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Abstract 

In this note we deal with the space \^ (I) generated by the indicator functions of all subsets 
of some infinite index set I and provided with the supremum norm. As it is known, this space is 
not ultrabomological. Here we show that, despite this fact, this space still can be represented as 
a projective limit of ultrabomological non-complete normed spaces. 
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Resumen 

En esta nota consideramos el espacio IQ' (I) generado por las funciones características de 
todos los subconjuntos de cierto conjunto infinito de índices I provisto con la norma supremo. 
Como es sabido, este espacio no es ultrabomológico. Aquí probamos que, a pesar de este hecho, 
este espacio todavía puede representarse como un límite proyectivo de espacios ultrabomológicos 
normados no completos. 

If I is an infinite index set, we shall denote by ÏQ (/) the subspace of the 
Banach space f^ (I) generated by the indicator functions e(P) of all subsets 
P of I. Let U represent the family of all ultrafilters on I and let"?/ be any 
member of U. For each U çni let us denote 

L(Î7) := {x € /Q (/) : x{w) - constant Vw € Í/} 

It is obvious that L(i/) is a closed Hnear subspace of f^ (I). On the other 
hand, given tha t^ is a filter on I, 

L^):zz U{L(C/), [ / € ^ } 

is a linear subspace of f° (/). 
If the ultrafilter"?/ contains the filter 3 of the cofinite subsets of I, it is 

plain that each V e%l is infinite. Thus, in this case, each element x of JLÇ/) 
has infinitely many coordinates which are equal. Assume for example that 
card(/) = Ko and ^ c%l. Then pick a bounded injective scalar mapping (p 
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defined on I and a bijective sequence (wn) in I with (piw^) = ¿ for every 
n e N. For each /z € N, define Xniwn+i) = (piwi) and x,j(w/) = 0 for 
I ^ i ^ n. Then, (x„) is a sequence of linearly independent vectors of f° (/) 
whose Unear combinations do not belong to LÇ/). Hence, LÇ/) is an infinite 
codimensional subspace of f° (/). In particular, ifU is some ultrafilter on N 
containing the Fréchet filter on N, then LÇ/) is a Unear subspace of f° of 
infinite codimension. FinaUy, we conclude these observations noticing that 
for each"?/ e U, then IQ (!) is contained in LÇ/), Indeed, given x e ÍQ (/), 
there exists a finite partition {Ai,...,An} of I such that x is constant in 
every At for 1 < / < n; a s ^ is an ultrafilter on I, there is somej € {I,.., ,n} 
such that Aj eV, Thus x e L(Aj) ç LÇ/), 

In what follows we shall see first that for each^ e U the linear space 
LÇ/) is the locally convex huU of the family {L(U), U ell} of subspaces of 
f° (/). Then we shaU prove that f^ (/) coincides with the subspace f\{LÇ/}, 

Il eV}. This will show that /Q" (/) is a projective Umit of ultrabomological 
spaces although, [1], ÍQ (/) is not itself an ultrabomological space. 

Main Lemma 

LÇ/) is an ultrabomological space for each"?/ e U. 

Proof, ' 

We are going to show that LÇ/) is the locally convex hull of the family 
{L(U), U e%l} of Banach subspaces of f° (/). Let V be an absolutely convex 
subset of LÇ/) such that V nL(U) is a neighbourhood of the origin in L(U) 
for each U eñl. We shall prove first that V absorbs the family {e(A), A £ 1} 
of the indicator functions of the subsets of I. 

Suppose that the aforementioned property does not hold and let ni € N 
be such that e(I) e (l/6)niV, By hypothesis there is some Pi £ I such 
that e(Pi) i (4/3)niV, Moreover, given that e(Pi) = 6(1) - e(I - Pi), it 
foUows that e(I — Pi) ^ n\V, since otherwise e{Pi) e (7/6)niV, which is a 
contradiction. Therefore 

e(Pi)^niV. e(I-Pi)^niV 

Let n2> 2ni be such that e(Pi) e (1/12)^2F. A fortiori, 

eil-Pi) = e{I) - e(Pi) ë (l/6)niV +(l/í2)n2V g (l/6)n2V, 

Hence, 
e(Pi) e (l/6)/22F, e(I-Pi) e (l/6)n2V 

Since e{A) = e{A nPi) +e{Ar\[I-Pi]) for each A £ I, it foUows that either 
V does not absorb the family {e(A), A ç Pi} or does not absorb the family 
{e(A), A £ I- Pi}, In the first case we set Ai := I - Pi and Bi := Pi and 
in the second case we put Ai := Pi and Bi := I — Pi, 
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Now, there is some P2 ^ ^1 such that e(P2) ^ i4/3)n2V. Given that 
e(P2) = e(Bi)-e(Bi -P2) and e^Bi) G (l/6)«2^', it follows that e(5i - P 2 ) ^ 
n2V. Therefore 

e(P2) i n2V. e(Bi - P2) ^ «2^ 

If «3 > 2n2 is such that e^Pj) € (1/12)«3F then e(jBi - P2) e (1/6)«3K. 

Hence 
e(P2) € (1/6>3F, e(5i - P2) € (1/6)^23 F 

Reasoning as above, either V does not absorb {e(A), A £ P2} or does not 
absorb {e(A), A £ Bi — ^2}- In the first case we set A2 :- Bi — P2 and 
B2 := P2 and in the second case we put A2 '.— P2 and B2 := Bi — P2-

Proceeding by induction we obtain a strictly increasing sequence (n¿) in 
N and a sequence {Ai, i e N} of pairwise disjoint subsets of I, such that 

eiAi) i mV 

for each / € / . 
Let AQ:- I — {}{Ai, i — 1,2,...} and define 

Ml := U{^2.-, i = 0 ,1 ,2 , . . . } , M2 := U{^2/-i, / = 1,2,...} 

Since U is an ultrafilter, either Mi ell or M2 E^. 
If M2 G ^ then eiA2d € L(M2) for / = 0 ,1 ,2 , . . . . As F fl L(M2) is 

a neighbourhood of the origin in L(M2) and {e(A2i), / = 0,1,2, . . .} is a 
bounded set in L{M2) there is some /? € N with 

{e(^20, ¿ - 0 , 1 , 2 , . . . } ç / ) F 

If J € Nis such that n2j > /?, then e{A2j) € ^ 2 / ^ , a contradiction. If Mi G ^ 
we also obtain a similar contradiction. 

So we have shown that there exists some >i, > 0 so that 

Xe{A) G V 

for each 4̂ ç / . 
If B stands for the closed unit ball of f° (/) we show next that XB n 

LQI) Ç 5 F . SO F is a neighbourhood of the origin in LÇI) and we are done. 
Pick X e XBf\ LQÂ) and let C/ G"?/ be such that x e XB (\ L(U), As 

B DfQ (T) is dense in B there is a sequence (xn) in A^ fl /Q' (/) converging 
to X in l°° (I). Thus, given £ > 0 there exists some no G N such that 

sup{|x«(w) - x(w)\, w e 1} < s 

for each n ^ no. In particular, 

sup{\Xn(w) — x(w)\, w e I — U} < e 
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for each n ^ no. As x £ ÀB n L(U) there is some scalar fi with |/i| ^ À 
such that x(w) = /i for each w e U, Now for each n define z„(w) = x„(w) 
ifw^ U mdzn(w)= fi if we U. Clearly, z„ € AJB n ig'(/) n L(i/) for each 
positive integer n and besides z„ —̂  x in L(U), since 

SUp{|z„(H^) - X(w)\, W e 1} = SUp{|x„(M^) - X(w)\, W £ I - U} < S 

for each n ^ HQ. 
If Q stands for the absolutely convex cover of {e(A), A Ç / } , it is shown 

in [4] that BHi^ g 4g. Hence z„ e 4ÀQ for each neN.As le(A) e V for 
each A £ I and V is absolutely convex, it follows that ÀQ ç F, so 

Z „ G 4 F nL(U) 

for each n eN. Now, as F fl L(U) is a neighbourhood of the origin in L(U), 
it follows that 

xe4V0LiU)£4Vf)LiU) + VÇ)L(U)£ 5V 

This shows that 
ÀBÇ)LÇ/) Ç 5V 

Remark 1. 

A Hausdorfí" locally convex space E is said to be unordered Baire-Hke, 
[3], if given a sequence of closed absolutely convex subets of E covering E, 
there is one of them which is a neighbourhood of the origin. If ̂  is any 
ultrafilter on N containing the filter ^ of the cofinite subsets of N, then 
LÇ/) is not unordered Baire-like. If {S„, n = 1,2,...} is the sequence of 
all the ordered pairs (i,j) with / < j \ then for each n e N define En as 
the subspace of LÇ/) formed by those x taking the same value in the two 
points of Sn- Clearly En ^ L0/) for each n e N since if Sn - (ij), then 
e(/— {/}) e LÇ/) — £"„. As every set ofU contains infinitely many points of 
N, it follows that {£"„, /i = 1,2,...} covers LÇU). 

Proposition» 

Proof. 

As we noticed above /Q (/) ^ f){LÇU),V e U}. Suppose that there 
exists some x which belongs to 0{LÇJ),^ e U} but x ^ ÍQ (I). 

Let {Ad,d € D} be a partition of I formed by infinitely many non
empty subsets of I (if I is uncountable, D may be uncountable too) with the 
property that x is constant in each set Ad and takes different values in each 
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one of those sets. Let 2fe represent the filter base formed by the complements 
in I of the finite unions of Ad. In other words, E e 51 if there is some positive 
integerp and some indexes di.dj,..-dp in D such that 

^ = / - y { ^ ^ . , l ^i^p} 

Let"^ be an ultrafilter which refines Sfe. It is plain that Ad ^^ for any 
d e D, Since x G L(§), exists some M e^ such that x is constant on M. 
As Ad ^ M for each d e D, either there is some r e D such that M c Ar 
or there are i J G E with / ^ 7 such that M meets both A¿ and 4 / . The 
first posibiUty cannot happen since Ar does not belong t o ^ and the second 
implies that x takes the same value in both Ai and Aj, a contradiction. 

Qwrollary 

The space Jg* (1) is topologicaly isomorphic to a closed linear subspace 
of the product J¡{l4í}fÍ¿ e U}. 

Pro©! 

The mapping T:l^ (/) — Jl{LC/},1e e U} such that 

Tx = (x, X , . . . , X , . . . ) 

is clearly a topological isomorphism from f^ (/) into Jl{LC/),%¿ e U} of 
closed range. 

Theorem. 

The space f^ (/) is the projective limit of the family {LC/),1l e U} 
provided with the canonical inclusion maps. 

Proof. 

This is an obvious consequence of the previous results. 

Remark 2. 

It is worth noticing that the space ÍQ (/) is not ultrabornological, [1]. But 
nevertheless, according to our Theorem, it can be represented as a projective 
limit of ultrabornological spaces. Besides, excluding all those LÇ/) that coin
cide with f° (/), the remainders ultrabornological spaces are non-complete. 
On the other hand, if the cardinal of U is smaller than the first strongly 
inaccesible cardinal, the product Jl{LÇ/),^ e U} is ultrabornological, ([2], 
p.72). Hence, in this case, IQ (I) is (isomorphic to) a non-ultrabornological 
closed linear subspace of an ultrabornological space. 
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Open ProMein. 

A HausdorfF locally convex space E in called totally barrelled, [5], if 
given a sequence of Hnear subspaces of E covering E^ there is one of them 
which is barrelled and its closure is of finite codimension in E, We do not 
know whether or not LÇ/) is totally barrelled whenever^ is an ultrafilter 
wich contains the cofinite subsets of I. 
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