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INTRODUCTION

Let (E.7) be a Hausdorff topological vector space (tvs) over the field
K € _('RC). Let M be a vector subspace of the algebraic dual E* of E. If
B(z) is a O-basis for 7, then the sets

UNX e E:|[fiKl, i=12,...n).

where U € %(z), n € N, f; € M, form a O-basis for the weakest vector
topology 7[M] on E which is finer than © and which makes the elements of
M continuous. Clearly

1[M] =sup (z,0(E, M)).

Moreover (E,7[M])’ = E’ + M, where E’ = (E, 1)’ denotes the topolog-
ical dual of E,[6], Lemma 1. If dim M < ¥y and M N E’ =0, then t[M] is
called a countable extension of t,[6]. In [6] Popoola and Tweddle considered
the question of ultrabarrelledness (resp. barrelledness) under the topology
7[M], when E is given to be ultrabarrelled (resp. barrelled) under its origi-
nal topology. It is easy to see that for an ultrabarrelled (resp. barrelled) tvs
(E,7) the space (E,t[M]) is ultrabarrelled (resp. barrelled) for any finite
extension 7[M] of 7, [6]. Theorem 1. In [6]. Theorem 3, it was shown that for
any barrelled tvs (E,7) containing a dense ¢ = 2%° codimensional barrelled
subspace there exists a countable infinite extension t[M] of 7 under which
E is barrelled. In the same paper the authors asked whether this theorem
remains true when barrelledness is replaced by ultrabarrelledness.

In the present paper we answer this question in the positive; for
F-spaces (i. e. metrizable and complete tvs) we obtain even a stronger result.
Moreover, we discuss the problem of the existence of dense subspaces with
large codimension in ultrabarrelled spaces.
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A sequence (Uy,)nen of subsets of E is called a string [1] if every U,, is
balanced and absorbing and

Un+1 + Un+1 C Un, neN.

A string (U,)nen in a tvs (E, 1) is [1]:

(a) closed, if every U,, is t—closed;

(b) topological, if every U, is a t—neighbourhood of zero.

A tvs (E, 1) is ultrabarrelled if every closed string in E is topological [1].
The following conditions are equivalent for a tvs (E,1):

[il. (E,7) is ultrabarrelled

lii]. Every linear map from (E,t) into an F-space with closed graph is
continuous.

[iii]l. Every Hausdorff vector topology 6 on E which is t-polar, i.e. 0 has a
O-basis consisting of t-closed sets, is coarser than t, [1], p. 32, p. 44.

—Results: First we prove the following two lemmas;

Lemma 1.

Let (E,t) be an ultrabarrelled tvs containing a dense c-codimensional
ultrabarrelled subspace. Then E admits a countably infinite extension 1[M]
of © under which E is ultrabarrelled. Moreover, if (E,t) is metrizable, then
there exists a sequence (t[M,)),,c y of countably infinite extensions of t© such
that:

[il. (E,t[Mp]) is metrizable and ultrabarrelled, n € N.
[iil. © = inf {t[Mp), 7 [My]} for all n, me N, n £m.
Proof. | |
Let G be a dense c-condimensional ultrabarrelled subspace of E. let

(x2)oc 4 be a Hamel basis of an algebraic complement H to G in E. Consider
a partition (4,,) of 4 such that

card A, =card A, ne N, A=U(A4,:n€N).

Let

F, =lin{xy:x€U4;1=12...n}, neN.
Then :
and

codim(G + F,) =¢, neN.
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Clearly every E,, = G + F,, is t-dense and ultrabarrelled. Let n = 1. Choose
on W = E/E,, a (metrizable and ultrabarrelled) vector topology o; such
that (W, ) is isomorphic to

(KN,a(KN,K(N))).
If Q: E — W is the quotient map, then
Mi={foQ:f eW o)}
is a countably infinite dimensional subspace of E* and
M NE = 0. Let 7; be the initial vector topology on E with respect to

the maps

id:E—(E,t) and Q:E — (W, a)).

Then
T |Eny =T En,,T1/En, =, T <11, cf[8]
The sets
UNQ Yxew:|[fixl <1, i=12...n} =
:Uﬂ{yeE:[f,-oQ(y)I <1, i:l,2,...n},
where

UeR(x), neN, fie (W, o),

compose a O-basis for 7;. By [8]. Theorem 2.6 (E, 1) is ultrabarrelled (and
metrizable when 7 is metrizable). Clearly 1y = t[M;]. Now assume that
(E,t) is metrizable. Since (E, 1) is metrizable and ultrabarrelled, then

E =UE,:neN),

where the closure is taken in the completion of (E,z[M ]), [1], (11), p. 89
and (7), p. 87. Hence there exists a number n; > n; such that E,, is t[M;]-
dense; clearly (E,,, t|E,,) is ultrabarrelled. This enables us to construct on
FE a countably infinite extension t[M>] of © such that (E, 1[M>]) is metrizable
and ultrabarrelled and

t|Eny = t[M2]| En,.

By simple induction we construct.
1. (Ey,, )men a strictly increasing subsequence of (Ej )nen.

2. (M,))men a sequence of vector subspaces of £* such that E' N M,,, =
0, dimM,, = No.

3. (t[Mp]),,c N @ sequence of countably infinite extensions of = such that



438 J. KAKOL POZNAN

[il. (E,7[M,,]) is metrizable and ultrabarrelled,;
lii]. Ep,, is t[M,,_1]-dense, m > 2;
lii). ©[My] |Ey,, =7 |En,,, T < T[Mu).
Fix pm € N, p # m. Assume p < m. Then E,,,, C Ep,,. Since
T|Ey,, = inf{T[Mp]x T[Mm]}lEnm =1[Mp] |E,,,

then
TIEnp+l = inf{T[Mp], T[Mm]} IEnp+l'

+1 18 t[Mp]-dense, then

©/Em,,, = inf{t[Mp), 1[M\n]}/En,,, = t1[Mp]l/Ey,,,

Therefore

Since E,,

T = inf{T[Mp], T[MM]}’
by [3], Lemma 1.

Lemma 2.

Let (E, t) be the inductive limit space of an increasing sequence (E,,, Tn)nenN
of F-spaces. If E' # E*, then E contains a dense c-codimensional ultrabar-
relled subspace.

Proof.

If E* £ E’, then for some » € N dim E, > No. Hence dim E, < c,
[5]. Without loss of generality we may assume that » = 1. Using the Baire
category theorem one shows that (E;, ;) contains a c-codimensional dense
ultrabarrelled subspace L. Let F be an algebraic complement to E; in E.
Then W = F + L is t-dense. Let (Un)nen be a closed string in (W, 7|W).
Then (U, N L),en is topological in (L, t;|L), where the closure is taken in
7. Since L is dense in E; and (£, 1) is ultrabarrelled, then (U,, N E1)nen
is topological in (E;,t;). Let x € E, then x =y +2z, y € F, z € E;. Fix
n € N. There exist [,, € L and A,, > 1, 4, € K, such that

Hence x € J,U,. By the ultrabarrelledness of (E,t) we derive that U, =
U, N W is a t|W-neighbourhood of zero for all » € N.
Using Lemmas 1 and 2 we note the following.

Proposition 1.

Let (E, 1) be an infinite dimensional F-space (or metrizable (LF)-space).
Then there exists a sequence (My)nen of vector subspaces of E* such that
for every n € N :
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i M,NM, =0, dimM, =8y, ENM,=0, nftm.
(ii) (E,sup{r,0(E, M,)} is metrizable and ultrabarrelled.
(iii) sup{t,a(E, M,))} and sup{z,o(E, M,,,)} are not comparable, n £ m.

Corollary 1.
Let (E,t) be an infinite dimensional F-space. Then

t =inf{c[M]: M C E*, MNE =0}.

In [7] (cf. also [4]) it was shown that every locally convex barrelled space
E with E* # E’ contains a dense denumerable-codimensional subspace,
necessarily barrelled by [10]. We extend this result to ultrabarrelled spaces.
The proof of the Proposition 2 uses some ideas found in [7].

Proposition 2.

Every ultrabarrelled tvs (E,t) with E' + E* contains a dense infinite-
codimensional subspace.

Proof.

Let {(x;)iep} be a Hammel basis for E and {(x;,f:)icp} the correspond-
ing biorthogonal system. Assume that D = {i € B: f; ¢ E'} is finite. Then
Z =lin{x; : i € B\D} is an ultrabarrelled finite-codimensional subspace of
E, [2]. Clearly Z’ separates points of Z. Let u(Z,Z’) be the finest locally
convex topology on Z weaker than t|Z. The convex t|Z-neighbourhoods
of zero compose a 0-basis for u(Z,Z’). Hence (Z, (Z,Z")) is a Hausdorff
barrelled space. By Theorem 1 of [7] Z' = Z*. Let ¢ be the finest vector
topology on Z. Then w(Z,Z’) < 7|Z < ¢. By [9], 6.8 (e), the topology ¢
is u(Z, Z*)-polar. Hence ¢ is 7|Z — polar. Since t|Z is ultrabarrelled, then
¢ = 1|Z (cf. Introduction). Therefore Z is 7-closed and hence £’ = E*, a
contradiction. This proves that D is infinite. Let

M =lin{x;:i e B\I},
where 7 is a countably infinite subset of D. By M and H we denote the
closure of M in 7 and an algebraic complement to M in E, respectively.
Assume that dim(M /M) < Xo. Then M + F = M + F, where
F =lin{x;:i € T}

for some finite subset T of 7. Then

(E,;1)=(M +F)+N
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(topologically), where
N = lin{xi (i€ I\T},

[2], (4), p. 29. Hence every f;, i € I\T, belongs to E’, a contradiction with
I c D. Therefore M +H is a dense infinite-codimensional subspace in (E, 7).

Corollary 2.

Let E be an ultrabarrelled tvs. Then E has its finest vector topology if
and only if every subspace of E has infinite codimension in its closure.
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