BASIC DEFINITIONS. A COMPARISON T HE ORE M 

First of all let us consider the following equation (more general than 
(1.1)) 

Lu= Ut+ [A{t, X, ú)]x + B(t, X, Ü) = H(t, x), (r, x) € ILf x E (2.1) 

with the initial data 
t/(0, x) = uo(x), X eR (2.2) 

Here A(t, x, u) and B(t, x, u) are continuous functions A(t, x, 0) = B(t, x, 0) = 
0; B(t,x,ú) is monotonically increasing in u; A(t,x,u) is a twicely contin
uously difîerentiable function in t,x; A, Ax, Axx^ B, Bx are bounded for 
bounded values of w, t\ Au € C(E^ x Ex E); Au > 0; Bit, x, w) +^jc(i, x, w) ^ 
0; H{t, x) is a measureble function, bounded for bounded values of t\ UQ € 
L°° (E), uo(x) ^ 0. 

Definition 2.1 

A mesurable function u(t, x) bounded for bounded t, is called a gener
alized solution (in abbreviation g.s.) of equation (2.1) in E4. x E if for every 
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constant s and every o)(t, x) ^ 0,œ e CQ" (W^ X M) the following inequality 
holds 

/ L {1^^^' ^^ — s\a)t + sign(u(t, x) — s)[A(t, x, u) — A(t, x, s)] cOx— 

-sign(w(r, x) - s)[Axit, X, s) + B{t, x, u) - H(t, x)] (Û\ dtdx^O (2.3) 

Definition 2.2 

A measurable function t/(/, x) bounded for bounded r, is called a g.s. of 
the problem (2.1), (2.2) in á + x ]R if the inequahty (2.3) holds and there 
exists a set £• c [0, +oo ], meas E = 0, such that for t e [0, +oo ]/E the 
function u(t,x) is defined for almost every x € R and for each segment 
[a, b]cR 

^ lim I \u(t, x) — uo{x)\ dx = 0. 

Remark 2.1 

If a function w(r,x) is a g.s. of (2.1) and is piecewise continuous then 
the definition 2.1 implies (see [11]) the Hugoniot condition at the line of 
discontinuity x — y{() of u{t, x) 

y = \A{t^y{t\ t/+) - A{t.y{t\ u-)]/(u+ - w") (2.4) 

and the stability condition 

sign(w+ - u'-)[A(t,y(t),iLiü+(l - / / ) « + ) -

/iA(t.y(tlu-) - i l - iii)A(t,yitlu^)] ^ 0 (2.5) 

for every /x € (0,1); here u~ = u(t,y(t) — 0), w+ = u{t,y{t) +0) . 
The existence theorem for the problem (2.1), (2.2) with appropriate wo(^) 

and restrictions on A, B, H listed above can be proved by analogy with [11]. 

Lemma 2.1 

Suppose u(t,x) is a g.s. of the problem (2.1), (2.2). Then for every con
stant k the following inequality holds 

sigñ^(u{t, x) — k)< (u — k)(Ot + [A(t, X, Ü) — A(t, X, k)] (Ox— 

-[B{t, X, Ü) + Axit, X, k) - H(t, x)] 0)] dtdx ^ 0, (2.6) 

where (Û(J, X) ^ 0, W e CQ (M_}- X R ) ; S^ = S for S > 0, S^ =Q for s ^0, 
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Proof. 

Let us follow the scheme of [2]. Suppose Pm{s) ^ 0, Pmis) £ CQ (M) 
(m = l,2,...), 

j pni(s)ds=^ sign_ (̂r ~ k), m — +00 (2.7) 

Let us multiply (2.3) on Pmis) and integrate with respect to s from —00 to 
400 . Changing the integration order one gets 

4 ( fuÇt,x) 
< J [(u- s) (ût++ iA(t, X, ú) - Ait, X, s))œx - (B(t, x, u)+ 

Jp+00 

' [(us) (Ot+(A(t, X, u)-A(t, X, s))o)x-
ti(t,x) 

{Bit, X, Ú) + Axity X, s) — Hit, x))o)]pmi-s) ds >dtdx ^ 0 

It follows from (2.7) that 

r ^iS)pmis) ds -^ ^iK) sign+(r - k), 
• ' - 0 0 

f ^ 0(S)pUs)ds - . (I>(/r)(l - sign+(r - k)) 

as m goes to +cx), where 0(5) is an arbitrary continuous function. Passing 
to the limit as m —̂  400 one obtains 

Í [2 sign_,_(w(i, x) — k)— l][(w - k)o}t + {Ait, x, u) — Ait, x, k)) 0)x 

iBit, X, Ú) + Axit. X, k) - Hit, x))co]} dtdx^O 

Let us substitute into (2.3) at first s = sup uit,x) and then s — inf uit,x). 
It follows from the two arising inequahties that uit,x) satisfies (2.1) in the 
sense of distributions. Using this fact one gets the desired result. 

Theorem 2.1 

Suppose \Ait,x,u)\ ^ aoit)aiu), where ao(0» ^(^) ^re continuous func
tions. Suppose hit, x), git, x) are measurable functions bounded at bounded 
t. Suppose wit, x) is the g.s. of the Cauchy problem for the equation Lw •= 
hit, x) in I4. X E with initial data wiO, x) - WQÍX) G L^ (M), and vit, x) 
is the g.s. of the Cauchy problem for the equation Lv = git, x) inR^ xM. 
with initial data v(0, x) = voix) e L°° (M). Suppose woix) ^ vo(x) almost 
everywhere in M4. x M, Then wit, x) ^ vit, x) almost everywhere in ]R_|_ x E, 

The proof of this theorem is similar to [11]. One must use inequality 
(2.6) instead of (2.3) and the monotonicity Bit,x, u) in u. 

In particular the uniqueness theorem follows from theorem 2.1. 
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§3. FINITE EXTINCTION TIME 

Below in §§ 3,4 u(t,x) will denotes the g.s. of the problem (1.2), (2.2) in 
ILf X IL 

Suppose we have n < I in (1.2). Let us carry out some auxiliary con
structions. One can seek a family of particular solutions for (1.2) in the 
form v(/, x) = (l+ trÀ(0, where ^ ^ (x+a)(l + 0"^, oc = (q + l)/(l - n), 
j8 = /? +1 +a(m — 1), a =const, À(^) is a piecewise continuosly differentiable 
function which will be defined later. Substituting v(t,x) into (1.2) we get 
for A(0: 

dÀ aA+^2A" 

Or in another form 
d^ p^-mAiÀ^-^ 

dX OLX + A2X" OLX + A2X^ 

Suppose a ^ 0. Let us denote Mo = (^2/|a|)'/('-">; k = A\M^-^\ 

il/iX)^ (mAi/Az) f 5^-"-^(l+(5/Mo)'-"signa)~'"^^^*^'^i/5; 

ç,a,»/i) . (mAi/A2) f s^-"-'((s/Moy-" - \y'~^^^'^'^ds. 

rii = const ^ Mo,X ^ Mo; 

' ^ ^ _ , / , ,_„ . \-P/(g+i) 

''0 

It is easy to see that functions 

Ki(M)^ [m(m-l)/m j /^"^Jl +(5/Mo)^-"signa) ds 

Ci(A)^ (C-^(A))(1 +(A/Mo)i-'^signa)^/(^+i> 

for a > 0 or a < 0, A ̂  Mo and 

C2(A,^i)^ (p(A,f?i)((A/Mo)^-"- l)̂ /<^+^> 

for a < 0, A ^ MQ are solutions of the equation (3.2) for any constants 
C and r]{ ^ MQ. Suppose that the functions ^ = Cii^) 0 =1,2) increase 
on some set G. Then there exist the inverse functions A = Ci^XO on C/(G) 
(/ =1,2) satisfying (3.1). Now let us consider a monotonically increasing 
solution A = À(0 of (3.1) containing zero in its range. 

Suppose A(<̂ o) = 0, A((̂ i) = N =:const> 0. Let us define/(O in the 
following way: / (0 = 0 for ^ ^ ^olfiO = ^(0 for 0̂ ^ ^ < ^ilfiO = N 
for (̂  ̂  ^1. Let us denote by y(t) the solution of the Cauchy problem 

7 = ^ 1 ( 1 +tf-^f-^~\(y+a)(l +tr^), XO) =yo, (3.3) 
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where a =const, y^+a > ô- Let us denote by (T, ̂ ) the intersection point of 
the lines x - y{t) and x — z\{t) = ^i(l -\-t)^—a\ suppose zo(0 = <̂ o(l +0^—^• 

Suppose pi(r, x; A, iV, (̂ 0, ^1,70, ^) = (1 + 0 ^ ( 0 for x ^ y{t) and pi (/, x; 
A, N, ^0, ^1, JO, a) = 0 for X > y{t). It is easy to see that at the discontinuity 
line X - y{t) of the function pi(i,x;/l,iV, ^o.̂ ^bjo^^ )̂ relations (2.4), (2.5) 
hold with A{t,x,u) = ^ i ( l +tyu^. The function p\it,x\X,N,^Q,i,\,yç),d) 
will be used below as a comparison function. 

Now let us turn to the investigation of the g.s. u(t,x) to problem (1.2), 
(2.2). 

Theorem 3.1 

Suppose 0 ^ Wo ̂  ^ - Then the finite extinction time property occurs 
for the problem (1.2), (2.2) if one of the following conditions holds: 

1) q^-l; 2) Í < ~ 1 , M <Mo. 

Proof, 

Let us compare u(t, x) with the function a(t, x): 

(7(i,x) = {[M'-^ +A2(l - n)(l - (1 + ty+')/(q + 1)]+}'^^'""^ 

for 9 ^ - 1 ; 

a(t,x) = {[Mi-« - A2(l - n)ln(l + 0]+}^''^'"''^ 

for ^ = - 1 . 
It is easy to see that a(t,x) is the g.s. of the problem (1.2), (2.2) with 

uo{x) = M. So we have the desired result by virtue of Theorem 2.1. 

Theorem 3.2 

Suppose 0 ^ uo(x) ^ Mo, supp uo(x) c [xo,xi], wo(x) = MQ for x e 
[x2,X3] c [xo,xi], a < 0, jff ^ 0. Then the following statements hold true 

1) If jS > 0 then the finite extinction time property occurs in the problem 
(1.2), (2.2). 

2) If p < 0, p/(q + 1) < 1, XI - xo < Km - l)/\p\ then the finite 
extinction time property occurs. 

3) If p < 0, P/(q + 1) < 1, X3 - X2 > Ki(Mo)+k/P then the finite 
extinction time does not occur and w(i, x) > 0 for 

X2+Ki(Mo)[l - (1 +0^] <x<X3+k[l-(l +t)P]m; 
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but localization occurs and u{t,x) — 0 for 

X ̂  xo ^mkm - i^iCMoXl + if. 

x>x^ +k[l - (1 +tf]/m, X* = max{xi,xo +(m - i)k/\P\}. 

Proof. 

1) Suppose j8 > 0. Then {¡/(Mo) < +oo . Let us choose C = il/(Mo) and 
compare w(/, jc) with 

piO,x; Cf ̂  Mo, C, Ci(Mo),xi, Ci(Mo) - XQ). 

In the points where 

piO,x;Cf ^Mo, C,Ci(Mo),xi,ii(Mo) - xo) 

is smooth the inequality Lipi ^ 0 holds while at the line of discontinuity 
X = y(t) conditions (2.4), (2.5) are vaUd. Besides 

uo(x) ^ pi(0,x;Cr^Mo,C,Ci(Mo),xi,Ci(Mo)-xo), 

so 
w(f,x) < pi(/,x;Ci ^Mo,C,ii(Mo),xi,Ci(Mo)-xo) 

in ]R+ X IR by virtue of Theorem 2.1. 
From the relations (3.3) with yo = ̂ i, ^ ^ Ci(Mo) it follows that 

y=k(l+t)P-\ y(0)=xi. 

As Ci(Mo) = mk/P, we have the expressions for T and Y¡ 

1 +T = [1 +(xi -xo)[(m~ l)fc/i5]-i]i/^ 
(3.4) 

f / = m Â : [ ( l + T ) ^ - l ] / i S + x o 

At the point (T,^/) we have y = ki\ + T ) ^ ~ ^ Since m > 0 s o / < Mo for 
Í > T. By virtue of Theorem 3.1 one gets the desired result. 

2) Suppose j3 < 0, j8/(i +1) < 1. Let us take C - -KI{MQ) and rewrite 
^{X) integrating by parts 
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Now, compare u(t, x) with the function 

PiO,•^;Cr^Mo, CCi(Mo),xi, Ci(Mo) - xo) 

by analogy with the part 1). When xi - XQ < k{m — l)/|jS| holds formulas 
(3.4) are true, so the result follows. 

3) Suppose i3 < 0, ^/{q + 1) < 1, X3 - ^2 > KI{MQ) +k/p. Firstly we 
shall prove the absence of extinction. Let us take C = —Ki(Mo) and obtain 
a lower estimate for u(t, x). In the points where 

pi(t,x; Ci^, Mo, C, Ci(Mo),X3, C - X2) 

is smooth the inequahty Lipi < 0 holds and at the line of discontinuity 
X = y(t) conditions (2.4), (2.5) are vahd. Besides 

uo(x) ^ pi(0,x;Cr^Mo, C,Ci(Mo),X3,C-X2), 

so u(t,x) ^ p(^,x;C^^Mo,C,Cl(Mo),X3,C-X2), 
in IR+ X E by virtue of Theorem 2.1. 

Under the above hypotheses y = k(l + 0^~^ Ĵ (0) = X3. Further 

y(t) - zi(0 ^ X3 +k[l - (1 + tyym +mk(l + tf/m -X2- KIÍMO) > 

^ X3 - X2 - (Ki(Mo) - k/m) > 0 
under our conditions. Hence there is no intersection of lines x — y(J) and 
X = z\{t), so there is no extinction. As a consequence u{t,x) > 0 for zo(0 < 
x<X3+k[\-{\+t)P]/m. 

The assertion on the localization follows from the estimate 

u{t,x) ^ pi(i,x;Cr^Mo,-ic:(Mo),Ci(Mo),x*,Ci(Mo)-xo) 

estabUshed in section 2) and the support structure of the majorant. 

Theorem 3.3 

Suppose 0 ^ uç^ix) ^ M, M > Mo, suppwo(^) C [xo,xi], uo(x) — M 
for X € [:̂ 2.X3] C [xo,xi], a < 0, jS > 0, m +i^ ^ 2. Then the following 
statements hold true. 

1) If j? > \a\(m +n— 1) then the finite extinction time property occurs 
for the problem (1.2), (2.2). 

2) If i? < |a|, X3 - X2 > AiM'^-^/p - il/(Mo), 

\Mol \ m\a\ I 

then localization does not occur and u(t, x) > 0 for 

X2 +iA(Mo)[(l +ty--l]<x<X3 +AiM'^-\(l + tf - l]/i? (3.6) 
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Proof. 

1) Let us introduce the function C(0 • C(0 = CT^iO for ^ ^ mk/P and 
C(0 = Ci^iO for Í > mk/p. Let us compare u{t,x) with the function 

PiO,^;C,+<»,íA(^oX+oo,^i,C2(M,Mo)-xo), ^1 =Mo. 

From Theorem 2.1 it is easy to show that 

u{t,x) ^ pi(i,x; C, 4^0 , ^(Mo), +00 , xiXiiM, MQ) - XQ). 

Further, integrating by parts in the expression for Ciif) one finds 

^ = Ciif.Mo) = mAir'if^-' - (m - l)[(/-/Mo)i-'^ - l]M^+i)x 

f 5^-2[(5/Mo)^-'^-ir^/í^+^>¿/5}. 
•'Mo 

Hence 
^ ^ m^ii8-^{/''"-i - (m - l) |í + l\-^[(f/Moy-'' - IJ^/í'^+^ym + « - 2x 

•'Mo 

( |al/i---^2)/( |a |(l-«)+iS)] ^ m^ i r ' [ l - | a | (m- l ) / ( iS+ | a | ( l - ^^^^ 
From this estimate and (3.3) it follows that 

y ^Kmyr^iy +a)(l +trKy(0) =xuy^ I - |a|(m-> l)/(i? +|a | ( l - « ) ) . 

Consequently we have the estimates for coordinates (TO,^O) of the point of 
intersection for curves x = y(t) and x = mk(\ -\-t)^ /P — a: 

1+To < [iS(xi-xo+C2(M,Mo))(mA:)-ir^/(^('"^-^», rio =mk(I+TO)P/p-a. 

Because of j? > |a|(m + « — 1) we have my > 1. So the point (TO,^O) really 
exists. For t ^ TQ at the line x = y{t) one has / ^ MQ and consequently 
Theorem 3.2 can be apphed. 

2) Suppose inequahties (3.5) hold. Let us take rji = MQ. It is easy to see 
that 

u(t,x) ^ pi(t,x;C,M,i^(Mo),CiiM,Mo),X3,^(Mo) - xi) 

in % X E. From de relations (3.3) one infers y = AiM'^-^il + 0 ^ " ^ y(0) = 
X3. Further, 

C2(M,Mo) ^ mAip-^iM"^-^ - (m ~ 1)(M^-" - M¿-'^)^/(^+i>x 

Mo 

(M^-'^-M¿-'^)^'"-^>/^^-''Vl(^- l)/()3 + W ( ^ - 1))] ^^iM'^-i j?-^ 
by virtue of (3.5). It means that there is no intersection for the curves 
X = y(t) and x = zi(t) = CiiM, Mo)(l +1)^ - a. Consequently 

pi(i, x; C, M, ̂ (Mo), C2(M, Mo),X3, i/̂ (Mo) - X2) > 0 

for i,x from (3.6). This ends the proof. 
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Theorem 3.4 

Suppose 0 ^ uo(x) ^ M, M > MQ, suppuo(x) c [xcJCi], uo(x) = M 
for X e [x2,X3] c [xo,xi], a < 0, jS < 0, |jS| < |a|(l ~ n). Then the following 
statements hold true. 

1) ïf p < -I, then localization in the problem (1.2), (2.2) occurs and 
u(t, x) =0 for 

x^xo- Ki(MoXl + tf. x^xo+ [(xi ^ xo)(^+^>/^+ 

^i(C2"kxi -xo,M))—i(xi ^xo)-°^(--^>/^(l - (1 +ty^')/mf'^-^'\ 

if in addition X3 — X2 > JRTI (MQ) then there is no finite extinction time in 
the problem (1.2), (2.2) and u{t,x) > 0 for 

X3-(X3-X2)(l+0^ <X<X3+[fc(p(-+oo , M)^°^('"-l>/^(l~(l+í)^+l)/|i8|]^/í^+l). 

2) If jP > — 1, X3 — X2 > ^i(Mo) there is no localization in the problem 
(1.2), (2.2) and there exists such M2 > MQ that u{t,x) > 0 for 

X3-C2(M, M2)-(X3-X2-C2(M, M2))(l +0^ <X< Xs-CliM, M2)[l-(1 +0^^], 

ki^ (p + l)m-^[l ^ (Mo/M2)^-'̂ ]^+ /̂i'̂ +^>. 

3) If /? = - 1 , X3 — X2 > Ki(Mo) there is no localization in the problem 
(1.2), (2.2) and there exists such M3 > MQ that u(t,x) > 0 for 

X3 - h(M. M3) - (X3 - X2 - ^2(M, M3))(l +ty <X < z(tl 

where z(t) satisfies the inequaUty 

1̂ 1/̂ ^ ôi/m+ln[(x3+a)/Ô2] 
\ X3+a I ¿i/|jS| +ln[(z(0 +a)(l +t)\P\/Ô2] 

where 

^ 1, (3.7) 

¿1 = |a|(m - \)m-^[l - (Mo/M3)^-'̂ ]<'̂ -''>/<^-'̂ >, 

Ô2 = cpiMMsMMs/Moy-'' - Iji'^-D/d-"), a = C2ÍM.M3) ^ X3. 

Proof 

1) Suppose p < -I. With the help of Theorem 2.1 it is easy to show 
that 

u(t,x) ^ pi(t,x;C,+00 ,-KiiMo),+00 ,xu-xo), rji =M. 
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From (3.3) with yo - x\ it follows that j > 0 so y{t) > x\ for t > Q. Thus 
f{x+a) > f{x\ +d) - (¿"H-̂ i - ^OfM) for / > 0, jc > xi. Then 

^^Í2(f,M) ^f^'^^Wr'-Vifixx -xo,M)r-i]^/(^+i>(xi -xo)x 

m\xi - xo,M)/Mo)i-'^ - l]-M^+i) = (XI - xo)(f/Í2\xi - ^o,M)/ /« . 

From the relations (3.3) with yç^ — x\ it follows that 

y ^ Ax{^f{xi-xo.M)T-\xi-xor''^-^^'P{\+tyiy+ar^^ 

Hence 

XO +a^ [{XX - xo)(̂ +^>/̂  - Axit:i\xi - xo,M))^-Hxi - xo)-^('"-^)/^x 

But 
Pi(i,x;C,+oo,-^i(Mo),-foo,xi,-:^o)= 0 

for (J ^ —K\{Mo) so localization occurs. 
Now let us prove the second part of statement 1). One can easy estabhsh 

the inequaUty 

w(/,x) ^ pi(/,x;C,X2 — X3,-|-oo ,X3,—X3), r]\ =M. 

By analogy with the above arguments one gets formulas 

^ = Ciif, M) ^ if/Mof/'^ (p(4^ , M), 

y^k (p(-foo , M)-^('"- i>/^(l + tfiy + aT^"^- ̂ >/̂ , j;(0) = X3 

Hence 

XO ^ [A:(p(4^ ,M)-°^i^-^>/^(l - (1 +r)^+^)/|jS|]^/^+^> 

and making use of the support structure of 

P\{t, x; C, +00 , -̂ 2 - -^3, - f^ ,-^3, --^3) 

one ends the proof of the second part 1). 

2) Suppose p > —\. Let us choose M2 such that Í2(^, ^2) < X3 - X2. 
With the help of Theorem 2.1 we obtain that 

u{t, x) ^ pi(t,x; C, -h» , CiiM, M2) - X3 + X2, +00 ,X3, Í2ÍM, M2) - X3). 

Further, 

^ = Í2(Í,M2) < {flMç,fl^i?{fMi) = mAiA2'M¿-^fP/^x 
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f 
[1 - (Mo/M2)^-''r ^-^/i^+^>[/'^-^-^/°^ - M^-^'^^'^yim - 1 - p/oc) ̂  

mAif^-^ip + 1)-^[1 - (Mo/M2)^-T^"^/^^^^^. 

So from the relations (3.3) with y o = X3 it follows that 

y^ki(y+a)/(l+tl yiO)=X3. (3.8) 

Hence, ̂ (0 ^ X3 - Cii^i, M2)(l — (1 +0^* )• Because of the minorant support 
structure one infers the statement 2). 

Suppose p = —I. In comparison with the proof of statement 2) changes 
will be presented only in the estimate for £, and formulas (3.8). Suppose 
M3 = M2 for |a|(m - 1) = \p\. Thus 

Í 
[1 - (Mo/Ms)'-"]-'~^'"~'^/^^""V""" ' ln(/"/M3). 

On the other hand 

So 

A^f"^-^ ̂  |a|m-i[l-(Mo/M3)'-'']i'"-">/('-"><^ln->(//^^3) > ¿líIn-^^/^s). 

Instead of (3.8) we have 

y > hiy +«)(! + 0 " ' i n - H O ^d)bi\\\tr^\ j(0) = X3. 

Let us denote f/(0 = 0 ( 0 +<3)(1 + ty^/ài; then 

/? =yài\\ +tr^-Ml +tr' > àir,(l +0-'ln-'»/-Ml +0"' = 

(̂¿1 \n-'r,- )S)(1 +0"'. r,(0) = CiiM.M^yôj. 

Further, 
piO In 5 J ^ , ,̂ 

.'„/̂ n̂  i(di - 0 In 5^ 

>?(0r¿i/|)8|+ln>/(0)j^'/l^' ^ 1̂1 
'/(0)l¿i/|j8|+ln>7(/)J - ' ' + ̂  

Hence, y(t) > z(t), where z(0 satisfies (3.7). 
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§4. LOCALIZATION 

Suposse « > 1 in (1.2). Let us introduce the notation: 

C3(A,M)^ [m^ii5-iM'"-^-^/«(a +^2M'^-^r^/<^+^>+ 

J rM 
I s^-2-P/oc^oc + A2S^-'r '-P/^^^^^ds] ÁP/%a + A2Á^- i//(^+i) 
À 

where a, p are the same as at the beginning of §3. 

Theorem 4.1 

Suppose the following conditions hold: 

wo € C([xo,xi]), uo(x) > 0, uoix) ^ 0; 

there exists such e > 0 and rj e (0,1) that uo(x) > rj (ox x e [x2,X3] c 

Í
+00 r /./ . - ( w - ! ) / ( « - 1 ) 

Then there is no localizaton in the problem (1.2), (2.2). 

Proof. 

Let us denote: 

g(t)^ ^l+(n^l)A2 j^(l+syds^ ; 

y(t)^ mAx i\l +Tygitr-'dx; yi(t)^ X2 +^^"^(0. 

Suppose 72(0 is the solution of the equation 

y2=Airi'^-\\+tygitr-' 

with ÚÍQ initial data 72(0) = X3. 
If there exists to > 0 such that yi{to) = y2(^) then let us introduce y sit) 

as the solution of the equation y3 = Ai(l + ty(v\(t))^~^, where 

vi(0 = g(0[(y3(0 - x2)/7(0]'/^'"-'^ 

with the initial data 73(^) = Ti(^). Define 74(0 = 7i(0 for t ^ ^o, y4(0 = 
73(0 for r > io; ysit) = 72(0 for í ^ to, ysiO = y^it) for / > /Q. Define 
PiitpX) = 0 for X < X2I 

P2it,x)=g(t)[ix-X2yy(t)]'/^'"-'^ 
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for JC2 ^ X < 74(0 and t > 0; 

Piit^x) = rig(t) for yi(0 < x KyiiO; piit^x) = 0 for x > ysit). 

If there does not exist such to, then define piifyX) = 0 for x ^ X2\ 

P2{hx) = g(0[(x - X2)/y{t)f'^^-'^ 

for x\ ^ X ^ y lit) and t > 0;p2(t,x) = rig(t) for yi(t) ^ x < y2(i)l 
p2Ít, x) -0 for X > 72(0-

For t^ to (if to exists) one finds 

h = Axil + tyg{tT-\yÁt) - X2)/y{t) = 7(0(73(0 - X2)imy{t)rK 

In [73(0 - ^2)/(r3(^) - X2)] = m-1 ln[7(0/y(io)], 

73(0 = X2 +n'^-'y{to)'-''^y{t)'/^. 

Then we conclude vi(0 < 1. It is easy to see that Lip2 < 0 at the points 
where p2 is smooth and at the Unes of its discontinuity relations (2.4), (2.5) 
hold. 

Now 73(0 —* +00 as Í —̂  +00 , if to exists; 7i(0 —* +00 as / —̂  +00 , if 
to does not exist. With the help of Theorem 2.1 one ends the proof. 

Theorem 4.2 

Suppose 0 ^ uoipc) < M, suppwo(^) C [xo,xi], q < -\, p < -\, P > Q. 
Then localization in the problem (1.2), (2.2) occurs and u(t,x) = 0 for 
X < xo and 

X > {mim - l)/i8)í^+^>/^(l - 1/m) [(m - l)AiM'^-^ + 

Kxi--xo)]^^'^/P +Aip-%iMXl +tr^\ 

where 

Proof. 

Consider the function 

pi{t,x;¡:^\M,0,mAiP~^M'^-\xumAip-^M'^~^ --• xo), 

defined at the beginning of §3. It is easy to see that L\p\ ^ 0 at the points 
where pi is smooth. If / < T relations (3.3) for discontinuity Une y(t) of pi 
take the form 

y < AiM'^-^l + tf-\ KO) = XI. (4.1) 
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From this one obtains estimates for (T,>J): 

(4.2) 

Further, s = C^if) ^ mAiP'^M'"-'^-^/"/^/". Hence from (3.3) we have 

Now 

(y+û)(P+l)/^ ^ (rj+à)^+^^/P +Aip-^ki(M)[(l +ty+^ - (1 +Ty+i] = 

(mAip-^M"'-^)^+^^/^(l - l/m)(l +Ty+i +Aip-^kiiM)il + ty+\ 

Applying estimate (4.2) we get the assertion of the theorem because pi = 0 
for X > y(t). 

Theorem 4.3 

Suppose 0 < Mo < M, suppwoi^) C [xo.xi], q < —\,P < 0. Then 
localization in the problem (1.2) (2.2) occurs and u{t,x) = 0 for jc < JCQ and 
for 

x>x*+A,M"'-\\-(\+tyy\P\, 
where 

X* > max{xi,xo + ( w - 1)^11)8r^M'"-^}. 

Proof. 

The g.s. u(t, x) of the problem (1.2), (2.2) vanishes for x ^ XQ even when 
A2 =0 and so in our case. Further, let us consider the function 

piit,x;C3\M,-oo,mAip-^M'"-\x*,mAip-^M'"-^ -xo). 

It is easy to see that Lipi > 0 at the points where pi is smooth. li x ^ x* 
then the point (t.rj) does not exist and relations (3.3) with >'o = x* have 
the form 

y^AiM'"-\l+ty-\ yiO)=x*, 

so y^x* +Aip-^M'"-^[(l +tf - 1]. 

This ends the proof, because p\ = 0 for x > y(t). 
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Theorem 4.4 

Suppose 0 ^ uo(x) < M, suppwo(^) C [xo,xi], q < -l, p = 0. Then 
localization in the problem (1.2), (2.2) occurs and u(t,x) = 0 for x ^ xo as 
well as for 

X^ X\+ \ , A n \ ds^ X, 

Proof. 

Let us define the function w(x) in the following way: w(x) = 0 for x ^ x; 

f^ mAis^-^ , 
X = xi + I T as 

Jw Oí + A2S^~ ̂  

for xi < X ^ x; w(x) = M for XQ < X ^ xi; w(x) = (x — xo + e)M/8 for 
xo — e < X ^ xo; w(x) = 0 for x < XQ — e; e =const > 0. Further define 
P3(i,x) = (l + t)^w(x). It is easy to see that Lip3 ^ 0 at the points where 
P3 is smooth for any 8 > 0. One ends the proof letting s tend to zero. 

Let us define the function C4(^)' 

J CMo 

1 

f»Mo 

for À ^ Mo and 

•'Mo 

for A ^ Mo; jS < 0, a < 0. 

Theorem 4.5 

Suppose 0 ^ uoix) < M, suppwo(^) C [xo,xi], ^ > - 1 , ^ < 0. Then 
localization in the problem (1.2), (2.2) occurs and u(t,x) = 0 for x ^ XQ as 
well as for x^ x\ — C4(M). 

Proof. 

Let us consider the function 

w(r,x) = (1 +tr Í4 k(x-xi +C4(M))(1 +0"^). 
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Let us introduce the function p4(t,x): p4(r,x) = 0 for x ^ xi — C4(^)i 
P4Ít.x) = w(t,x) for XI - U(M)[l - (1 + 0^] < X < xi - U(M); p4Ít.x) = 
M(l + 0°" for xo ^ X ̂  XI - UiM)[l - (1 + 0^]; P4(/, x)=(l+ tY{x - XQ + 
E)M/B for XQ—£ ^ X < Xo; P4Ít, x) = 0 for X ̂  xo—s; £ =const > 0. It is easy 
to see that Lip4 ^ 0 at the points where p4 is smooth, w(0,x) ^ p4(0,x); so 
u(t, x) ^ p4(t, x) for every e > 0. Letting a tend to zero one ends the proof. 

Theorem 4.6 

Suppose 0 ^ uo(x)X M, suppwo(^) C [xo,xi], ^ < 0, q = —I. Then 
localization in the problem (1.2), (2.2) occurs and u(t,x) = 0 for x ^ xo as 
well as for 

X > X* +Ai\p\-^M'^-^[l ~ (1 + O^L 

where 
X* > max{xi,xo + ( m - l)Ai\P\-^M'^-^}. 

Proof. 

Suppose 
C5(A, C) = cxp{^p/[A2(n - lW]}x 

/•A 
[C - mAïAô^ s^-''-^exp(li/[A2(n - l)^"^])^^], C =z const < 0. 

•̂ 0 

The fact u{t,x) = 0 for x ^ xo is true for g.s. of the problem (1.2), (2.2) 
even when A2 =0 and so in our case. Let us choose C < 0 with |C| so large 
that Í5(M, C) = mA\P~^M^~^. Let us consider the function 

P\{t,x\t:s\M,-oo ,mAip-^M'^-\x\mAip-^M'^--^ -xo). 

It is easy to check that L\p\ ^ 0 at the points where pi is smooth and 
p\ ^ w for / = 0. If X ^ X* then the point (T,^) does not exist. Relations 
(3.3) with Jo = X* have the form y ^ AiM'^-\\ + tf'K 7(0) = x*; so 

XO < x' +Air^M'^-\i\ +tf - 1] 

The desired assertion follows from this estimate. 

Theorem 4.7 

Suppose 0 ^ Wo ^ M, suppwo(x) c [xo,xi], q ^ p — —\, m > n. Then 
localization in the problem (1.2), (2.2) occurs and u{t,x) = 0 for x < xo as 
well as for 

X > xi +m^iM'^-"[v42(m - n)\-^ ^ x. 
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Proof. 

Let us consider the function psix) : psix) = 0 for x ^ x; 

ps(x) = [A2(m - n)imAi)-\xi - x) +M'^-'^]^/('"-'^> 

for xi ^ X < x; psix) = M for XQ ̂  x ^ xi; psix) = (x — XQ + s)M/s for 
xo — £ ^ X ̂  xo; Psix) = 0 for X ^ xo — £. It is easy to see that Lips ^ 0 
at the points where ps is smooth for any a > 0 and psix) ^ uoix). Letting 
e tend to zero one gets the desired result. 

Remark 

It follows from Theorem 4.1 that there is no localization for ^ < —1, 
p ^ - 1 , or ^ > - 1 , jS ^ 0, or ^ = - 1 , p > —1, ox q — p - - 1 , m ^ n. 
By virtue of Theorems 4.2-4.7 for any other combination of the paremeter 
values localization occurs. 

§5. A N EXAMPLE OF A N EQUATION 
WITH ESSENTIAL D E P E N D E N C E 
ON THE SPACIAL VARIABLE 

Let us denote by uit,x) the g.s. of the problem (1.3), (2.2) under the 
assumption (1.4). 

Let us carry out some auxiliary constructions. We seek a family of par
ticular solutions to (1.3) for X ^ 0 in the form v(i,x) = (1 -\-x)^ ¿(O? 
^ = (/+a)(l +x)~^, where a - is + \)/im — n), jS = 1 — a ( m - 1), a =const, 
A(0 is a piecewise continuously differentiable function which will be defined 
later. By analogy with the beginning of §3 one finds the equation for XiQ: 

dX ~ (xmX^ +AÀ''' 

Hence, 

' (7-'^(Mf^"-í7'^'^)-^-^/(^+^ W = 

À 

J fMi 

À 

where 
Ml = (/i/(|a|m))^/<'"-">. 

Then À(0 = Í /" ' (0 - Let us denote ô = ^(0), 
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Theorem 5.1 

Suppose suppwo(-^) C [xo,xi], XQ > (m^Mi^~^^oy/P - 1, uo(x) ^ 
Mi(l +x)°^. Then the finite extinction time property occurs in the prob
lem (1.3), (2.2). 

Proof. 

Let us define the function g(0 in the following way: g (0 = 0 for (̂  ̂  ^o; 
g(0 = Á(0 for Í0 < Í < ^i; g(0 = Ml for ^ ^ ^u Let us denote by yit) the 
solution of the Cauchy problem 

y=(l +yy-Pg-^-\(t +a)(y + 1)-^), XO) = xu (5.1) 

where a = (xo + l)Hi' 
Suppose 

P6(i, x; A, Ml, Í0, Í1, a) = (1 + xrgiO 
for X ̂  y(i) and 

pe(t,x;À,Mu^o.^uxua) = 0 
for X > y(t). It is easy to check that L2P6 ^ 0 at the points where pe 
is smooth while at the Une of discontinuity x — y{t) relations (2.4), (2.5) 
are fulfilled with Ait,x,ú) — u!^. Moreover «0 < P6 at r = 0. By vitue of 
Theorem 2.1 u ^ pe almost everywhere in IL^ x E. 

Let us find coordinates (i*,x*) of the intersection point for the curves 
X - y{t) and (1 +x)^ = mPMi^~^{t+a), where g - M\, For í ^ r* relations 
(5.1) take the form 

y^il+yf-PM^-K XO)=xi. 
Hence 

^i\+xif-{\+xof 
(m-l)PMr' (5.2) 

(l+x,y =mpM^-^(h+a) 
Further, 

For Í > Í* one has 

y^(l +yy-^(mPO-' = (1 +y)(t+ar'impr' . viU) = x.. 
Hence 

y{t) ^ (mpM^-^y/^iU +a)('"-^>/(^^>(/ +a)i/(^^> - 1 (5.3) 

The curve x = o)(t), where g =0, will be defined by the equation 

In our case m > 1 so lines x = y(t) and x = o){t) have the intersection point 
(t,x). One ends the proof using (5.2) and (5.3). 
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