An extension of the inverse
 function theorem

By V. Novo and L. Rodriguez Marin*

Recibido: 14 de Noviembre de 1990
Presentado por el Académico D. Pedro Jiménez Guerra.

Abstract

The purpose of this work is to give conditions under wich a G-differentiable function admits locally a G-differentiable inverse. The classical result that gives conditions under which a C^{r} function admits locally a C^{r} inverse is a special case of this theorem.

El propósito de este trabajo es dar condiciones suficientes para que una función G-diferenciable admita (localmente) una inversa G-diferenciable. El resultado clásico que da condiciones suficientes para que una función de clase C^{r} admita (localmente) inversa de clase C^{r} es un caso especial de este teorema.

Clasificación A.M.S. :.26A24

1. Introduction and notations

There have been a number of approaches recently toward developing a set-valued derivative of convex or Lipschitz functions which generalize the usual notion of derivative in such a way that the theorems of differential calculus also extend. The present interest in problems related to the optimization of non-smooth functions brought about the development of this news generalized differentiation theories.

With this aim T. Rockafellar [11] studied real convex functions on \mathbb{R}^{n} introducing the subdifferential. In the same way F.H. Clarke [3] broaden the kind of functions considered by Rockafellar extending the theory to real locally lipschitz functions on \mathbb{R}^{n} by defining the generalized gradient. Clarke latter included in his theory both functions from \mathbb{R}^{n} into \mathbb{R}^{m} [4] and real functionals on Banach spaces [5]. Futher development of this theories can be find in a number of references such as [1], [2], [5], [6] or [10].

In different previous works ([8],[9]) we extended the class of functions used by Clarke defining a new generalized derivative called G-derivative. This work aims to give conditions under which a G-differentiable function admits locally a G-differentiable inverse in such a way that the classical inverse function theorem is a special case.

Some previous results of [8] and [9] are given. f is a real-valued function on some interval $I \subset \mathbb{R} ; a, x, x_{n} \in I$ and $\left(x_{n}\right) \longrightarrow a . F(a, x)$ and $l\left(f, a, x_{n}\right)$ will mean

$$
F(a, x)=[f(x)-f(a)] /(x-a) ; l\left(f, a, x_{n}\right)=\lim _{n \rightarrow \infty} F\left(a, x_{n}\right) .
$$

[^0]$\left(x_{n}\right) \longrightarrow a$ is said to be a G-derivability sequence of f at a if there exist $l\left(f, a, x_{n}\right) . S(f, a)$ will denote the G-derivability sequences set of f at a. The G-derivative of f at a is the set
$$
\partial f(a)=\operatorname{co}\left\{l\left(f, a, x_{n}\right) ;\left(x_{n}\right) \in S(f, a)\right\}
$$

If $f \in C_{S}(I)$ (def. 2.1) $\partial f(a)$ is a non-empty convex compact set. Derivation and chain rules extend at this context, condition necessary of local extremum is now $0 \in \partial f(a)$ and we have next generalized mean value theorem. If $f \in C_{S}[a, b]$, then there exists $c \in(a, b)$ and $A \in \partial f(c)$ such that $f(b)-f(a)=A(b-a)$.

In the following U is an open set of $\mathbb{R}^{n},\|x\|$ denotes the usual Euclidean norm and $\|\xi\|$ the supremum norm in $L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ wich is the usual topological dual of \mathbb{R}^{n}. We topologize the vector space $M_{m \times n}$ of $m \times n$ matrices with the norm $\|M\|=\max \left|m_{i j}\right|$ where $M=\left(m_{i j}\right)$ and $1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$. $<, .>$ is the duality pairing between $L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and $\mathbb{R}^{n}, \operatorname{co}(A)$ is the subset A convex hull and $F\left(a, v, t_{n}\right)$ and $l\left(f, a, v, t_{n}\right)$ will mean

$$
F\left(a, v, t_{n}\right)=\frac{1}{t_{n}}\left[f\left(a+t_{n} v\right)-f(a) \mid ; l\left(f, a, v, t_{n}\right)=\lim _{n \rightarrow \infty} F\left(a, v, t_{n}\right)\right.
$$

where $f: U \longrightarrow \mathbb{R} ; a \in U, v \in \mathbb{R}^{n}, v \neq 0$ and $\left\{t_{n}\right\} \longrightarrow 0$ when $n \rightarrow \infty$ is a real number sequence.

2. G-differential. Basic properties

Let E and F be normed linear spaces, U be and open set in E and $f: U \longrightarrow F$ be a given mapping.

2.1 Definition

We will call f "strong-continuous" $(s-c)$ at $a \in U$ if there exists a neighborhood V of a and a constant $k>0$ such that

$$
\|f(x)-f(a)\| \leqslant k\|x-a\|, \quad \text { for every } \quad x \in V
$$

f is $s-c$ in U if it is $s-c$ at each point of U, we will denote $f \in C_{S}(U ; F)$.
Next relation is inmediate: $L L(U, F) \subset C_{S}(U, F) \subset C(U, F)$, where $L L$ denotes locally lipschitz functions and C denotes continuous functions. It is a easy consequence of 2.1 that $f+g$ and λf are $s-c$ functions at a if $f, g \in C_{S}(a)$ and $\lambda \in \mathbb{R} . C_{S}(U, F)$ is a real linear space and the composition of $s-c$ functions is a $s-c$ function.

Let $f: U \longrightarrow \mathbb{R}$ be a continuous function. The function $t \rightarrow a+t v$ from \mathbb{R} into \mathbb{R}^{n} is continuous for each $v \in \mathbb{R}^{n}$ fixed and consequently $D=\{t \in \mathbb{R} ; a+t v \in U\}$ is an open set such that $0 \in D$. Next proposition is inmediate from 2.1.

2.2 Proposition

If f is a $s-c$ function at a, then for each $v \in \mathbb{R}^{n}, v \neq 0, g_{v}(t)=f(a+t v)$ is a $s-c$ function at $t=0$.

2.3 Definition

The directional G-derivative of f at a with respect to a vector $v \in \mathbb{R}^{n}$, $v \neq 0$ or G_{v}-derivative of f at a denoted by $\partial_{v} f(a)$ is defined to be the set

$$
\partial_{v} f(a)=\operatorname{co}\left\{\lim _{n \rightarrow \infty} F\left(a, v, t_{n}\right) ;\left\{t_{n}\right\} \in S\left(g_{v}, 0\right)\right\} ; \partial_{0}(a)=\{0\}
$$

where $S\left(g_{v}, 0\right)$ denotes the G-derivability sequences set of g_{v} at 0 . Note that $\partial_{v} f(a)$ is the G-derivative of g_{v} at $t=0$.

2.4 Theorem

If f is a $s-c$ function at $a \in U$ then for each $v \in \mathbb{R}^{n}$
i) $\partial_{v} f(a)$ is a non-empty convex compact subset in \mathbb{R}.
ii) There exists $k>0$ such that $\partial_{v} f(a) \subset[-k\|v\|, k\|v\|]$.

Proof. (i) From the fact that f is $s-c$ at a it follows that g_{v} is $s-c$ at $t=0$, and consequently $\partial_{v} f(a)=\partial g_{v}(0)$ is a non-empty convex compact subset in \mathbb{R}.
(ii) Because f es a $s-c$ function at a, there exists $k>0$ and V such that

$$
|f(x)-f(a)| \leqslant k\|x-a\| ; \quad \text { for every } \quad x \in V
$$

For $v \in \mathbb{R}^{n}$ and $\left\{t_{n}\right\} \in S\left(g_{v}, 0\right)$ fixed, there exists $n_{0} \in \mathbb{N}$ such that $a+t_{n} v \in V$ for all $n>n_{0}$, then $\left|f\left(a+t_{n} v\right)-f(a)\right| \leqslant k\left|t_{n}\right|\|v\|$ and we have that $\left|F\left(a, v, t_{n}\right)\right| \leqslant k\|v\|$ and for each $\left\{t_{n}\right\} \in S\left(g_{v}, 0\right)$

$$
-k\|v\| \leqslant \lim _{n \rightarrow \infty} F\left(a, v, t_{n}\right) \leqslant k\|v\|
$$

Finally from the fact that $\partial_{v} f(a)$ is a convex set we deduce that

$$
\partial_{v} f(a) \subset|-k\|v\|, k\|v\|| .
$$

2.5 Proposition

If f is $s-c$ at $a \in U$, then the set-valued mapping from \mathbb{R}^{n} into \mathbb{R} defined by $T(v)=\partial_{v} f(a)$ is a bounded odd prefan in the Ioffe's terminology [7]. Proof. We will show that T is a prefan. If $v=0$, then $T(0)=\{0\}$. Let $l\left(f, a, \lambda v, t_{n}\right) \in T(\lambda v)$ where $\lambda \in \mathbb{R}^{+}$. Because

$$
l\left(f, a, \lambda v, t_{n}\right)=\lim _{n \rightarrow \infty} F\left(a, \lambda v, t_{n}\right)=\lambda \lim _{n \rightarrow \infty} F\left(a, v, t_{n}\right)
$$

we have that $T(\lambda v) \subset \lambda T(v)$. Moroever let $l\left(f, a, v, t_{n}\right) \in T(v)$ and $\left\{t_{n}^{\prime}\right\}=\left\{t_{\boldsymbol{n}} / \lambda\right\}$, we have

$$
\lambda \lim _{n \rightarrow \infty} F\left(a, v, t_{n}\right)=\lambda \lim _{n \rightarrow \infty} F\left(a, v, \lambda t_{n}^{\prime}\right)=\lambda \lim _{n \rightarrow \infty} F\left(a, v, \lambda t_{n}^{\prime}\right) \in T(\lambda v)
$$

hence $\lambda T(v)=T(\lambda v)$ for every $\lambda>0$.
From 2.4.(i) we have that $T(v)$ is a convex compact subset for each $v \in \mathbb{R}^{n}$ and because $T(-v)=-T(v)$ we have that T is a odd prefan. Finally T is bounded because $T(v) \neq \varnothing$ for each $v \in \mathbb{R}^{n}$ and from 2.4.(ii) $T(v) \subset|-k\|v\|, k\|v\||$.
T is not a fan. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)=x|y| / \sqrt{x^{2}+y^{2}} \quad \text { if } \quad(x, y) \neq(0,0) ; f(0,0)=0 .
$$

It can be easily proved that for $a=(0,0) T$ is not a fan because $T(u+v) \not \subset T(u)+T(v)$.

2.6 Definition

f is G-differentiable at $a \in U$ if for each $v \in \mathbb{R}^{n}$ and each $l \in \partial_{v} f(a)$ there exists a linear selection $\xi \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ of the prefan T such that $\xi(v)=l$. The set of this selections is called the G-differential of f at a and is denoted by $\partial f(a)$.

It follows inmediatly from this definition that $\partial f(a)(v)=\partial_{v} f(a)$ for each $v \in \mathbb{R}^{n}$.

2.7 Proposition

If f is G-differentiable at $a \in U$ then $\partial f(a)$ is a compact convex set in $L\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
Proof. Let $\xi, \eta \in \partial f(a)$ and $\alpha, \beta \geqslant 0$ such that $\alpha+\beta=1$. For each $v \in \mathbb{R}^{n} \xi(v) \in T(v)$ and $\eta(v) \in T(v)$ and because $T(v)$ is a convex set we have $\alpha \xi+\beta \eta \in \partial f(a)$ and $\partial f(a)$ is a convex set in $L\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Let $\xi \in \partial f(a)$, from 2.4.(ii) we deduce that

$$
\|\xi\|=\sup _{\|v\|=1}|\xi(v)| \leqslant \sup _{\|v\|=1}|T(v)| \leqslant k
$$

and consequently $\partial f(a)$ is a bounded set. Moroever $\partial f(a)$ is closed because $T(v)$ is a closed set in \mathbb{R} for each v and

$$
\left.\partial f(a)=\bigcap_{v \in \mathbb{R}^{n}}<., v\right\rangle^{-1} T(v) .
$$

For real functions on \mathbb{R}, strong-continuity is equivalent to G-derivability. In this case strong-continuity is not a sufficient condition to G-differentiability. Next theorem gives a necessary and sufficient condition to G-differentiability. Proof of Lemma 2.8 is a inmediate consequence from 2.5.

2.8 Lemma

If f is $s-c$ at a, the following are equivalent:
i) $\langle\xi, v\rangle \in T(v)$ for every $v \in \mathbb{R}^{n}$.
ii) $\langle\xi, v\rangle \leqslant \sup T(v)$ for every $v \in \mathbb{R}^{n}$.

2.9 Theorem

Let f be $s-c$ at a, then the following propositions are equivalent:
i) T is a set-valued fan.
ii) f is G-differentiable at a.

Proof. (i) \Rightarrow (ii) Let p from \mathbb{R}^{n} into \mathbb{R} defined by $p(v)=\sup T(v)$. We will prove that p is positively homogeneous and subadditive. If $\lambda>0$ then

$$
p(\lambda v)=\sup T(\lambda v)=\sup \lambda T(v)=\lambda \sup T(v)=\lambda p(v) .
$$

From the fact that T is a fan we have $T(u+v) \subset T(u)+T(v)$ for all $u, v \in \mathbb{R}^{n}$ and

$$
p(u+v)=\sup T(u+v) \leqslant \sup T(u)+\sup T(v)=p(u)+p(v) .
$$

Suppose now that $u \in \mathbb{R}^{n}$ and $l \in T(u)$, then there exists $\xi \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that $\xi(u)=l$. Because T is a odd fan it is homogeneous and consequently for each $\lambda \in \mathbb{R}$ and $v=\lambda u$ we have $\lambda<\xi, u>\in \lambda T(u)=T(\lambda u)$, $\langle\xi, v>\in T(v)$ and $\langle\xi, v>\leqslant p(v)$ for all $v \in S$, where S is the linear subspace $S=\left\{v \in \mathbb{R}^{n} ; v=\lambda u, \lambda \in \mathbb{R}\right\}$. It follows from Hahn-Banach theorem that there exists at least a linear function $\eta \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ satisfying:

$$
\eta(v)=\xi(v) \text { for every } v \in S \text { and } \eta(v) \leqslant p(v) \text { for every } v \in \mathbb{R}^{n}
$$

from 2.8 we deduce that f is G-differentiable at a.
(ii) \Rightarrow (i) If f is G-differentiable at a, then for every $v \in E$ we have $\partial f(a)(v)=\partial_{v} f(a)$. Suppose that $l \in T(u+v)$, then there is $\xi \in \partial f(a)$ such that $\langle\xi, u+v\rangle=l$, hence

$$
l=\langle\xi, u+v>=\langle\xi, u\rangle+\langle\xi, v>\in T(u)+T(v)
$$

and T is a set-valued fan.
As a consequence we have that if $f \in L L(U, \mathbb{R})$ then f is G-differentiable at each point of U. Now we will prove validity of the generalized mean value theorem in this case.

2.10 Theorem

If f is G-differentiable at U and $[a, a+t h] \subset U$ for all $t \in[0,1]$ and $h \in \mathbb{R}^{n}$, then there exists $\theta \in(0,1)$ and $\xi \in \partial f(a+\theta h)$ such that

$$
f(a+h)-f(a)=\xi(h) .
$$

Proof. Suppose that we have $\varphi:[0,1] \longrightarrow U$ defined by $\varphi(t)=a+t h$. φ is differentiable at $(0,1)$ and $\varphi^{\prime}(t)=h$. Let $f:[0,1] \longrightarrow \mathbb{R}$ defined by $g(t)=(f \circ \varphi)(t)$. Strong-continuity of f and φ implies strong-continuity of g at $[0,1]$. By mean value theorem (section 1) there exists $\theta \in(0,1)$ and $c \in \partial g(\theta)$ such that $g(1)-g(0)=c$. We now show that

$$
\partial g(\theta) \subset \partial f(a+\theta h) \circ \varphi^{\prime}(\theta)
$$

Let $l \in \partial g(\theta)$ and $\left\{t_{n}\right\} \in S(g, \theta)$ such that

$$
l=\lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left[g\left(\theta+t_{n}\right)-g(\theta) \left\lvert\,=\lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left[f\left[\varphi\left(\theta+t_{n}\right)\right]-f[\varphi(\theta)]\right] .\right.\right.
$$

From the fact that for each $n \in \mathbb{N}, \varphi\left(\theta+t_{n}\right)=\varphi(\theta)+t_{n} \varphi^{\prime}(\theta)$, we have

$$
l=\lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left[f\left[\varphi(\theta)+t_{n} \varphi^{\prime}(\theta)\right]-f[\varphi(\theta)]\right]
$$

it follows that $l \in \partial_{\varphi^{\prime}(\theta)} f[\varphi(\theta)]=\partial f(a+\theta h) \circ \varphi^{\prime}(\theta)$ and consequently $\partial g(\theta) \subset \partial f(a+h) \circ \varphi^{\prime}(\theta)$. Because $g(1)=f(a+h), g(0)=f(a)$ and $c \in \partial g(\theta)$ there exists $\xi \in \partial f(a+\theta h)$ such that $\xi(h)=c$ and we deduce that

$$
f(a+h)-f(a)=\xi(h) .
$$

Next theorem gives a necessary condition for local extremum of G -differentiable functions.

2.11 Theorem

If f is a G-differentiable function from U into \mathbb{R} and f attains a local extremum at $a \in U$ then $0 \in \partial f(a)$.
Proof. Since f attains a local extremum at a, then for each $v \in \mathbb{R}^{n}, g_{v}$ attains a local extremum at 0 , hence $0 \in \partial g_{v}(0)=\partial_{v} f(a)$. It's clear that $\langle 0, v\rangle=0 \in \partial_{v} f(a)$ for each $v \in \mathbb{R}^{n}$ and consequently $0 \in \partial f(a)$.

Definition of G-differential extend easily to functions from \mathbb{R}^{n} into \mathbb{R}^{m}. We will suppose that $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is defined by $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$, where $f_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ for each $i=1,2, \ldots, m$. It is easily proved that strong-continuity of f at a is equivalent to strong-continuity of each f_{i} at $a, i=1,2, \ldots, m$.

2.12 Definition

The G-derivative of f at a with respect to $v \in \mathbb{R}^{n}$, denoted by $\partial_{v} f(a)$ is the set $\left(\partial_{v} f_{1}(a), \partial_{v} f_{2}(a), \ldots, \partial_{v} f_{m}(a)\right)$.

From this definition and theorem 2.4 , we have inmediatly that if f is $s-c$ at a then for each $v \in \mathbb{R}^{n}, \partial_{v} f(a)$ is a non-empty convex compact set and

$$
\partial_{v} f(a) \subset \prod_{i=1}^{m}[-k\|v\|, k\|v\|]
$$

2.13 Definition

f is said to be a G-differentiable function at a if for each $v \in \mathbb{R}^{n}$ and each $l \in \partial_{v} f(x)$ there exists a linear selection $\xi \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of the set-valued function $T: v \longrightarrow \partial_{v} f(a)$ such that $\xi(v)=l$. The set of this selections is called the G-differential of f at a and is denoted by $\partial f(a)$.

It can be proved that if f is G-differentiable at a, then $\partial f(a)$ is a convex compact set in $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, also that G-differentiability of f at a is equivalent to G-differentiability of each f_{i} at a and

$$
\partial f(a)=\prod_{i=1}^{m} \partial f_{i}(a)
$$

From G-derivability properties it follows that $f+g$ and λf are G-differentiable functions if f and g are and $\lambda \in \mathbb{R}$. Moroever $\partial(\lambda f)(a)=\lambda \partial f(a)$ and $\partial(f+g)(a) \subset \partial f(a)+\partial g(a)$. However there exists G-differentiable functions f and g such that $g \circ f$ is not G-differentiable. Next theorem provide a chain rule in a special case.

2.14 Theorem

Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ be open sets, $f: U \longrightarrow V$ be a G-differentiable function on $U, g: V \longrightarrow \mathbb{R}$ be a C^{1} function and $h=g \circ f$. For each $v \in \mathbb{R}^{n}$ and each $x \in U$ we have
i) There exists $\partial_{v} h(x) \subset<D g[f(x)], \partial_{v} f(x)>$.
ii) h is G-differentiable at x and $\partial h(x)=D g[f(x)] o \partial f(x)$.

Proof. (i) Let $\left\{t_{n}\right\} \in S(f, x, v)$ and suppose that $\left[f(x), f\left(x+t_{n} v\right)\right] \subset V$ for each $n \in \mathbb{N}$. Because $g \in C^{1}(V)$, from mean value theorem for each $n \in \mathbb{N}$ we have that there exists $c_{n} \in\left[f(x), f\left(x+t_{n} v\right)\right]$ such that

$$
g\left[f\left(x+t_{n} v\right)\right]-g[f(x)]=<D g\left(c_{n}\right),\left[f\left(x+t_{n} v\right)-f(x)\right]>
$$

If $\left\{t_{n}\right\} \longrightarrow 0$, then $\left\{c_{n}\right\} \longrightarrow f(x)$ and because $g \in C^{1}(V)$ we have $\lim _{n \rightarrow \infty} D g\left(c_{n}\right)=D g[f(x)]$ and
$\lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left[(g \circ f)\left(x+t_{n} v\right)-(g \circ f)(x)\right]=<D g[f(x)], \lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left[f\left(x+t_{n} v\right)-f(x)\right]>$
and consequently $\partial_{\nu} h(x) \subset<D g[f(x)], \partial_{v} f(x)>$.
(ii) Let $v \in \mathbb{R}^{n}$ and $l \in \partial_{v} h(x)$. From (i) we have that there exists $l^{\prime} \in \partial_{v} f(x)$ such that $l=<D g[f(x)], l^{\prime}>$ and because f is G-differentiable at x, there is a linear selection ξ of the set-valued function T such that $\xi(v)=l^{\prime}$. It follows that $l=<D g[f(x)], \xi(v)>$ and $\eta=D g[f(x)] \circ \xi \in L\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is a linear selection of $v \longrightarrow \partial_{v} h(x), h$ is a G-differentiable function at x and $\partial h(x) \subset D g[f(x)] \circ \partial f(x)$. From (i) the other inclusion is inmediate.

It can be easily proved next extension of this theorem. If $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ are open sets, $f: U \longrightarrow V$ is G-differentiable on $U, g: v \longrightarrow \mathbb{R}^{p}$ is a C^{1} function on V and $h=g \circ f$, then h is G-differentiable in U and $\partial h(x)=D g[f(x)] \circ \partial f(x)$.

Definition of G-differential can be extended to a compact subset $K \subset U$. From this extension we have the next generalized mean value theorem.

2.15 Definition

f is said to be G-differentiable on K if it is G-differentiable at each point of K. The G-differential of f at K is the set

$$
\partial f(K)=\overline{c o} \bigcup_{x \in K} \partial f(x)
$$

2.16 Proposition

If f is a continuous mapping from $[a, b]$ into \mathbb{R}^{k} and G-differentiable on $(c, d) \subset[a, b]$, then

$$
f(d)-f(c) \in(d-c) \overline{c o} \underset{t \in[0,1]}{\cup} \partial f[c+t(d-c)]
$$

Proof. Suppose that $F \in L\left(\mathbb{R}^{k}, \mathbb{R}\right)$. Let $F \circ f$ from $[a, b]$ into $\mathbb{R} . F \circ f$ is continuous in $[a, b]$ and from $2.14 F \circ f$ is G-derivable in (c, d). From generalized mean value theorem, we have that there exists $\theta_{F}, 0<\theta_{F}<1$ such that

$$
(F \circ f)(d)-(F \circ f)(c)=(F \circ \xi)(d-c)
$$

where $\xi \in \partial f\left(c+\theta_{F}(d-c)\right)$. Then for all $F \in L\left(\mathbb{R}^{k}, \mathbb{R}\right)$ it follows that

$$
F[f(d)-f(c)] \in F\left[\bigcup_{t \in[0,1]} \partial f(c+t(d-c))(d-c)\right]
$$

and from Hahn-Banach theorem we deduce that

$$
f(d)-f(c) \in(d-c) \overline{c o} \cup_{t \in[0,1]} \partial f(c+t(d-c))
$$

2.17 Proposition

Let U be an open subset in $\mathbb{R}^{n}, a \in U, h \in \mathbb{R}^{n}$ with $[a, a+h] \subset U$. If $f: U \longrightarrow \mathbb{R}^{k}$ is a G -differentiable function on $\{x \in V ; x=a+t h, t \in[0,1]\}$, then

$$
f(a+h)-f(a) \in \overline{c o} \underset{t \in[0,1]}{\bigcup} \partial f(a+t h)(h)
$$

Proof. It's a easy consequence of 2.17 using $g:[0,1] \longrightarrow \mathbb{R}^{k}$ defined by $g(t)=f(a+t h)$.

3. Inverse function theorem

In this section we will assume that f is a G-differentiable function from the open set $U \subset \mathbb{R}^{n}$ into $\mathbb{R}^{k}(n \geqslant k)$. Let us call a subset $A \subset L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$ surjective if each $\xi \in A$ is surjective. The set valued mapping M from U into $P_{C}\left[L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)\right]$ (space of compacts with the Hausdorff's metric) is said to be semicontinuous at $a \in U$ if for every sequence $\left\{x_{i}\right\} \longrightarrow a, x_{i} \in U$, and all sequence $\left\{\xi_{i}\right\} \longrightarrow \xi$ with $\xi_{i} \in \partial f\left(x_{i}\right)$ for each i, we have $\xi \in \partial f(a)$. We will call ∂f is bounded if it transforms bounded sets of U into bounded sets of $L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$.

3.1 Lemma

If the set-valued mapping ∂f is bounded and semicontinuous at $a \in U$, then for each $\varepsilon>0$, there is $\alpha>0$ such that

$$
\partial f(x) \subset B(\partial f(a), \varepsilon) \text { for every } \quad x \in B(a, \alpha)
$$

where $B(\partial f(x), \varepsilon)=\underset{\xi \in \partial f(x)}{\cup} B(\xi, \varepsilon)$.
Proof. Suppose that there exists $\varepsilon>0$ such that for all $\delta>0$ there is $x \in B(a, \delta)$ with $\partial f(x) \not \subset B(\partial f(a), \varepsilon)$. Let $\delta=1 / n, n \in \mathbb{N}$ for each n there is $x_{n} \in B(a, 1 / n)$ such that $\partial f\left(x_{n}\right) \not \subset B(\partial f(a), \varepsilon)$. It's clear that $\left\{x_{n}\right\} \longrightarrow a$ when $n \longrightarrow \infty$. Let $\left\{\xi_{n}\right\}$ be a sequence with $\xi_{n} \in \partial f\left(x_{n}\right)$ and $\xi_{n} \notin B(\partial f(a), \varepsilon)$ for each $n \notin \mathbb{N}$. Because ∂f is bounded, we have that $\partial f\left(\left\{x_{n}\right\}\right)$ is a bounded set in $L\left(\mathbb{R}^{n}, \mathbb{R}^{k}\right)$, then $\overline{\partial f\left(\left\{x_{n}\right\}\right)}$ is a compact set and consequently there exists a subsequence $\left\{\xi_{k}\right\} \subset\left\{\xi_{n}\right\} \subset \overline{\partial f\left(\left\{x_{n}\right\}\right)}$ such that $\left\{\xi_{k}\right\} \longrightarrow \xi_{0}$ when $n \longrightarrow \infty$.

We now show that $\xi_{0} \in \partial f(a)$. Because $\xi_{k} \notin B(\partial f(a), \varepsilon)$ we have $\left\|\xi_{k}-\xi\right\| \geqslant \varepsilon$ for every $\xi \in \partial f(a)$ and because $\left\{\xi_{k}\right\} \longrightarrow \xi_{0}$ there is $n_{0} \in \mathbb{N}$ such that $\left\|\xi_{k}-\xi_{0}\right\|<\varepsilon / 2$ for all $k>n_{0}$, then

$$
\left\|\xi_{0}-\xi\right\| \geqslant\left\|\xi_{k}-\xi\right\|-\left\|\xi_{k}-\xi_{0}\right\|>\varepsilon / 2,
$$

for every $\xi \in \partial f(a)$ and $\xi_{0} \notin B(\partial f(a), \varepsilon / 2)$ contradicting the semicontinuity of ∂f at a.

3.2 Lemma

If $\partial f(a)$ is surjective, then
i) There is $\delta>0$ such that $d[\partial f(a)(S), 0] \geqslant 2 \delta$.
ii) There is $\varepsilon>0$ such that $d[B(\partial f(a), \varepsilon)(S), 0] \geqslant \delta$
where $S=\left\{x \in \mathbb{R}^{n} ;\|x\|=1\right\}$.
Proof. (i) Because $\partial f(a)$ is surjective, $0 \notin \partial f(a)$ and from the fact that $\partial f(a)(S) \subset \mathbb{R}^{k}$ is a compact set there is $\delta>0$ such that $d[\partial f(a)(S), 0] \geqslant 2 \delta$. (ii) Suppose that for each $n \in \mathbb{N}$ there exists $\xi_{n} \in B(\partial f(a), 1 / n)$ such that $d\left[\xi_{n}(S), 0\right]<\delta$. Let $\eta_{n} \in \partial f(a)$ with $\xi_{n} \in B\left(\eta_{n}, 1 / n\right)$ for each $n \in \mathbb{N}$. Since $\left\{\eta_{n}\right\} \subset \partial f(a)$ there exists a subsequence $\left\{\eta_{k}\right\} \longrightarrow \eta_{0} \in \partial f(a)$, then the subsequence $\left\{\xi_{k}\right\} \subset\left\{\xi_{n}\right\}$ also is convergent to η_{0}. Let $\delta / 2>0$, there is $k_{0} \in \mathbb{N}$ with $d\left[\xi_{0}(S), \eta_{0}(S)\right\}<\delta / 2$. From (i) it follows that $d\left[\eta_{0}(S), 0\right] \geqslant 2 \delta$ and we have that

$$
2 \delta \leqslant d\left[\eta_{0}(S), 0\right] \leqslant d\left[\eta_{0}(S), \xi_{k_{0}}(S)\right]+d\left[\xi_{k_{0}}(S), 0\right]<3 \delta / 2
$$

wich is a contradiction.

3.3 Lemma

If $\partial f(a)$ is surjective, ∂f is a bounded set-valued mapping semicontinuous at a, then given any unit vector $v \in \mathbb{R}^{n}$ there are real numbers $\alpha>0$ and $\delta>0$ and a unit vector $u \in \mathbb{R}^{k}$ such that whenever $x \in B(a, \alpha)$ and $\xi \in \partial f(x),<u, \xi(v)>\geqslant \delta$. In consequence $\partial f(x)$ is surjective for each $x \in B(a, \alpha)$.
Proof. From 3.2 there are $\delta>0$ and $\varepsilon>0$ such that $d \mid B(\partial f(a), \varepsilon)(S), 0] \geqslant$ δ and from 3.1 there is $\alpha>0$ such that $\partial f(x) \subset B(\partial f(a), \varepsilon)$ for every $x \in B(a, \alpha)$. Let $v \in S$, because $B(\partial f(a), \varepsilon)$ is a convex set we have that $B(\partial f(a), \varepsilon)(v)$ is a convex set and

$$
d|B(\partial f(a), \varepsilon)(v), 0| \geqslant \delta
$$

By the usual separation theorem for convex sets (see [11]), there is a unit vector $u \in \mathbb{R}^{k}$ such that $\langle u, \xi(v)>\geqslant \delta$ for every $\xi \in B(\partial f(a), \varepsilon)$. Results follows from the fact that $\partial f(x) \subset B(\partial f(a), \varepsilon)$ for all $x \in B(a, \alpha)$.

3.4 Lemma

If $\partial f(a)$ is surjective, ∂f is a bounded and semicontinuous set-valued mapping, then for every $x, y \in \bar{B}(a, \alpha)$ we have

$$
\|f(x)-f(y)\| \geqslant \delta\|x-y\| .
$$

Proof. If $x=y$ it's evident. Suppose that $x \neq y$. We will show it only for $x, y \in B(a, \alpha)\left(f\right.$ and $\| \|$ are continuous). Let $v=(y-x) /\|y-x\| \in \mathbb{R}^{n}$ and $\beta=\|y-x\|$, then $y=x+\beta v$. Since $x, y \in B(a, \alpha),[x, y] \subset B(a, \alpha)$. From generalized mean value theorem we have that there exists $\xi \in \partial f([x, y])$ such that $f(x+\beta v)-f(x)=\xi(\beta v)$.

From 3.3 it follows that there exists a unit vector $u \in \mathbb{R}^{k}$ and a real number $\delta>0$ such that $\langle u, \xi(v)\rangle \geqslant \delta$, then

$$
<u, f(x+\beta v)-f(x)>=<u, \xi(\beta v)>=\beta<u, \xi(v)>\geqslant \beta \delta
$$

we deduce that $\|f(x+\beta v)-f(x)\| \geqslant \beta \delta$ and consequently $\|f(y)-f(x)\| \geqslant$ $\delta\|x-y\|$.

Next theorem is a extension of Banach's interior mapping theorem.

3.5 Theorem

If $\partial f(a)$ is surjective and ∂f is a bounded and semicontinuous set-valued mapping, then $f(a) \in \operatorname{Int} f(U)$.
Proof. We will show that $B(f(a), \alpha \delta / 2) \subset f(B(a, \alpha))$, where α, δ are values of lemmas 3.1 and 3.2. Let for each $y \in B(f(a), \alpha \delta / 2)$ fixed the function h from U into \mathbb{R} defined by $h(z)=\|y-f(x)\|^{2} . h$ attains it minimum in the compact set $\bar{B}(a, \alpha)$ at some point $x \in \bar{B}(a, \alpha)$. We claim x belongs to $B(a, \alpha)$ and $y=f(x)$. If $x \in \operatorname{Fr}[B(a, \alpha)]$ then $\|x-a\|=\alpha$ and from lemma 3.4 we have

$$
\begin{gathered}
\alpha \delta / 2>\|y-f(a)\| \geqslant\|f(x)-f(a)\|-\|y-f(a)\| \geqslant \delta\|x-a\|-\|y-f(x)\| \geqslant \\
\geqslant \delta \alpha-\|y-f(a)\|>\delta \alpha-\delta \alpha / 2=\delta \alpha / 2
\end{gathered}
$$

which is a contradiction, then $x \in B(a, \alpha)$.
Because x is a minimum of h we have $0 \in \partial h(x)$ (th. 2.11) and consequently $0 \in \partial\left(\|y-f(x)\|^{2}\right)$ and $0 \in \partial f(x)|2(y-f(x))|$. From 3.3 $\partial f(x)$ is surjective for each $x \in B(a, \alpha)$ and we deduce that $y=f(x)$, then $B(f(a), \alpha \delta / 2) \subset f[B(a, \alpha)]$ and $f(a) \in \operatorname{Int} f(U)$.

3.6 Theorem

Let $f: U \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be G -differentiable on U. If ∂f is a bounded semicontinuous set-valued mapping and $\partial f(a)$ is surjective then there exists a neighborhood $V, a \in V \subset U$ and a function g defined from $W=f(V)$ into V such that
i) $g \circ\left(\left.f\right|_{V}\right)=1_{v}$ and $\left(\left.f\right|_{V}\right) \circ g=1_{w}$.
ii) g is G-differentiable at $y_{0}=f(a)$.

Proof. From 3.2 we deduce that $\partial f(x)$ is surjective for every $x \in B(a, \alpha)$. Suppose that $V=B(a, \alpha) \subset U$; from 3.5 we have that $W=f(V)$ is an open set. Let $x_{1}, x_{2} \in V$ there exists $\xi \in \partial f\left(\left[x_{1}, x_{2}\right]\right)$ (Prop. 2.17) such that $f\left(x_{2}\right)-f\left(x_{1}\right)=\xi\left(x_{2}-x_{1}\right)$.

Since $\xi \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is surjective it's a biyection and consequently $\operatorname{Ker} f=\{0\}$ and f is injective. Let g be defined as follows. For each $y \in W$ $g(y)$ is the point $x \in V$ such that $f(x)=y$. It's clear that g verifies (i).

We will show that g is lipschitzian on $f(V)$ and consequently G-differentiable. From 3.4 we have

$$
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \geqslant \delta\left\|x_{1}-x_{2}\right\|, \quad \text { for every } \quad x_{1}, x_{2} \in B(a, \alpha)
$$

making $y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right)$ and $x_{1}=g\left(y_{1}\right), x_{2}=g\left(y_{2}\right)$ we deduce that

$$
\left\|g\left(y_{1}\right)-g\left(y_{2}\right)\right\| \leqslant \frac{1}{\delta}\left\|y_{1}-y_{2}\right\|, \quad \text { for every } \quad y_{1}, y_{2} \in W
$$

This theorem reduces to the classical one if f is a C^{1} function. A simple example to wich this theorem applies is the following. Classic result is not valid because f is not differentiable at $(0,0)$.

3.7 Example

Let f be the function from \mathbb{R}^{2} into \mathbb{R}^{2} defined by $f(x, y)=(|x|+2 y, x+|y|)$.

$$
\partial_{v} f_{1}(0,0)=\left[-\left|v_{1}\right|+2 v_{2},\left|v_{1}\right|+2 v_{2}\right] ; \partial_{v} f_{2}(0,0)=\left[v_{1}-\left|v_{2}\right|, v_{1}+\left|v_{2}\right| \mid\right.
$$

where $v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$.

$$
\partial f(0,0)=\left\{\left(\begin{array}{cc}
a & 2 \\
1 & b
\end{array}\right) ;-1 \leqslant a \leqslant 1,-1 \leqslant b \leqslant 1\right\}
$$

It can be easily proved that $\partial f(0,0)$ is surjective, ∂f is a bounded and semicontinuous set-valued mapping, then from 3.6 there exists local inverse function of f.

Next theorem gives a extension of the implicit function theorem. We will denote points of $\mathbb{R}^{n} \times \mathbb{R}^{k}$ by (x, y) where $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{k}$. If U is an open set in $\mathbb{R}^{n} \times \mathbb{R}^{k}$ and $f: U \longrightarrow \mathbb{R}^{k}, \partial_{2} f(x, y)$ will mean the G-differential of $f(x,):. \mathbb{R}^{k} \longrightarrow \mathbb{R}^{k}$ for each $(x, y) \in U$.

3.8 Theorem

Let $f: U \subset \mathbb{R}^{n} \times \mathbb{R}^{k} \longrightarrow \mathbb{R}^{k},(a, b) \in U$. If $f(a, b)=0, f$ is G-differentiable on $U, \partial f$ is bounded and semicontinuous at each point of U and $\partial_{2} f(a, b)$ is surjective, then there exists an open set $V \subset \mathbb{R}^{n}$ with $a \in V$ and a function $g: V \longrightarrow \mathbb{R}^{k}$ such that
i) g is G-differentiable in V.
ii) $g(a)=b$
iii) $(x, g(x)) \in U$ and $f(x, g(x))=0$ for every $x \in V$.

Proof. Let $h: U \longrightarrow \mathbb{R}^{n} \times \mathbb{R}^{k}$ be defined by $h(x, y)=\left(h_{1}(x, y), h_{2}(x, y)\right)$, where $h_{1}(x, y)=x$ and $h_{2}(x, y)=f(x, y)$. It's clear that

$$
\partial h(a, b)=\left(\frac{I \mid 0}{\partial f(a, b)}\right)
$$

where I denotes the unit matrix of $M_{n \times n}$ and 0 denotes the zero matrix of $M_{n \times k}$. We will show that $\partial h(a, b)$ is surjective. Let $(p, q) \in \mathbb{R}^{n} \times \mathbb{R}^{k}$, $(p, q)=(0,0)$ iff $\partial h(a, b)(p, q)=0$. If $(p, q)=(0,0)$ is inmediate. Suppose that $\partial h(a, b)(p, q)=0$. From the linear system

$$
\left(\frac{I \mid 0}{\partial f(a, b)}\right)\binom{p}{q}=0
$$

it follows that $p=0 \in \mathbb{R}^{k}$ and results a homogeneous system with k equations and k variables $\partial_{2} f(a, b) q=0$, but because $\partial_{2} f(a, b)$ is surjective each element of $\partial_{2} f(a, b)$ have rank k and consequently $q=0$ and $\partial h(a, b)$ is surjective.

Now, because h_{1} is a C^{1} function on U and ∂h_{2} is semicontinuous on U we have that ∂h is semicontinuous on U. From theorem 3.6 there exists an open set $U_{1} \subset U$ with $(a, b) \in U_{1}$ and a inverse function

$$
\varphi=\left(\varphi_{1}, \varphi_{2}\right): h\left(U_{1}\right) \longrightarrow U_{1} .
$$

Let $V \subset \mathbb{R}^{n}$ be the open set defined by $V=\left\{x \in \mathbb{R}^{n} ;(x, 0) \in h\left(U_{1}\right)\right\}$.
Since $f(a, b)=0$ we have $h(a, b)=(a, 0)$ and $a \in V$. Let

$$
g: V \subset \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}
$$

define by $g(x)=\varphi_{2}(x, 0)$. It's clear that g is G -differentiable on V and

$$
g(a)=\varphi_{2}(a, 0)=\varphi_{2}[h(a, b)]=b
$$

Moroever $(x, g(x))=\left(x, \varphi_{2}(x, 0)\right) \in U$ for every $x \in V$. Finally if $x \in V$ then

$$
\varphi_{1}(x, 0)=\varphi_{1}\left[h\left(x^{\prime}, y^{\prime}\right)\right] \quad \text { for some } \quad\left(x^{\prime}, y^{\prime}\right) \in U_{1}
$$

but by definition of $h, x^{\prime}=x$, then $\varphi_{1}(x, 0)=\varphi_{1}\left[x, f\left(x, y^{\prime}\right)\right]=x$ because $\varphi\left[x, f\left(x, y^{\prime}\right)\right]=\left(x, y^{\prime}\right)$. For all $x \in V$ we have that

$$
\begin{aligned}
(x, 0)= & \left.\left.h\right|_{U_{1}} \circ \varphi(x, 0)=\left.h\right|_{U_{1}} \mid \varphi_{1}(x, 0), \varphi_{2}(x, 0)\right]= \\
& =\left.h\right|_{U_{1}}(x, g(x))=(x, f(x, g(x)))
\end{aligned}
$$

and we deduce that $f(x, g(x))=0$ for every $x \in V$.

REFERENCES

[1] Borwein, J. M. : The differentiability of real functions on normed linear spaces using generalized subgradients. J. Math. Anal. Appl 128, num. 2(1987), 512-534.
[2] Buttler, G. J., Timourian, J. G., Viger, C. : The rank theorem for locally lipschitz continuous functions. Canad. Math. Bull. 31 num. 2 (1988), 217-226.
[3] Clarke, F. H.: Generalized gradients and applications. Trans. Amer. Math. Soc. 305 (1975), 246-262.
[4] Clarke, F. H.: On the inverse function theorem. Pacif. J. Math. 64 num. 1 (1976), 97-102.
[5] Clarke, F. H.: Generalized gradients of Lipschitz functionals. Adv. in Math. 40 (1981), 52-67.
[6] Hiriart-Urruty, J. B,:Miscellanies of non-smooth analysis and optimization. Lect. Notes in Econ. and Math. Syst. 255 (1985), 8-24.
[7] IOFFE, A.: Nonsmooth analysis: differential calculus of nondifferentiable mappings. Trans. Amer. Math. Soc. 266 num 1 (1981), 1-56.
[8] Novo, V.: Diferenciación generalizada. Tésis doctoral. Ed. Serv. Invest. UNED.
[9] Novo, V., Rodriguez marin, L.: Derivada generalizada en \mathbb{R}. Aplicación al estudio de extremos. Actas XV Jorn. Luso-Esp. de Mat. Univ. de Evora (1990).
[10] Pourciau, B. H.: Global invertibility of nonsmooth mapping. J. Math. Anal. Appl. 131 (1988), 170-179.
[11] Rockafellar, T.: Convex Analysis. Princeton Univ. Press (1970).

[^0]: *E.T.S. Ingenieros Industriales. U.N.E.D.

