
An extension of the inverse 

function tiieorenit 

B Y V. NOVO'ÂJNJDL RoDRtGUEZ MARIN* 

Redbido: 14 de No^iemfee de 199Ô 

PFesemoiâo par et Académico D, Peéro Jiménez Guerra. 

Abstract 

Tlie purpose of this work is to give conditions under wicA a G-differentiabîe function admits 
locally a G-differentiabie inverse. The dassicial result that gives conditions under which a C^ 
function admits locally a C^ inverse is a ^ïecial case of this theorem. 

B propósito de este trabajo es dar condiaones suficientes para que ima fimción G—diferenciable 
admita (localmente) nna inversa G-diferenciable. El resultado clásico qne da condiciones sufi­
cientes para que ima función de clase C^ admita (localmente) inversa de clase C^ es un caso 
especial de este teorema. 

Cíasifícación A.M.S. :.26A24 

1. Int roduet ioi i and no ta t ions 

There have been a number of approaches recently toward developing a 
set-valued derivative of convex or Lipschitz functions which generalize the 
usual notion of derivative in such a way that the theorems of differential 
calculus also extend. The present interest in problems related to the opti­
mization of non-smooth functions brought about the development of this 
news generalized differentiation theories. 

With this aim T. Rockafellar [11] studied real convex functions on E.'̂  
introducing the subdifîerential. In the same way F.H. Clarke [3] broaden 
the kind of functions considered by Rockafellar extending the theory to real 
locally lipschitz functions on E.'̂  by defining the generalized gradient. Clarke 
latter included in his theory both functions from M.'̂  into M^ [4] and real 
functionals on Banach spaces [5]. Futher development of this theories can 
be find in a number of references such as [1], [2], [5], [6] or [10]. 

In different previous works ([8], [9]) we extended the class of functions 
used by Clarke defining a new generalized derivative called G-derivative. 
This work aims to give conditions under which a G-differentiable function 
admits locally a G-differentiable inverse in such a way that the classical 
inverse function theorem is a special case. 

Some previous results of [8] and [9] are given. / is a real-valued function 
on some interval I c M; a, x, Xn ^ I and (x„) —^ a. F (a, x) and l(f, a, Xn) 
will mean 

F(a,x) = [f(x)-f(a)]/ix~a); l{f,a,Xn)^ lim F{a,Xn). 
«—*cx> 

*E.T.S. Ingenieros Industriales. U.N.E.D. 
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{xn) —' a is said to be a G-derivabiiity sequence of/ at a if there exist 
/(/*, a, Xn). S(f, a) will denote the G-derivability sequences set of/ at a. The 
G-derivative of/ at a is the set 

df(à) = co{l(f,a,Xn); (xn) e S(f,a)]. 

Iff G Cs{I) (def. 2.1) df{d) is a non-empty convex compact set. Derivation 
and chain rules extend at this context, condition necessary of local extremum 
is now 0 £ Sf{d) and we have next generalized mean value theorem. If 
/ € Cs{a,h\ then there exists c € {a,b) and A € df{c) such that 
fib)-f{a)^Aib~ay 

In the following U is an open set of M.'̂ , ||x|j denotes the usual Euclidean 
norm and ||^|| the supremum norm in I.(E",M) wich is the usual topological 
dual of M". We topologize the vector space M^nxn of mxn matrices with the 
norm ||M1| = max|mi/| where M = (m//) and 1 ^ / < m, 1 < / ^ n, < .,. > 
is the duaUty pairing between L(E!^,M) and M.'̂ , co(^) is the subset A convex 
hull and F(a, v, tn) and /(f, a, v, tn) will mean 

F(a. V, tn) = — If (a + tnv) ~f(d)\ ; /(f, a^ v, /„) = Um F(a, v, i„) 

where/ : Í/ —^ E; a € Í7, v € M.", v ^ 0 and {/„} —^ 0 when n -^oo is a 
real number sequence. 

2. G-differential. Basic properties 

Let E and i^ be normed linear spaces, U be and open set in E and 
/ : u —, F be a given mapping. 

2.1 Definition 

We will call / "strong-continuous" (s — c) at a e U if there exists a 
neighborhood V of a and a constant k > 0 such that 

11/W -f(^)\\ ^ k\\x - all, for every x e V. 

/ is ^ - c in Í7 if it is 5 - c at each point of U, we will denote/ e Cs(U; F). 
Next relation is inmediate: LL(U,F) c Cs(U,F) c C(U,F), where LL 

denotes locally lipschitz functions and C denotes continuous functions. It 
is a easy consequence of 2.1 that f +g and Àf are s ~ c functions at a if 
f^g^ Cs(à) and A G E. Cs{U,F) is a real linear space and the composition 
of s — c functions is a s — c function. 

Let / : U —^ ]R be a continuous function. The function / —̂  a + tv 
from M. into E.'̂  is continuous for each v € M.'̂  fixed and consequently 
D-{teM;a + tve Í7} is an open set such that 0 e D. Next propo­
sition is inmediate from 2.1. 
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2.2 Proposition 

If/ is a 5—c function at a, then for each v € M", v ^ 0, gv(0 = / ( a + / v ) 
is 2i s — c function at / = 0. 

2.3 Definition 

The directional G-derivative of/ at a with respect to a vector v e MP, 
V ^ 0 or Gy-derivative of/ at a denoted by dyf(a) is defined to be the set 

dyfia) = co{j[im F(a, v,/^); {tn} e Sigy.O)}; do(a) = {0} 

where S(gv,0) denotes the G-derivabihty sequences set of gv at 0. Note that 
dyf(a) is the G-derivative of gv at í = 0. 

2.4 Theorem 

If/ is a 5 — c function a,t a e U then for each v G E." 

i) dvf(a) is a non-empty convex compact subset in 11. 

ii) There exists ^ > 0 such that dvf(à) c [-fc||v||, A:i|v||]. 

Proof, (i) From the fact that / is s — c a.t a it follows that gy is s ~ c Sit 
t = 0, and consequently dyf{d) — ôgv(O) is a non-empty convex compact 
subset in E. 
(ii) Because / es a 5" — c function at a, there exists k > 0 and V such that 

/ ( x ) -fiai ^ k\\x — all; for every x eV. 

For V € M" and {tn) € S{gy,Çi) fixed, there exists no € N such that 

a -\-tnV e V for all n > no, then \f(a + r„v) - / ( a ) ^ ^U«|||v|| and we 

have that F (a, v, /„) ^ k\\v\\ and for each {/«} € S{gy, 0) 

—Â:||v|| ^ lim F(a,v,tn) ^ ^l|v|| 
«—•oo 

Finally from the fact that dyf(a) is a convex set we deduce that 

Ôv/ (^)C[-^ | |V |U| |V | | | . 

2.5 Proposition 

If/ iss—c ata e [/, then the set-valued mapping from E" into ]R defined 
by T(v) = dyf(a) is a bounded odd prefan in the loffe's terminology [7]. 
Proof. We will show that 7 is a prefan. If v = 0, then 7(0) = {0}. Let 
l(f,a,Àv, tn) € T{Xv) where A € IR+. Because 

/ ( / , fl, Xv, tn) ~ lim F(a, Av, i«) = A lim F {a, v, i«) 

file://-/-tnV
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we have that T(Àv) c lT(v). Moix)€ver let l(f,a,v,tn) € r (v ) and 
{t'n} - {tnm^ "^^ haw 

X lim F {a, V, i^) — À lim F(a, v, Àfn) — ^ lim F(a, v, Àfn) € r ( l v ) 
n—^oo n—•oo n—•oo 

hence ÀT{v} = T{Àv) for every À> 0. 
From 2.4,(î) we have that r (v) is a convex compact subset for each 

V G E^ and because T{—v) — —T(y) we have that T is a odd prefan. 
Finally T is bounded because T(v} ^ 0 for each v e W^ and from 2.4.(ii) 

nv)c\-k\\vik\\v\\\, 
T is not a fan, Letf : M? —^ M. be defined by 

fix.y)=x\y\^^x^+y2 if (x , j ) # (0 ,0) ; / (0 ,0) = 0. 

It can be easily proved that for a = (0,0) T is not a fan because 
r(t / + v)íí T(u) + nvy 

2.6 Definition 

/ is G-differentiable at a € Î7 if for each v e M^ and each / e dvf(a) 
there exists a hnear selection ¿, e L(]S^,M) of the prefan T such that <̂ (v) = /. 
The set of this selections is called the G-differential off at a and is denoted 
by df(ay 

It follows inmediatly from this definition that df(à)(v) = dyf(à) for each 
V eW. 

2.7 Proposition 

If/ is G-<iifferentiable at a G t/ then 5/ (a) is a compact convex set in 

Proof. Let ^,^ e df{a) and a, j8 ^ 0 such that a + jS = 1. For each 
V G M" ^(v) € r (v) and ^(v) G r(v) and because T(y) is a convex set 
we have a^ +jSf| G 5/(a) and df{d) is a convex set in L(R",M). 

Let ^ G dfia), from 2.4.(ii) we deduce that 

11̂ 11= sup | i ( v ) K sup \T(y)\^k 
l|v|i = l l lv l i zz l 

and consequently df(a) is a bounded set. Moroever df{a) is closed because 
r (v) is a closed set in M. for each v and 

5/(iï) = n < .,v >-^ r (v) . 

For real functions on R, strong-continuity is equivalent to G-derivability. In 
this case strong-continuity is not a sufficient condition to G-difTerentiability. 
Next theorem gives a necessary and sufficient condition to G-differentiability. 
Proof of Lemma 2.8 is a inmediate consequence from 2.5. 
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2.8 Lemma 

If/ is s — c at a, the following are equivalent: 

i) < ^, V >€ T(v) for every v e M!^. 

ii) < (̂ , V > ^ sup T(v) for every v e MP. 

2.9 Theorem 

Let / be ^ ~ c at a, then the following propositions are equivalent: 

i) 7 is a set-valued fan. 

ii) / is G-differentiable at a. 

Proof. (1)=^ (ii) Let p from M.'̂  into IR defined by p(v) =: sup T(v). We will 
prove that p is positively homogeneous and subadditive. If A > 0 then 

PÍÁV) — sup T{kv) ~ sup X T(v) = /I sup r(v) = >l/?(v). 

From the fact that T is a fan we have T(u +v) c T(u)+T(v) for all u,v eMT 
and 

p{u + v) = sup T(u + v) < sup T(ü) + sup r(v) = p{ü) +p(v). 

Suppose now that w G R" and / e T(u), then there exists ^ e L(M",M) 
such that (̂ (w) = /. Because T is a odd fan it is homogeneous and conse­
quently for each >l € R and v = Aw we have À < ^,u >e À T(ü) = T(Aü), 
< ^,v >e T(v) and < ^,v >^ p(v) for all v e S, where S is the Hnear sub-
space JS = {v G E'̂ ; V = Aw, A G ]R}. It follows from Hahn-Banach theorem 
that there exists at least a linear function ?j G L(M.",E) satisfying: 

ri(v) = (̂ (v) for every v G 5 and r](v) ^ /?(v) for every v G M.'̂  

from 2.8 we deduce t h a t / is G-diiferentiable at a. 
(ii)=:̂  (i) If / is G-diiferentiable at a, then for every v G £* we have 
Sf(ci)(v) = dvf(à). Suppose that / G T(u + v), then there is ^ e df(a) 
such that < ̂ , u -{-V >= I, hence 

/ = < (̂ , w + v > = < (̂ , w > + < ^, V >G T(u) + T(v) 

and r is a set-valued fan. 
As a consequence we have that if/ G LL(i7,E) then/ is G-differentiable 

at each point of U. Now we will prove validity of the generalized mean value 
theorem in this case. 
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2.10 Theorem 

If/ is G-differentiable at U and [a, a +th] c U for all / G [0,1] and 
h e M", then there exists 9 e (0,1) and ^ e df{a + Bh) such that 

fia+h)-f{a)^^ih). 

Proof. Suppose that we have <p : [0,1] —> U defined by (p(t) — a + th. 
(p is differentiable at (0,1) and (p\t) = A. L e t / : [0,1] —^ m defined by 
g{t) = (f o ^)(0- Strong-continuity of/ and (p implies strong-continuity 
of g at [0,1]. By mean value theorem (section 1) there exists 0 e (0,1) and 
c e dg(d) such that g(l) — g(0) = c. We now show that 

dgi0)C df(a+9h)o(pX9). 

Let / € dg(9) and {tn} e S(g,9) such that 

l=lim ^\gi9+tn)-g(9)\ - J i m ^\f[cp(9+tn)]^f[cpm\-

From the fact that for each n eN, (p(9 + tn) = (p(9) + tn(pX9), we have 

l=lim ^\fM9)+tnCp\9)]-f[cpm\ 

it follows that / € 5^'(^)/ [i^(^)] - ^ / ( ^ + ^^) o ç>'(̂ ) ^^à^ consequently 
dg(0) C df(a+h)o(pX9). Because g(l) ^f{a+h), g(0) = / ( a ) and c e dg(9) 
there exists ^ € 5/(a + 0/i) such that ^(h) = c and we deduce that 

f(a+h)^f(a) = ^(hy 

Next theorem gives a necessary condition for local extremum of 
G-differentiable functions. 

2.11 Theorem 

If/ is a G-difíerentiable function from U into ]R a n d / attains a local 
extremum at a e U then 0 € df(a). 
Proof. Since / attains a local extremum at a, then for each v e M!^, gv 
attains a local extremum at 0, hence 0 € 5gv(0) = dy,f{a). It's clear that 
< 0, V >= 0 € dyf(à) for each v € E'̂  and consequently 0 e df(à). 

Definition of G-diñerential extend easily to functions from E.'̂  into M.̂ . 
We will suppose t h a t / : M" —> M!^ is defined b y / = (fufi^-'Jm), 
where// : Ê" —> R. for each / = 1,2, . . . ,m. It is easily proved that 
strong-continuity off at a is equivalent to strong-continuity of each / / at 
a,/ = 1,2, ...,m. 
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2.12 Definition 

The G-derivative of/ at a with respect to v € M.'̂ , denoted by dyf(a) is 
the set (ôv/i(a), ov/2(¿2),...,5v/m(«)). 

From this definition and theorem 2.4, we have inmediatly that if/ is 
s- c BX a then for each v G E", dvf{a) is a non-empty convex compact set 
and 

d,fid)c n [-it||v|U||v||]. 
z = l 

2.13 Definition 

/ is said to be a G-differentiable function at a if for each v G M̂  and each 
/ € dvfix) there exists a Unear selection £, e L(W^, E^) of the set-valued 
function T : v —^ dyf{a) such that ^(v) = /. The set of this selections is 
called the G-differential of/ at a and is denoted by df(a). 

It can be proved that if/ is G-difîerentiable at a, then df{ci) is a convex 
compact set in L(E", M.'̂ ), also that G-differentiability of/ at a is equivalent 
to G-differentiability of each// at Û and 

df{a) = n 5/Ka). 

From G-derivabiUty properties it follows t h a t / +g and A/ are G-differen­
tiable functions if/ and g are and A € E. Moroever d(Àf)(à) = Xdf{a) and 
5(/ +g)(a) c ô/(a) +ôg(a). However there exists G-differentiable functions 
/ and g such that g of is not G-differentiable. Next theorem provide a chain 
rule in a special case. 

2.14 Theorem 

Let U cW^ and F c M.'̂  be open sets,/ : U —• K be a G-differentiable 
function on Í7, g : F —• R be a Ĉ  function and h —gof. For each v G E" 
and each x € f/ we have 

i) There exists dyh(x) c < Dg[f(x)], dvf(x) > . 

ii) h is G-differentiable at x and dh(x) — Dg[f(x)]odf(x). 

Proof, (i) Let {/„} G S(f,x, v) and suppose that l / (x ) , / (x + /„v)| c F for 
each /Î E N. Because g e C^iV), from mean value theorem for each n eN 
we have that there exists Cn € /(^) , /(-x + i«v)j such that 

g\f(x + tnV)] - g\f(x)\ = < Dg(c,X \f(x + tnV) - / ( x ) | > . 

If {tn] —^ 0, then [cn] —'f{x) and because g € C^{V) we have 
lim Dg{cn) = Dg\f{x)\ and 

Jim l | (go / ) (x^„vHgo/) (x) |=<i )g | / (x) ] , J [ im l [ / (x+f„v)- / (x) | > 
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and consequently dyh(x) c < ^ g / ( x ) , dyf{x) > . 
(ii) Let V G M" and / € dyhipc). From (i) we have that there exists /' G dvf(x) 
such that / =< iig^ / ( x ) , /' > and because/ is G-differentiable at x, there 
is a linear selection ^ of the set-valued function T such that ^(v) = /'. It 
follows that / =< / )g | / (x) | , (̂ (v) > and ri = Dg\f(x)^ o^ e L(mr.K) is a 
linear selection of v —^ dyh(x), h is a, G-diiferentiable function at x and 
dh(x) c Z)g / (x ) o df(x). From (i) the other inclusion is inmediate. 

It can be easily proved next extension of this theorem, li U c M!^ and 
V c W^ are open sets, / : U —^ V is G-differentiable on U, g : v —^ MP 
is a C^ function on V and h = g o / , then h is G-differentiable in U and 
dh(x)=Dg\f(x)\oôf(x). 

Definition of G-differential can be extended to a compact subset K c U. 
From this extension we have the next generalized mean value theorem. 

2.15 Definition 

/ is said to be G-differentiable on K if it is G-differentiable at each 
point of K, The G-<iifferential of/ at K is the set 

ôf(K) = cô^y^ôfix) 

2.16 Proposition 

If/ is a continuous mapping from [a, b] into E^ and G-differentiable on 
(c,d) c [a,bl then 

f(d) -fie) e id-c)œ ^JJ ^^ df\c + t(d-c)\. 

Proof. Suppose that F e L(M.̂ ,M). Let F of from [a, b] into R. F of is conti­
nuous in [a, b] and from 2.14 F of is G-derivable in (c, d). From generalized 
mean value theorem, we have that there exists 9^,0 < Ojr < I such that 

(F ofXd) - (F o/)(c) = (F o Oid - c) 

where ^ € df(c+eF(d-c)). Then for all F e L(IEé,]R) it follows that 

F\fid) -f(c)\ e F\ ^^U ^̂  5/(c + (̂rf ^ c))(d - c)\ 

and from Hahn-Banach theorem we deduce that 

fid)-f(c)e(d-c)W U df(c + tid-c)). 
te[0,i] 
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2.17 Proposition 

Let U be an open subset in E.'', a € U, h eW with [a, a + h] c U. If 
/ : U —^ M.̂  is a G-differentiable function on (x € V\ x -a+th, / € [0,1]}, 
then 

f{a + h) -fia) € Co U df{a + th)Qi) 
i€[0,l] 

Proof. It's a easy consequence of 2.17 using g : [0,1] —^ E.̂  defined by 
g{t)^f{a + th). 

3. Inverse function theorem 

In this section we will assume tha t / is a G-differentiable function from 
the open set U c W into M.̂ (n ^ A:). Let us call a subset ^ c L(]R'',M.̂ ) 
surjective if each ^ G ̂  is surjective. The set valued mapping M from U 
into Pel (̂IK.'̂ .Î )̂] (space of compacts with the Hausdorff's metric) is said 
to be semicontinuous at ¿z G [/ if for every sequence {x/} —> a, x/ € U, and 
all sequence {̂ /} —^ ^ with (̂ / G df{xi) for each /, we have ^ € df{a). We 
will call 0/ is bounded if it transforms bounded sets of U into bounded sets 
ofL(R'^,R^). 

3.1 Lemma 

If the set-valued mapping df is bounded and semicontinuous at a G Í7, 
then for each g > 0, there is a > 0 such that 

dfix) c B idf{d),s\ for every x G B{a,a) 

where B iôfix).s) = ^ Û  ^ B{^,s). 

Proof. Suppose that there exists £ > 0 such that for all ¿ > 0 there is 
X G B(a,ô) with df(x) (j: B idf{a),s\. Let d = \/n, n G N for each n 

there is Xn G BiaA/n) such that df{xn) ^ B^^f(a),s). It's clear that 
{^n} —' CI when n —^ oo . Let {̂ „} be a sequence with ^n € ôf{xn) and 
In i B (5/(a) ,e | for each n ^ N. Because 5 / is bounded, we have that 

5/({x„}) is a bounded set in L(E",E.^), then 5/({x„}) is a compact set and 
consequently there exists a subsequence {(̂ }̂ c {<̂ „} C ^/({x,^}) such that 
{4} —' 0̂ when n —> oo . 

We now show that ô ^ ^fifi). Because ^k i- B{ôf{d),£) we have 
||i)t - <ill ^ £ for every ^ G 5/(a) and because {t,k) —^ ô there is AZQ € N 
such that W^k - ôll < fi/2 for all k > no, then 

11^0-ill > l l i ^ - i l | - | | i ; t - i o l l >£/2, 

for every ^ e df{d) and ^o ̂  B {of {a), s/I) contradicting the semicontinuity 
of df at a. 
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3.2 Lemma 

If df{a) is surjective, then 

i) There is ¿ > 0 such that d[ôf{d){S)M ^ 2Ô. 

ii) There is 8 > 0 such that d\ B (df(a), s)(S), o] ^ ô 

where S = {x G IT'; ||x|| = 1}. 
Proof, (i) Because df(a) is surjective, 0 ^ 8f(a) and from the fact that 
dfiaXS) c E^ is a compact set there is ¿ > 0 such that d [ôf(a)(S), 0] ^ 2Ô. 
(ii) Suppose that for each n eN there exists ^„ e B(ôf(a), l/n) such that 
d[^n(S),0] < Ô. Let rin € df(à) with ^ e B(rin, l/n) for each n eN. Since 
{^n} C df(a) there exists a subsequence {rjk} —^ 7̂0 ^ Sf(à), then the 
subsequence {^k} C {^n} also is convergent to ^o- Let ¿/2 > 0, there is 
ko € N with d[^o(S),rio(S)} < Ô/2. From (i) it follows that d[rio(S),0] ^ 2Ô 
and we have that 

2Ô ^ d[rioiSlO] ^ d[rio(Sl^k,(S)] +d[^k,(SlO] < 3¿/2 

wich is a contradiction. 

3.3 Lemmia 

If df(à) is surjective, df is a bounded set-valued mapping semicontin-
uous at a, then given any unit vector v G M.'̂  there are real numbers a > 0 
and Ô > 0 and a unit vector w G M.̂  such that whenever x G B(a, oc) and 
^ G df{x), < Uy (̂ (v) > ^ <5. In consequence df{x) is surjective for each 
X G B{a, a ) . 

Proof. From 3.2 there are á > 0 and e > 0 such that d [ JB (5/(a) , eX^), o| ^ 

(5 and from 3.1 there is a > 0 such that df{x) c B(df(a),s) for every 
X G B{a,a). Let v G AS, because B(df(à),s) is a convex set we have that 
J5 idf(a), s)(v) is a convex set and 

d\Bidfia),s)iv).0\ ^0 

By the usual separation theorem for convex sets (see [11]), there is a unit 
vector w G M.̂  such that < u,^(v) > ^ ¿ for every ^ G B(df(a),s). Results 
follows from the fact that df{x) c B (df(a), s) for all x G B(a, a ) . 

3.4 Lemma 

If df(à) is surjective, df is a bounded and semicontinuous set-valued 
mapping, then for every x,y e B(a, oc) we have 

\[fix)-f(y)\\^ô\\x-y\\. 
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Proof. If X = j ; it's evident. Suppose that x ^ y. We will show it only for 
x,y e B{a, a) (f and || || are continuous). Let v -{y- x)/\\y — x\\ eW^ and 
j5 = IIJ - x||, then y = x +pv. Since x,y e B(a,oc), [x,y] c B(a,a), From 
generalized mean value theorem we have that there exists ^ e df ([x, y]) 
such tha t / (x +iSv) -f(x) = ^(^v). 

From 3.3 it follows that there exists a unit vector w G M.̂  and a real 
number ¿ > 0 such that < w, ^(v) > ^ ¿, then 

<uj(x+pv)-f(x) > = < w,(̂ (iSv) >=p < w,(̂ (v) >^ ^0 

we deduce that \\fix+pv) -~/(x)|l > pS and consequently \\f(y) -fix)\\ > 
ô\\x-y\\. 

Next theorem is a extension of Banach's interior mapping theorem. 

3.5 Theorem 

If 5/(a) is surjective and df is a bounded and semicontinuous set-valued 
mapping, then/(a) € Int/([/). 
Proof. We will show that B (/(a), ocô/l) c f(B(a, a)), where a, á are values 
of lemmas 3.1 and 3.2. Let for each y e B(f (a), aô/2) fixed the function 
h from U into R defined by A(z) = \\y —/(x)|p. /x attains it minimum in 
the compact set B(a, oc) at some point x € B(a, a). We claim x belongs to 
B(a, a) and y = / (x ) . li x e Fr [B(a, a)] then ||jc — a|| = a and from lemma 
3.4 we have 

a¿/2 > \\y-fid)\\ > |[ /(x)~/(a) | | - l b - / ( a ) | | ^ ¿ | |x-a | | ^ i l7-/(x) | | ^ 

^ôa~ \\y -fià)\\ > da- da/2 = ¿a/2 

which is a contradiction, then x e B(a, a). 
Because x is a minimum of h we have 0 e dh{x) (th. 2.11) and con­

sequently 0 € d(\\y -fix)f) and 0 € 5/(x) | 2 0 - / ( x ) ) | . From 3.3 
5/(x) is surjective for each x e B(a, a) and we deduce that y = f(x), 
then B (f(a), a¿/2) c / [B(a, a)] and/(a) e Int/(C/). 

3.6 Theorem 

LetfiUcmr —^m!" be G-^ifíerentiable on U. If 5 / is a bounded 
semicontinuous set-valued mapping and df(à) is surjective then there exists 
a neighborhood V, a e V c U and a function g defined from W =f(V) 
into V such that 

0 ?o (/Ip) = Iv and ( / I K J O ^ ^ : U -

ii) g is G-diiferentiable at y o —f{d). 
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Proof. From 3.2 we deduce that df{x) is surjective for every x e B{a,oi). 
Suppose that V = B(a,(x) c U; from 3.5 we have that W = / ( F ) is an 
open set. Let xi,X2 € F there exists £, e df([xi,X2]) (Prop. 2.17) such that 
fiX2) -f(xi) = ^(X2 - Xi). 

Since ^ e L(E!^,M!^) is surjective it's a biyection and consequently 
K e r / = {0} a n d / is injective. Let g be defined as follows. For each y e W 
g(y) is the point x e V such t h a t / ( x ) = y. It's clear that g verifies (i). 

We will show that g is lipschitzian o n / ( F ) and consequently G-diñe-
rentiable. From 3.4 we have 

llfi^i) -f(x2)\\ ^ S\\xi - X2II, for every xi,X2 G B{a,a) 

making yi = / ( x i ) , j2 =f(x2) and xi = g(yi), X2 = g(y2) we deduce that 

\\g(yú - g(y2)\\ ^ -^Wyi -yih for every yuy2e W. 

This theorem reduces to the classical one if/ is a C^ function. A simple 
example to wich this theorem applies is the following. Classic result is not 
valid because/ is not differentiable at (0,0). 

3.7 Example 

L e t / be the function from E.̂  into M.̂  defined by 
/ (x , j ; ) = ( | x | + 2 j , x + M). 

5v/l(0,0) = [ - | v i | +2V2,|V1| +2V2|; Ôv/2(0,0) = [ VI - |V2|,Vi +|V2|| 

where v = (vi, V2) € E.̂ . 

5/(0,0) = Il ^ M ; -1 ^a^ 1, -1 <è^ 1 > 

It can be easily proved that 5/(0,0) is surjective, 5 / is a bounded and 
semicontinuous set-valued mapping, then from 3.6 there exists local inverse 
function of/. 

Next theorem gives a extension of the implicit function theorem. We will 
denote points of W^ x M.̂  by (x, j ) where x G M" and j € M.̂ . If Í/ is an open 
set in M." X R^ a n d / : U —^ M.̂ , d2f{x,y) will mean the G-diñ'erential of 
/ ( x , . ) : E^ —^ ^ for each (x, j ) e U. 

3.8 Theorem 

L e t / : (/ c R" X R^ —^ E^, (a,è) € Í/. I f / ( a , è ) = 0, / is 
G-differentiable on [/, 5 / is bounded and semicontinuous at each point 
of U and djfia^b) is surjective, then there exists an open set F c E" with 
a eV and a function g : F —^ E^ such that 
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i) g is G-differentiable in V. 

ii) g(à) = b 

iii) (x,g(x)) e U and/(x,g(x)) = 0 for every x e V. 

Proof. Let h : U —^ IT x M.̂  be defined by h(x,y) =(/ii(x,y),/í2(x,j)), 
where hi(x,y) = x and h2Íx,y) —fix,y). It's clear that 

"*<"•'>=(â^) 
where / denotes the unit matrix of Mnxn and 0 denotes the zero matrix 
of Mnxk' We will show that dh(a,b) is surjective. Let (p^q) € M.'̂  x M ,̂ 
(p, q) - (0,0) iff dh(a, b)(p, q) ~ 0. If (p, q) = (0,0) is inmediate. Suppose 
that dh(a, b)(p, q) — 0. From the linear system 

\df{a,b)) \ q I 

it follows that /? = 0 € M̂  and results a homogeneous system with k equa­
tions and k variables difia, b) q =0, but because djfia, b) is surjective each 
element of dzfia, b) have rank k and consequently ^ = 0 and dh(a, b) is 
surjective. 

Now, because hi is SL C^ function on U and dh2 is semicontinuous on U 
we have that dh is semicontinuous on U. From theorem 3.6 there exists an 
open set U\ c U with (a, b) € Ui and a inverse function 

(P = (<¡Pi,<?>2) : h{Ui) —^ Í7i. 

Let F c IT' be the open set defined by F = {x G W\ (x,0) e h(JJi)}. 
Since/(a, è) = 0 we have h(a,b) = (a,0) and a € F. Let 

g:v cmr —^R^ 
define by g(x) = (p2(x, 0). It's clear that g is G-differentiable on F and 

g^(a) = (p2(a, 0) = (¡i)2[/2(a, è)] = b 

Moroever (x,g(x)) = (x, <p2(x,0)) e U for every x e V. Finally if x € F 
then 

(pi(x,0) = (p\ {h{x\y')] for some (x',/) e U\ 

but by definition of h, x' — x, then (pi(x,0) = (p\ [x,/(x, j ' ) ] = x because 
í¡í>[x,/(x,j')] = {x,y'). For all x € F we have that 

(x,0) 3:/z|^jO<p(x,0) =/z|^Jç)i(x,0),ç)2(x,0) 

and we deduce that/(x,g(x)) = 0 for every x G F. 
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