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Abstract

The purpose of this work is to give conditions under wich a G—differentiable function admits
locally a G-differentiable inverse. The classical result that gives conditions under which a C”
function admits locally a C” inverse is a special case of this theorem.

El propésito de este trabajo es dar condiciones suficientes para que una funcién G—diferenciable
admita (localmente) una inversa G-—diferenciable. El resultado clasico que da condiciones sufi-
cientes para que una funcion de clase C* admita (localmente) inversa de clase C” es un caso
especial de este teorema.

Clasificacion A.M.S. :.26A24

1. Imtroduction and neotations

There have been a number of approaches recently toward developing a
set—valued derivative of convex or Lipschitz functions which generalize the
usual notion of derivative in such a way that the theorems of differential
calculus also extend. The present interest in problems related to the opti-
mization of non-smooth functions brought about the development of this
news generalized differentiation theories.

With this aim T. Rockafellar [11] studied real convex functions on R”
introducing the subdifferential. In the same way F.H. Clarke [3] broaden
the kind of functions considered by Rockafellar extending the theory to real
locally lipschitz functions on R” by defining the generalized gradient. Clarke
latter included in his theory both functions from R” into R™ [4] and real
functionals on Banach spaces [5]. Futher development of this theories can
be find in a number of references such as [1], [2], [5], [6] or [10].

In different previous works ([8],[9]) we extended the class of functions
used by Clarke defining a new generalized derivative called G—derivative.
This work aims to give conditions under which a G—differentiable function
admits locally a G—differentiable inverse in such a way that the classical
inverse function theorem is a special case.

Some previous results of [8] and [9] are given. f is a real-valued function
on some interval / C R; a, x, x, € I and (x,,) — a. F(a,x) and I(f, a, x,,)
will mean

F(a,x) =lf(x) —f(@)/(x—a); If,a,xn) = lim F(a,xp).

*E.T.S. Ingenieros Industriales. U.N.E.D.
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(xn) — a is said to be a G—derivability sequence of ' at a if there exist
I(f,a, x,). S(f, a) will denote the G—derivability sequences set of f at a. The
G-derivative of / at a is the set

of (@) = co{l(f, a, xn); (x) € S(f. a)}.

If f € Cs(I) (def. 2.1) 8f (a) is a non—empty convex compact set. Derivation
and chain rules extend at this context, condition necessary of local extremum
is now 0 € Jf(a) and we have next generalized mean value theorem. If
f € Csla,bl, then there exists ¢ € (a,b) and 4 € 0f(c) such that
f®)—f(a) = A - a).

In the following U is an open set of R”, || x|| denotes the usual Euclidean
norm and ||¢| the supremum norm in L(R”,R) wich is the usual topological
dual of R”. We topologize the vector space M, ,, of m x n matrices with the
norm || M| = max|m;;| where M = (my)and1 <i<m,1<j<n <.,.>
is the duality pairing between L(R”,R) and R”, co(4) is the subset 4 convex
hull and F(a,v,t,) and I(f,a, v, t,) will mean

F@v,t) = |1 @+ 1)~ @]; 10 v, 1) = fim F(a,v, )

where f : U —Ryac U veR", v£0and {#t,} — Owhenn — o0 isa
real number sequence.

2. G-differential. Basic properties

Let £ and F be normed linear spaces, U be and open set in £ and
f : U — F be a given mapping.

2.1 Definition

We will call f “strong—continuous” (s — ¢) at a € U if there exists a
neighborhood V of a and a constant & > 0 such that

If () —f(@I < klx—al, forevery xeV.

fiss—cin U ifitis s — ¢ at each point of U, we will denote f € Cs(U; F).

Next relation is inmediate: LL(U, F) ¢ Cs(U,F) ¢ C(U, F), where LL
denotes locally lipschitz functions and C denotes continuous functions. It
is a easy consequence of 2.1 that f + g and Af are s — c functions at a if
f.g € Cs(a)and A € R. Cs(U, F) is a real linear space and the composition
of s — ¢ functions is a s — ¢ function.

Let f : U — R be a continuous function. The function ¢t — a+1tv
from R into R” is continuous for each v € R” fixed and consequently
D = {t € Ra+tv € U} is an open set such that 0 € D. Next propo-
sition is inmediate from 2.1.
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2.2 Proposition

If f is a s—c function at a, then for each v € R”, v £ 0, g,(t) = f(a+1tv)
is a s — ¢ function at 7 = 0.
2.3 Definition

The directional G—derivative of f at a with respect to a vector v € R”,
v # 0 or G,—derivative of f at a denoted by 0,/ (a) is defined to be the set

0yf (@) = co{ lim F(a,v,1,); {tx} € S(g,,,O)}; do(a) = {0}
where S(gy,,0) denotes the G—derivability sequences set of g, at 0. Note that
0yf (a) is the G—derivative of g, at t = 0.
2.4 Theorem
If f is a s — ¢ function at a € U then for each v € R”
1) 0,f (a) is a non—empty convex compact subset in R.
ii) There exists k > 0 such that 0,/ (a) C [-k| v, kllv|].

Proof. (i) From the fact that f is s — ¢ at a it follows that g, is s — ¢ at
t = 0, and consequently d,f (a) = Jg,(0) is a non—empty convex compact
subset in R.

(i) Because f es a s — ¢ function at a, there exists £k > 0 and V such that

@) -f@)| <klx—al; forevery xeV.

For v € R” and {#,} € S(g,,0) fixed, there exists np € N such that
a+tyy €V for all n > no, then |f(a +tv) — f(@) < kltallv] and we

have that lF(a, v, tn)’ < k|lv|| and for each {7,,} € S(gy,0)

—klvll < lim F(a,v,1,) < k|v|
Finally from the fact that d,f (a) is a convex set we deduce that

8/ (@) | =klvl, kivl]. ‘

2.5 Proposition

If f is s—c at a € U, then the set—valued mapping from R” into R defined
by T(v) = d,f (a) is a bounded odd prefan in the Ioffe’s terminology [7].
Proof. We will show that T is a prefan. If v = 0, then T(0) = {0}. Let
I(f,a,Av, t,)) € T(Av) where A € R*. Because

I(f,a, Av, t,) = nl_ldrg F(a,Av,t,) = A nan; F(a,v,t,)
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we have that T{(Av) Cc AT(v). Moroever let I/{(f,a,v,t,) € T(v) and

Alim F(a,v,4,) = lim F(a,v,An) =2 lim F(a,v,Aty) € T(Av)

hence AT(v) = T{Av) for every 4 > 0.

From 2.4.(1) we have that T(v) is a convex compact subset for each
v € R” and because T(—v) = —T(v) we have that T is a odd prefan.
Finally T is bounded because T'(v) # ¢ for each v € R” and from 2.4.(ii)

T(v) C | —kiv], kivi]-
T is not a fan. Let f : RZ — R be defined by

SEay) =3l [y £y i (o) £ ©.0: /0.0 =0.

It can be easily proved that for a = (0,0) T is not a fan because
T(u+v)¢ T(w) +T).

2.6 Definition

f is G—differentiable at a € U if for each v € R” and each / € d,f(a)
there exists a linear selection ¢ € L(R”, R) of the prefan T such that £(v) = /1.
The set of this selections is called the G—differential of / at a and is denoted
by of (a).

It follows inmediatly from this definition that df (a)(v) = 0,f (a) for each
v € R™

2.7 Proposition

If f is G—differentiable at a € U then df (a) is a compact convex set in
L(R",R).
Proof. Let ¢{,7 € df(a) and o, > O such that « + f = 1. For each
v € R” {(v) € T(v) and n(v) € T(v) and because T(v) is a convex set
we have o + By € df (a) and df (a) is a convex set in L(R”,R).

Let ¢ € 0f (a), from 2.4.(ii) we deduce that

€l = sup €I < sup [T(W) <k
[lvil=1 Ivli=1

&

and consequently df (a) is a bounded set. Moroever 0f (a) is closed because
T'(v) is a closed set in R for each v and

af (a) = ver]?&n <., v>"1 TW).

For real functions on R, strong—continuity is equivalent to G—derivability. In
this case strong—continuity is not a sufficient condition to G—differentiability.
Next theorem gives a necessary and sufficient condition to G—differentiability.
Proof of Lemma 2.8 is a inmediate consequence from 2.5.
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2.8 Lemma
If f is s — ¢ at a, the following are equivalent:
1) <¢, v>e T(v) for every v € R”.

i) < ¢, v><sup T(v) for every v € R”.

2.9 Theorem

Let f be s — ¢ at a, then the following propositions are equivalent:
1) T is a set—valued fan.
ii) f is G-differentiable at a.

Proof. ()= (ii) Let p from R” into R defined by p(v) = sup T(v). We will
prove that p is positively homogeneous and subadditive. If A > 0 then

p(Av) =sup T(Av) =sup AT(v) = Asup T(v) = Ap(v).

From the fact that T is a fan we have T(+v) ¢ T(«)+T(v) for all u,v € R”
and

p(u+v) =sup T(u+v) <sup T(w) +sup T(v) = p(u) +p(v).

Suppose now that u € R” and / € T(u), then there exists ¢{ € L(R"?,R)
such that £(u) = /. Because T is a odd fan it is homogeneous and conse-
quently for each A € Rand v = Au we have A < {,u >€ AT(u) = T(Au),
<&v>eT(v)and < &, v >< p(v) for all v € S, where S is the linear sub-
space S = {v e R"; v = Au, A € R}. It follows from Hahn-Banach theorem
that there exists at least a linear function # € L(R”,R) satisfying:

n(v) =&(v) forevery veS and 5n()<p(v) forevery veR"”

from 2.8 we deduce that f is G-differentiable at a.

()= () If f is G-differentiable at a, then for every v € E we have
df (a)(v) = 0,f(a). Suppose that / € T(u + v), then there is ¢ € 9f (@)
such that < &, u +v >=/, hence

=<t ut+v>=<t,u>+<¢év>eTw) +T(v)

and T is a set—valued fan.

As a consequence we have that if f € LL(U,R) then f is G—differentiable
at each point of U. Now we will prove validity of the generalized mean value
theorem in this case.
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2.10 Theorem

If f is G—differentiable at U and [a, a + th] c U for all ¢t € [0, 1] and
h € R, then there exists 0 € (0,1) and ¢ € df (a + 0h) such that

fla+h)-f(a) =LA).

Proof. Suppose that we have ¢ : [0,1] — U defined by ¢(¢) = a + th.
¢ is differentiable at (0,1) and ¢’(¥) = A. Let f : [0,1] — R defined by
g(®) = (f o @)(¥). Strong—continuity of f and ¢ implies strong—continuity
of g at [0,1]. By mean value theorem (section 1) there exists § € (0, 1) and
¢ € 0g(0) such that g(1) — g(0) = c. We now show that

0g(0) c df (@ +0h)o ¢'(0).

Let I € dg(8) and {1,,} € S(g, 0) such that
1= Jim [0 +1) - ¢®)] = lim [ 16 + 2]~ LoCON]
From the fact that for each 7 € N, (8 + 2n) = @(8) + 1,¢(6), we have
= fim L[S 10®) + 10/ ®) -1 o]

it follows that I € 9,)f [@(0)] = 0f(a + 0h) o ¢’(f) and consequently
dg(0) c of (a-l—h)ogo'{é). Because g(1) = f(a+h), g(0) = f(a) and ¢ € dg(6)
there exists ¢ € df (a + 0h) such that ¢(4#) = ¢ and we deduce that

fla+h)—f(@) =)

Next theorem gives a necessary condition for local extremum of
G-differentiable functions.

2.11 Theorem

If f is a G—differentiable function from U into R and f attains a local
extremum at a € U then 0 € df (a).
Proof. Since f attains a local extremum at a, then for each v € R”, g,
attains a local extremum at 0, hence 0 € 0g,(0) = d,f (a). It’s clear that
<0,v>=0 € 0,f(a) for each v € R” and consequently 0 € df (a).

Definition of G—differential extend easily to functions from R” into R™.
We will suppose that f : R” — R™ is defined by f = (f1,/2, ../ m),
where f; : R” — R for each i = 1,2,..., m. It is easily proved that
strong—continuity of f at a is equivalent to strong—continuity of each f; at
a,i=12..m.
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2.12 Definition

The G—derivative of f at a with respect to v € R”, denoted by 9,/ (a) is

the set (6vf1(a), 0,/2(a), ...,6,,fm(a)).

From this definition and theorem 2.4, we have inmediatly that if f is
s — ¢ at a then for each v € R”, 9,/ (a) is a non—empty convex compact set
and

ouf @ ¢ T [=kIvi, kIvI].

2.13 Definition

f is said to be a G—differentiable function at a if for each v € R” and each
I € 0,f(x) there exists a linear selection ¢ € L(R"”, R™) of the set—valued
function T : v — 0,f (a) such that £(v) = I. The set of this selections is
called the G—differential of f at a and is denoted by df (a).

It can be proved that if /' is G—differentiable at a, then df (@) is a convex
compact set in L(R"”, R™), also that G—differentiability of / at a is equivalent
to G—differentiability of each f; at a and

m
of @ = fi ofia.
From G-derivability properties it follows that /' + g and Af are G—differen-
tiable functions if /' and g are and A € R. Moroever d(Af )(a) = Adf (a) and
o(f +g)(a) C df (a) +0g(a). However there exists G—differentiable functions
f and g such that gof is not G—differentiable. Next theorem provide a chain
rule in a special case.

2.14 Theorem

Let U ¢ R? and V' C R™ be open sets, f : U — V be a G—differentiable
function on U, g: ¥ — R be a C! function and # = gof. For each v € R”
and each x € U we have

i) There exists 0,A(x) C < Dg[f (x)], 0,f (x) > .
ii) A is Gdifferentiable at x and dA(x) = Dg[f (x)]odf (x).

Proof. (i) Let {z,,} € S(f, x, v) and suppose that [ f), f(x -|-tnv)] c V for
each n € N. Because g € C1(V), from mean value theorem for each n € N
we have that there exists ¢,, € l ), f(x+ tnv)l such that

g/ &+ v — ]S @) =< Delen). [f x + 1) =1 (0] > .

If {t,,} — 0, then {c,} — f(x) and because g € C!(V') we have
Jim Dg(cn) = Dg|f ()| and

Jim [ o oxta-go 00| =< Delf ). fim [ f Gestaf )] >
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and consequently 0,A(x) C < Dg[ f (x)l , Ouf(x) > .

(i) Let v € R” and / € d,A(x). From (i) we have that there exists I’ € d,f (x)
such that [/ =< Dg[ f (x}] , I’ > and because [ is G—differentiable at x, there
is a linear selection ¢ of the set—valued function T such that é(v) = /. It
follows that / =< Dg[ f(x)], ¢(v) > and = Dg[ f(x)] of e L(R",R)is a
linear selection of v — 0,h(x), h is a G—differentiable function at x and
0h(x) C Dg[ f (x)] 0 df (x). From (i) the other inclusion is inmediate.

It can be easily proved next extension of this theorem. If U ¢ R” and
V Cc R™ are open sets, f : U — V is G-djfferentiable on U, g : v — R?
is a C! function on ¥ and & = gof, then 4 is G—differentiable in U and

Oh(x) = Dgl f(x)] 0 of (%).
Definition of G—differential can be extended to a compact subset K C U.
From this extension we have the next generalized mean value theorem.

2.15 Definition

S is said to be G-differentiable on K if it is G—differentiable at each
point of K. The G—differential of f at K is the set

of (K) =co U 9f(x)

2.16 Proposition

If £ is a continuous mapping from [a, b] into R¥ and G—differentiable on
(c,d) C [a,b], then

f@-f@e@-awm Y of|etid—oa).

Proof. Suppose that F € L(R¥,R). Let Fof from [a, b] into R. Fof is conti-
nuous in [a, b] and from 2.14 F of is G—derivable in (¢, d). From generalized
mean value theorem, we have that there exists 0z, 0 < 0z < 1 such that

(Fof)d)—(Fof)c)=Fol)d-c)
where ¢ € 3f (¢ +0r(d — ¢)). Then for all F € L(R¥,R) it follows that

Flf@-f@| e F| Y of(+ud-epe-o

and from Hahn-Banach theorem we deduce that

f@—-f()ed—-c)co te[t(;'” of (¢ + t(d — ©)).
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2.17 Proposition

Let U be an open subset in R”, a € U, h € R” with [a,a +h] ¢ U. If
f : U — R¥ is a G-differentiable function on {x € V; x =a+th, t € [0,1]},

then
f@+h)—f(@eco U 0of(a+thy(h)
te[0,1]

Proof. It’s a easy consequence of 2.17 using g : [0,1] — R* defined by
g(®) =f(a +1th).

3. Inverse function theorem

In this section we will assume that f is a G—differentiable function from
the open set U ¢ R” into R¥ (n > k). Let us call a subset 4 ¢ L(R”,RF)
surjective if each ¢ € A is surjective. The set valued mapping M from U
into Pc[ L(R”, Rk)] (space of compacts with the Hausdorff’s metric) is said
to be semicontinuous at a € U if for every sequence {x;} — a, x; € U, and
all sequence {&;} — & with &; € 9f (x;) for each i, we have ¢ € df (a). We
will call 0f is bounded if it transforms bounded sets of U into bounded sets
of L(R",R¥).

3.1 Lemma

If the set—valued mapping 0f is bounded and semicontinuous at a € U,
then for each ¢ > 0, there is o« > 0 such that

of(x)c B (af(a), 8) for every x € B(a, o)

where B (6f(x),a) = éeatj%(x) B(¢, e).
Proof. Suppose that there exists £ > 0 such that for all 6 > 0 there is

x € B(a,0) with 0f(x) ¢ B (6f(a),8). Let 6 = 1/n, n € N for each n

there is x, € B(a,1/n) such that of (x») ¢ B(af(a),e). It’s clear that
{Xn} — a when n — oo . Let {£,} be a sequence with ¢, € df (x,,) and
¢ ¢ B (6f (a),s) for each n ¢ N. Because 0f is bounded, we have that

0f ({x»}) is a bounded set in L(R", R¥), then df ({x,}) is a compact set and
consequently there exists a subsequence {&} C {&,} € 0f ({x.}) such that
{&} — & when n — o0

We now show that & € 0f(a). Because & ¢ B (0f(a),&) we have
& — €Il > & for every ¢ € 0f (a) and because {&} — &o there is np € N
such that ||& — &oll < &/2 for all k& > ng, then

160 — &Il > &k — &Il — ¢k — Coll > &/2,

for every ¢ € df (a) and &y ¢ B (0f (a), €/2) contradicting the semicontinuity
of df at a.
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3.2 Lemma

If 01 (a) is surjective, then

1) There is 6 > 0 such that d[df (a)(S),0] > 26
ii) There is & > 0 such that d[ B(af(a),a)(S),Ol > 5

where § = {x e R”; | x| = 1}.

Proof. (i) Because 0f (a) is surjective, 0 ¢ df (a) and from the fact that
df (a)(S) c R* is a compact set there is § > 0 such that d [3f (a)(S), 0] >

(i1) Suppose that for each n € N there exists &, € B (9f (@), 1/n) such that
d[&.(S),0] < 6. Let n,, € 0f (a) with &, € B(y,,, 1/n) for each n € N. Since
{nn} C 9f(a) there exists a subsequence {nx} — no € 0f(a), then the
subsequence {&;} C {&,} also is convergent to n9. Let 6/2 > 0, there is
ko € N with d[£0(S), n0(S)} < 6/2. From (i) it follows that d [1o(S), 0] > 26
and we have that

< d[no(S), 0] < d[n0(S), Eio (8] +d [Eo (), 0] < 36/2

wich is a contradiction.

3.3 Lemma

If 0f (a) is surjective, df is a bounded set—valued mapping semicontin-
uous at a, then given any unit vector v € R” there are real numbers o« > 0
and § > 0 and a unit vector u € R* such that whenever x € B(a,«) and
¢ € df(x), < u, &(v) >> 6. In consequence Of (x) is surjective for each
x € B(a, o).

Proof. From 3.2 there are § > 0 and & > 0 such that d[ B (31 (a), £)(S), 0] >

0 and from 3.1 there is « > 0 such that df (x) ¢ B(df(a),e) for every
x € B(a,x). Let v € S, because B (df(a),¢) is a convex set we have that
B (0f (a),&)(v) is a convex set and

d| B0/ (@).&)(»),0] >

By the usual separatlon theorem for convex sets (see [11]), there is a unit
vector u € RF such that < u, é(v) >> 6 for every ¢ € B(0f(a),€). Results
follows from the fact that df (x) ¢ B(df (a),¢) for all x € B(a, ).

3.4 Lemma

If df (a) is surjective, df is a bounded and semicontinuous set—valued
mapping, then for every x,y € B(a, ) we have

If &) =f I > dllx = yll.



AN EXTENSION OF THE INVERSE FUNCTION THEOREM 585

Proof. If x = y it’s evident. Suppose that x £ y. We will show it only for
x,y € B(a,a) (f and | | are continuous). Let v = (y — x)/|ly — x|| € R” and
B =y — x|, then y = x 4 Bv. Since x,y € B(a, o), [x,y] C B(a, o). From
generalized mean value theorem we have that there exists ¢ € df ([x,y])
such that f(x + pv) — f(x) = E(Bv).

From 3.3 it follows that there exists a unit vector # € RF and a real
number § > 0 such that < u,&(v) > 2> 6, then

<u,f(x+pv)—f(x) >=<u,éBv)>=B <u,é(v)>> B

we deduce that |f (x +Bv) —f(x)| > Bd and consequently |/ (¥) —f (x)| >
ollx —yl.
Next theorem is a extension of Banach’s interior mapping theorem.

3.5 Theorem

If 0f (a) is surjective and Jf is a bounded and semicontinuous set—valued
mapping, then f(a) € Intf (V).
Proof. We will show that B (f (a), x6/2) C f(B(a, ®)), where o, é are values
of lemmas 3.1 and 3.2. Let for each y € B(f(a),®d/2) fixed the function
h from U into R defined by A(z) = ||y — f(x)||%. & attains it minimum in
the compact set B(a, &) at some point x € B(a, o). We claim x belongs to
B(a,a) and y = f(x). If x € Fr[B(a, )] then | x — a|| = o and from lemma
3.4 we have

20/2> ly=f @I 2 If ) -f @I = lly—f @I > élx—al—ly-f)I >

2 oo — |y —f(a)| > 6o — doc/2 = doe/2
which is a contradiction, then x € B(a, o).

Because x is a minimum of 2 we have 0 € 0Ah(x) (th. 2.11) and con-

sequently 0 € d(ly — f(x)|?) and 0 € af(x) l2(y —f(x))]. From 3.3
df (x) is surjective for each x € B(a,o) and we deduce that y = f(x),
then B (f(a),xd/2) C f [B(a,o)] and f (a) € Intf (U).

3.6 Theorem

Let f : U ¢ R” — R” be G—differentiable on U. If df is a bounded
semicontinuous set—valued mapping and 9f (a) is surjective then there exists
a neighborhood V, a € V C U and a function g defined from W = f(V)
into V such that

) go(fly) =1, and (1, )og = .

ii) g is G—differentiable at yo = f (a).
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Proof. From 3.2 we deduce that df (x) is surjective for every x € B(a, ).
Suppose that V' = B(a,a) C U; from 3.5 we have that W = f(V) is an
open set. Let x1,x, € V there exists ¢ € df ([x1, x2]) (Prop. 2.17) such that
f(x2) = f(x1) = E(x2 — x1).

Since ¢ € L(R”,R") is surjective it’s a biyection and consequently
Ker f = {0} and f is injective. Let g be defined as follows. For each y € W
g(y) is the point x € V such that f(x) = y. It’s clear that g verifies (i).

We will show that g is lipschitzian on f (V') and consequently G—diffe-
rentiable. From 3.4 we have

If Ger) = f (x|l 2 dllx1 — x2ll,  for every x1,x2 € B(a, o)

making y; =f(x1), y2 =f(x2) and x; = g(y1), x2 = g(y2) we deduce that

1
lg(r1) — g0l < 5[|y1 —y2l, forevery yi,y2€ W.

This theorem reduces to the classical one if f is a C! function. A simple
example to wich this theorem applies is the following. Classic result is not
valid because f is not differentiable at (0,0).

3.7 Example

Let f be the function from R? into R? defined by
fCey) =(xl +2y, x +1yD).

0uf10,0) =| =Ivil +2v2, vl +2v2 5 u/2(0,0) = vi = [val. w1 + Iva|

where v = (v, v2) € R2.

6f(0,0)={(‘11 i);——1<a<1, _1<b<1}

It can be easily proved that df (0,0) is surjective, df is a bounded and
semicontinuous set-valued mapping, then from 3.6 there exists local inverse
function of f.

Next theorem gives a extension of the implicit function theorem. We will
denote points of R” x R* by (x, y) where x € R” and y € RX. If U is an open
set in R” x RF and f : U — R, 0,/ (x, y) will mean the G-differential of
f(x,.): Rk — R* for each (x,y) € U.

3.8 Theorem

Let f : U c R" x R*x — Rk, (a,b) € U. If f(a,b) = 0, f is
G-differentiable on U, df is bounded and semicontinuous at each point
of U and 0,f (a, b) is surjective, then there exists an open set V C R” with
a €V and a function g : ¥ — R¥ such that
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1) g is Gdifferentiable in V.
il) g(a) =b
ii1) (x,g(x)) € U and f(x,g(x)) =0 for every x € V.

Proof. Let 4 : U — R” x R¥ be defined by A(x,y) =(m(x,), ha(x,y)),
where A1(x,y) = x and Ax(x,y) = f(x,y). It’s clear that

110 )
df (a,b)

where I denotes the unit matrix of M,,,, and 0 denotes the zero matrix
of M. We will show that dk(a,b) is surjective. Let (p,q) € R” x RF,
(. 9) = (0,0) iff 0h(a,b)(p,q) = 0. If (p,q) = (0,0) is inmediate. Suppose
that 0h(a, b)(p,q) = 0. From the linear system

(7@n) (5)20

it follows that p = 0 € R* and results a homogeneous system with k equa-
tions and k variables 021 (a, b) ¢ = 0, but because d»f (a, b) is surjective each
element of d,f (a,b) have rank k and consequently ¢ = 0 and 0dh(a,b) is
surjective.

Now, because 4 is a C! function on U and 04, is semicontinuous on U
we have that 04 is semicontinuous on U. From theorem 3.6 there exists an
open set U; ¢ U with (a,b) € U; and a inverse function

¢ = (91, 92) : h(Uy) — U.

Let ¥ C R” be the open set defined by V = {x € R”;(x,0) € h(U;)}.
Since f'(a,b) = 0 we have A(a,b) = (a,0) and a € V. Let

g:V cR" —RF

dh(a,b) = (

define by g(x) = ¢2(x,0). It’s clear that g is G—differentiable on V and

g(a) = ¢2(a,0) = @2lh(a,b)] =b
Moroever (x,g(x)) = (x, p2(x,0)) € U for every x € V. Finally ifxeV
then
01(x,0) = @1 [A(x',y)] for some (x',y") € U;
but by definition of A, x’ = x, then ¢;(x,0) = ¢ [x,f (x,y’)] = x because
o[x,f(x,y)] = (x,y"). For all x € V we have that
(x,0) = hly,0 9(x,0) = hly, [ @1(x,0), 92(x, 0)| =

= hly,(x.8(x)) = (x.f (x.8()) )
and we deduce that f(x, g(x)) =0 for every x € V.
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