Boundaries of convex sets

POR MANUEL VALDIVIA*

Académico Numerario

Recibido: 5 de Mayo de 1993

Summary

Let X be a Banach space. Let E and F be closed subspaces of X and X*, respectively, such that E^{\perp} is an orthogonal complement of F in $F+E^{\perp}$. We show that if there is a quasi-Baire mapping ψ from X to X* such that $\|\psi(x)\| = 1, < x, \psi(x) >= \|x\|, x \in X$, and $\psi(x)$ is in F whenever x belongs to E, then E^{\perp} is an orthogonal complement of F in X*. As a consequence, we obtain that if X is a Banach space such that there is a quasi-Baire mapping ψ from X to X* with $\|\psi(x)\| = 1, < x, \psi(x) >= \|x\|$, $x \in X$, then happens to be an Asplund space.

The linear spaces used in this paper are assumed to be defined over the field \mathbf{R} of real numbers.

The norm in a Banach space X is denoted by $\|.\|$; B(X) is the closed unit ball of X. We write X* for the Banach space conjugate of X; X** is the conjugate of X*, and we identify X with a subspaces of X** via the canonical embedding. For a subset A of X, A^{\perp} is the subspace or X* wich is orthogonal to A. The usual duality between X and X*, and betwen X* and X**, is represented by <.,.>. Given two closed subspaces X_1 and X_2 of X, we say that X_1 is an orthogonal complement of X_2 in $X_1 + X_2$ whenever $X_1 \cap X_2 = \{0\}$ and the projection of $X_1 + X_2$ onto X_2 along X_1 is of norm one. A space X is said to be Asplund provived every closed separable subspace Y of X has separable dual Y^* .

^{*} Departamento de Análisis Matemático. Facultad de Matemáticas. Burjasot. Valencia. Supported in part by D.G.I.C.Y.T., (Madrid).

For a set A, A denotes its cardinal number. The density character of a topological space M is the smallest cardinal number λ for which there is a dense subset B of M with $|B| = \lambda$. We then write dens $M = \lambda$.

Let S and T be two Hausdorff topological spaces. We say that a mapping f from S to T is quasi-Baire if there is a countable set L of continuous functions from S to T such that f is in the closure of L in the topological space T^{S} .

Let A be a convex closed and bounded subset in the conjugate X^* of a Banach space X and let B be a subset of A. We say, after G Godefroy, [1], that B is a boundary of A if for each x in X there is v in B such that

$$< x, v >= \sup\{< x, u >: u \in A\}$$

The following result is proved in [1]: a) Let A be convex closed and bounded subset of the conjugate X^* of a Banach space X. Let B denote a boundary of A. Assume that if C is a closed and bounded subset of X and w is an element of X^{**} in the closure of C with respect to the topology of pointwise convergence over B there is a sequence (x_n) in C such that w is the limit of (x_n) for such topology. Then A is wak-star compact and it is the closed convex hull of B in X^* .

LEMMA. Let X be a Banach space. Let A_0 and B_0 be two infinite subsets of X and X*, respectively, such that $|A_o| = |B_o|$. If L is a family of continuous functions from X to X* with $|L| \leq |A_o|$, then there are two closed subspaces E and F of X and X*, respectively, satisfying the following conditions:

- (a) dens $E \leq |A_{\alpha}|$, dens $F \leq |B_{\alpha}|$, $A_{\alpha} \subset E$, $B_{\alpha} \subset F$.
- (b) E^{\perp} is an orthogonal complement of F in $F+E^{\perp}$. (c) For each x in E and each g in L, g (x) lies in F.

Proof. For each u in X* and each positive integer n, we select in X an element x(u,n) such that

$$||x(u,n)|| = 1, < x(u,n)u \ge ||u|| - \frac{1}{n}.$$

Proceeding inductively, we assume that, for a non-negative integer m, we have already found subsets

$$A_m \subset X, B_m \subset X^*, |A_o| = |A_m| = |B_m|.$$

Let C_m and D_m denote the linear spans over the field of rationals of A_m and B_m , respectively. We then set

$$A_{m+1} := C_m \cup \{x(u,n) : u \in D_m, n = 1, 2...\}$$
$$B_{m+1} := D_m \cup \{g(x) : x \in C_m, g \in L\}.$$

Now, let *E* and *F* be the closures of $\bigcup_{m=o}^{\infty} A_m$ and $\bigcup_{m=o}^{\infty} B_m$ in *X* and *X*^{*}, respectively. Clearly, *E* and *F* are Banach spaces for which

dens
$$E \leq |A_o|$$
, dens $F \leq |B_o|$, $A_o \subset E$, $B_o \subset F$.

Take v in E^{\perp} , w in F and $\varepsilon > o$. We find a positive integer m such that $\frac{1}{m} < \varepsilon$ and there is an element u in B_m with $||w - u|| < \varepsilon$. Then

$$||w|| \le ||w - u|| + ||u|| < \varepsilon + < x(u, m), u > + \frac{1}{m}$$

$$\le 2\varepsilon + < x(u, m), u + v >$$

$$\le 2\varepsilon + |< x(u, m), u - w > | + |< x(u, m), v + w >$$

$$\le 2\varepsilon + ||u - w|| + ||v + w|| \le 3\varepsilon + ||v + w||,$$

and hence

$$\|w\| \leq \|v+w\|,$$

we thus have that E^{\perp} is an orthogonal complement of F in $F+E^{\perp}$.

Take now x in E and g in L. We may find a sequence (x_m) in X convergent to x and so that x_m is in $A_m, m = 1, 2, ...$ Then

$$g(x_m) \in F, m = 1, 2, \dots$$

and thereby

$$g(x) = \lim_{m} g(x_m) \in F.$$
 q.e.d.

THEOREM 1. Let X be a Banach space. Let M be a convex closed and bounded subset of X^* . Let ψ be a quasi-Baire map from X to X^* such that

$$\psi(x) \in M, \langle x, \psi(x) \rangle = \sup\{\langle x, u \rangle : u \in M\}, x \in X.$$

Then M is weak-star compact and it is coincides with the closed convex hull in X^* of

$$\{\psi(x):x\in X\}.$$

Proof. Let us assume that the above stated property is not true. Let P denote the weak-star closure of M in X* and let Q be the closed convex hull of $\{\psi(x): x \in X\}$ in X^* . Take an element u_o in P not in Q. Let L be a countable set of continuous mappings from X to X* such that ψ is in the closure of L respect to the pointwise convergence topology. We get hold of two countably infinite subsets A_o and B_o of X and X*, respectively, with u_o in B_o . The former lemma applies yielding two closed subspaces E and F of X and X*, respectively, with the properties there mentioned. It then comes plain that $\psi(x)$ is in F for each x in E. We identify, in the usual fashion, E^* with X^*/E^{\perp} . Let f be the canonical mapping from X* onto X^*/E^{\perp} . If φ denotes the restriction of ψ to E, then

$$\varphi(x) \in A, \langle x, \varphi(x) \rangle = \sup\{\langle x, u \rangle : u \in A\}, x \in E.$$

Set

$$B:=\left\{\varphi(x):x\in E\right\}$$

Clearly, B is a boundary of A. Take now a convex bounded subset C of E and an element w of E^{**} in the closure of C respect to the topology of pointwise convergence over B. Let $\{y_i :\in I, \geq\}$ be a net in C which converges to w in each point of B. Let v in E^{**} be a weak-start cluster point of the former net. Since F is separable, we may find a countable set $\{u_n : n = 1, 2, ...\}$ dense in F. For each positive integer n, we choose i_n in I such that

$$\left| < y_{i_n} - v, u_j > \right| < \frac{1}{n}, j = 1, 2, ..., n.$$

We put $x_n := y_{i_n}, n = 1, 2, ...,$ and show that the sequence (x_n) converges to w in every point of B. Being C a bounded subset of E, there is a positive integer r such that $rB(E) \supset C$. Take $\varepsilon > o$ and u in B. We find a positive integer m for which

$$\frac{1}{m} < \frac{1}{2}\varepsilon, \|u_m - u\| < \frac{1}{4r}\varepsilon.$$

If $n \ge m$, we have

$$\frac{1}{2}\varepsilon > \frac{1}{n} > |\langle x_n - v, u_m \rangle| \ge |\langle x_n - v, u \rangle| - |\langle x_n - v, u_m - u \rangle|$$
$$\ge |\langle x_n - v, u \rangle| - ||x_n - v|| \cdot ||u_m - u|| \ge |\langle x_n - v, u \rangle| - \frac{\varepsilon}{2},$$

hence

$$|\langle x_n - w, u \rangle| = |\langle x_n - v, u \rangle| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon, m \ge m.$$

The formely mentioned result a) can now be applied to conclude that A is weak-star compact and $f(u_o)$ is in the convex hull in X^*/E^{\perp} of

$$\big\{\varphi(x):x\in E\big\}.$$

Thus, u_o belongs to the closed convex hull in F of $\{\psi(x): x \in E\}$, a contradiction

q.e.d.

THEOREMA 2. Let X be a Banach space. Let ψ be a quasi-Baire mapping from X to X* such that

$$\|\Psi(x)\| = 1, < x, \Psi(x) > = \|x\|, x \in X,$$

Let also E and F be two closed subspaces of X and X*, respectively, such that E^{\perp} is an orthogonal complement of F in $F + E^{\perp}$. If $\psi(x)$ is in F for every x in E then E^{\perp} is an orthogonal complement of F in X*

Proof. We identify, as done before, E^* with X^*/E^{\perp} . Let f denote the canonical mapping from X^* onto X^*/E^{\perp} . Let φ represent the restriction of $f \circ \psi$ to E. Then

$$\varphi: E \to X^* / E^{\perp}$$

is quasi-Baire and

$$\|\phi(x)\| = 1, < x, \phi(x) > = \|x\|, x \in E,$$

hence, in light of our previous theorem, $B(X^*/E^{\perp})$ is the closed convex hull in X^*/E^{\perp} of

$$\big\{\varphi(x):x\in E\big\},\,$$

Thus, if M denotes the closed convex hull in F of

$$\big\{\psi(x):x\in E\big\},$$

it follows that $f(M) = B(X / E^{\perp})$. Besides, $M \subset B(F)$ and f(B(F)) is contained in $B(X^* / E^{\perp})$. Therefore, $f(B(F)) = B(X^* / E^{\perp})$, and we have that E^{\perp} is an orthogonal complement of F in X*.

q.e.d.

Corrollary. Let X be a Banach space. If there is a quasi-Baire mapping ψ from X to X* such that

$$\|\psi(x)\| = 1, < x, \psi(x) > = \|x\|, x \in X,$$

..

then X is an Asplund space

Proof. Let Y be a closed separable subspace of X of infinite dimension. We take a countable dense subset A_o of Y. Let B_o be a subset of X^* with $|B_o| = |A_o|$. Let L be a countable family of continuous functions from X to X^* such that ψ belongs to the pointwise closure of L. An application of the initial lemma gives two subspaces E and F of X and X^{*}, respectively, with the properties there stated. Then E^{\perp} is an orthogonal of F in $F + E^{\perp}$ and ψ (x) is in F for every x of E. The former theorem applies and we have that E^{\perp} is an orthogonal complement of F in X^{*}. Since F is separable and isometric to E^* , Y^{*} is also separable and the result follows.

q.e.d.

It is shown in [2] that if φ is an upper semicontinuous map from an Asplund space X on the weak-star compact subsets of X*, then a selector ψ of φ of the first Baire class from X to X* exists. By means of this result, we have that if X is an Asplund space, there is a mapping ψ of the first Baire class from X to X* such that

$$\|\Psi(x)\| = 1, \langle x, \Psi(x) \rangle = \|x\|, x \in X.$$

Our previous corollary produces therefore a converse of this result.

REFERENCES

- 1. GODEFROY,G.: Boundaries of a convex set and interpolation sets. Math. Ann. 27, 173-184 (1987).
- 2. JAYNE, J.E. and ROGERS, C.A.: Borel selector for upper semicontinuous set-valued maps, Acta Math. 155, 41-49 (1985).