Ultrabarrelled spaces and dense vector subspaces

POR J. KAKOL¹ POZNAN

Recibido: 9 de mayo de 1990

Presentado por el Académico Numerario D. Manuel Valdivia

INTRODUCTION

Let $(E.\tau)$ be a Hausdorff topological vector space (tvs) over the field $K \in (\mathbb{RC})$. Let M be a vector subspace of the *algebraic* dual E^* of E. If $\Re(\tau)$ is a O-basis for τ , then the sets

$$U \cap (X \in E : |f_i(x)| \langle 1, i = 1, 2, ..., n \rangle).$$

where $U \in \mathfrak{B}(\tau)$, $n \in N$, $f_i \in M$, form a O-basis for the weakest vector topology $\tau[M]$ on E which is finer than τ and which makes the elements of M continuous. Clearly

$\tau[M] = \sup \left(\tau, \sigma(E, M)\right).$

Moreover $(E, \tau[M])' = E' + M$, where $E' = (E, \tau)'$ denotes the topological dual of E, [6], Lemma 1. If dim $M \leq \aleph_0$ and $M \cap E' = 0$, then $\tau[M]$ is called a countable extension of τ , [6]. In [6] Popoola and Tweddle considered the question of ultrabarrelledness (resp. barrelledness) under the topology $\tau[M]$, when E is given to be ultrabarrelled (resp. barrelled) under its original topology. It is easy to see that for an ultrabarrelled (resp. barrelled) tvs (E, τ) the space $(E, \tau[M])$ is ultrabarrelled (resp. barrelled) for any finite extension $\tau[M]$ of τ , [6]. Theorem 1. In [6]. Theorem 3, it was shown that for any barrelled tvs (E, τ) containing a dense $c = 2^{\aleph_0}$ codimensional barrelled subspace there exists a countable infinite extension $\tau[M]$ of τ under which E is barrelled. In the same paper the authors asked whether this theorem remains true when barrelledness is replaced by ultrabarrelledness.

In the present paper we answer this question in the positive; for F-spaces (i. e. metrizable and complete tvs) we obtain even a stronger result. Moreover, we discuss the problem of the existence of dense subspaces with large codimension in ultrabarrelled spaces.

¹This work was undertaken with the support of the AVH.

A sequence $(U_n)_{n \in N}$ of subsets of E is called a *string* [1] if every U_n is *balanced* and *absorbing* and

$$U_{n+1}+U_{n+1}\subset U_n, \quad n\in N.$$

A string $(U_n)_{n \in N}$ in a tvs (E, τ) is [1]:

(a) *closed*, if every U_n is τ -closed;

(b) topological, if every U_n is a τ -neighbourhood of zero.

A tvs (E, τ) is *ultrabarrelled* if *every closed* string in E is topological [1]. The following conditions are equivalent for a tvs (E, τ) :

- [i]. (E, τ) is ultrabarrelled
- [ii]. Every linear map from (E, τ) into an F-space with closed graph is continuous.
- [iii]. Every Hausdorff vector topology θ on E which is τ -polar, i.e. θ has a O-basis consisting of τ -closed sets, is coarser than τ , [1], p. 32, p. 44.

-Results: First we prove the following two lemmas;

Lemma 1.

Let (E, τ) be an ultrabarrelled tvs containing a dense c-codimensional ultrabarrelled subspace. Then E admits a countably infinite extension $\tau[M]$ of τ under which E is ultrabarrelled. Moreover, if (E, τ) is metrizable, then there exists a sequence $(\tau[M_n])_{n \in N}$ of countably infinite extensions of τ such that:

[i]. $(E, \tau[M_n])$ is metrizable and ultrabarrelled, $n \in N$.

[ii]. $\tau = \inf \{\tau[M_n], \tau[M_m]\}$ for all $n, m \in N, n \neq m$.

Proof.

Let G be a dense c-condimensional ultrabarrelled subspace of E. let $(x_a)_{\alpha \in A}$ be a Hamel basis of an algebraic complement H to G in E. Consider a partition (A_n) of A such that

card $A_n = \text{card } A$, $n \in N$, $A = \cup (A_n : n \in N)$.

Let

$$F_n = \lim \{x_\alpha : \alpha \in \bigcup A_i, 1 = 1, 2 \dots n\}, \quad n \in \mathbb{N}.$$

Then

$$E = \cup (G + F_n), \quad F_n \subset F_{n+1}$$

and

$$\operatorname{codim}(G+F_n)=c, n \in N.$$

Clearly every $E_n = G + F_n$ is τ -dense and ultrabarrelled. Let n = 1. Choose on $W = E/E_{n_1}$ a (metrizable and ultrabarrelled) vector topology α_1 such that (W, α) is isomorphic to

$$(K^N, \sigma(K^N, K^{(N)})).$$

If $Q: E \to W$ is the quotient map, then

$$M_1 = \{ f \ o \ Q : f \in (W, \alpha_1)' \}$$

is a countably infinite dimensional subspace of E^* and $M \cap E' = 0$. Let τ_1 be the initial vector topology on E with respect to the maps

id:
$$E \rightarrow (E, \tau)$$
 and $Q: E \rightarrow (W, \alpha_1)$

Then

$$\tau_1 | E_{n_1} = \tau | E_{n_1}, \tau_1 / E_{n_1} = \alpha_1, \ \tau < \tau_1, \ \mathrm{cf.}[8]$$

The sets

$$U \cap Q^{-1} \{ x \in W : |f_i(x)| < 1, \ i = 1, 2...n \} =$$

= $U \cap \{ y \in E : |f_i \ o \ Q(y)| < 1, \ i = 1, 2, ...n \},$

where

$$U \in \mathfrak{B}(\tau), n \in N, f_i \in (W, \alpha_1)',$$

compose a O-basis for τ_1 . By [8]. Theorem 2.6 (E, τ_1) is ultrabarrelled (and metrizable when τ is metrizable). Clearly $\tau_1 = \tau[M_1]$. Now assume that (E, τ) is metrizable. Since (E, τ_1) is metrizable and ultrabarrelled, then

$$\bar{E} = \cup (\bar{E}_n : n \in N),$$

where the closure is taken in the completion of $(E, \tau[M_1])$, [1], (11), p. 89 and (7), p. 87. Hence there exists a number $n_2 > n_1$ such that E_{n_2} is $\tau[M_1]$ dense; clearly $(E_{n_2}, \tau | E_{n_2})$ is ultrabarrelled. This enables us to construct on E a countably infinite extension $\tau[M_2]$ of τ such that $(E, \tau[M_2])$ is metrizable and ultrabarrelled and

$$\tau |E_{n_2} = \tau [M_2] |E_{n_2}$$

By simple induction we construct.

- 1. $(E_{n_m})_{m \in N}$ a strictly increasing subsequence of $(E_n)_{n \in N}$.
- 2. $(M_m)_{m \in N}$ a sequence of vector subspaces of E^* such that $E' \cap M_m = 0$, dim $M_m = \aleph_0$.
- 3. $(\tau[M_m])_{m \in N}$ a sequence of countably infinite extensions of τ such that

- [i]. $(E, \tau[M_m])$ is metrizable and ultrabarrelled;
- [ii]. E_{n_m} is $\tau[M_{m-1}]$ -dense, $m \ge 2$;
- [iii]. $\tau[M_m] | E_{n_m} = \tau | E_{n_m}, \tau < \tau[M_m].$

Fix $p, m \in N$, $p \neq m$. Assume p < m. Then $E_{n_{p+1}} \subset E_{n_m}$. Since

$$\tau | E_{n_m} = \inf \{ \tau[M_p], \tau[M_m] \} | E_{n_m} = \tau[M_m] | E_{n_m}$$

then

$$\tau | E_{n_{p+1}} = \inf \{ \tau [M_p], \tau [M_m] \} | E_{n_{p+1}}$$

Since $E_{n_{p+1}}$ is $\tau[M_p]$ -dense, then

$$\tau/E_{m_{p+1}} = \inf\{\tau[M_p], \tau[M_m]\}/E_{n_{p+1}} = \tau[M_p]/E_{n_{p+1}}$$

Therefore

$$\tau = \inf\{\tau[M_p], \tau[M_m]\}$$

by [3], Lemma 1.

Lemma 2.

Let (E, τ) be the inductive limit space of an increasing sequence $(E_n, \tau_n)_{n \in N}$ of F-spaces. If $E' \neq E^*$, then E contains a dense c-codimensional ultrabarrelled subspace.

Proof.

If $E^* \neq E'$, then for some $n \in N$ dim $E_n > \aleph_0$. Hence dim $E_n \leq c$, [5]. Without loss of generality we may assume that n = 1. Using the Baire category theorem one shows that (E_1, τ_1) contains a c-codimensional dense ultrabarrelled subspace L. Let F be an algebraic complement to E_1 in E. Then W = F + L is τ -dense. Let $(U_n)_{n \in N}$ be a closed string in $(W, \tau | W)$. Then $(\bar{U}_n \cap L)_{n \in N}$ is topological in $(L, \tau_1 | L)$, where the closure is taken in τ . Since L is dense in E_1 and (E_1, τ_1) is ultrabarrelled, then $(\bar{U}_n \cap E_1)_{n \in N}$ is topological in (E_1, τ_1) . Let $x \in E$, then x = y + z, $y \in F$, $z \in E_1$. Fix $n \in N$. There exist $l_n \in L$ and $\lambda_n > 1$, $\lambda_n \in K$, such that

$$l_n - z \in \overline{U}_{n+1} \cap E_1$$
 and $l_n + y \in \lambda_n U_{n+1}$.

Hence $x \in \lambda_n \overline{U}_n$. By the ultrabarrelledness of (E, τ) we derive that $U_n = \overline{U}_n \cap W$ is a $\tau | W$ -neighbourhood of zero for all $n \in N$.

Using Lemmas 1 and 2 we note the following.

Proposition 1.

Let (E, τ) be an infinite dimensional F-space (or metrizable (LF)-space). Then there exists a sequence $(M_n)_{n \in N}$ of vector subspaces of E^* such that for every $n \in N$:

- (i) $M_n \cap M_m = 0$, dim $M_n = \aleph_0$, $E' \cap M_n = 0$, $n \neq m$.
- (ii) $(E, \sup\{\tau, \sigma(E, M_n)\}$ is metrizable and ultrabarrelled.
- (iii) $\sup\{\tau, \sigma(E, M_n)\}$ and $\sup\{\tau, \sigma(E, M_m)\}$ are not comparable, $n \neq m$.

Corollary 1.

Let (E, τ) be an infinite dimensional F-space. Then

$$au = \inf\{ au[M]: M \in E^*, M \cap E' = 0\}.$$

In [7] (cf. also [4]) it was shown that every locally convex barrelled space E with $E^* \neq E'$ contains a dense denumerable-codimensional subspace, necessarily barrelled by [10]. We extend this result to ultrabarrelled spaces. The proof of the Proposition 2 uses some ideas found in [7].

Proposition 2.

Every ultrabarrelled tvs (E, τ) with $E' \neq E^*$ contains a dense infinitecodimensional subspace.

Proof.

Let $\{(x_i)_{i \in B}\}$ be a Hammel basis for E and $\{(x_i, f_i)_{i \in B}\}$ the corresponding biorthogonal system. Assume that $D = \{i \in B : f_i \notin E'\}$ is finite. Then $Z = \lim\{x_i : i \in B \setminus D\}$ is an ultrabarrelled finite-codimensional subspace of E, [2]. Clearly Z' separates points of Z. Let $\mu(Z, Z')$ be the finest locally convex topology on Z weaker than $\tau | Z$. The convex $\tau | Z$ -neighbourhoods of zero compose a 0-basis for $\mu(Z, Z')$. Hence $(Z, \mu(Z, Z'))$ is a Hausdorff barrelled space. By Theorem 1 of [7] $Z' = Z^*$. Let φ be the finest vector topology on Z. Then $\mu(Z, Z') \leq \tau | Z \leq \varphi$. By [9], 6.8 (e), the topology φ is $\mu(Z, Z^*)$ -polar. Hence φ is $\tau | Z - polar$. Since $\tau | Z$ is ultrabarrelled, then $\varphi = \tau | Z$ (cf. Introduction). Therefore Z is τ -closed and hence $E' = E^*$, a contradiction. This proves that D is infinite. Let

$$M = \lim\{x_i : i \in B \setminus I\},\$$

where I is a countably infinite subset of D. By \overline{M} and H we denote the closure of M in τ and an algebraic complement to \overline{M} in E, respectively. Assume that $\dim(\overline{M}/M) < \aleph_0$. Then $M + F = \overline{M} + F$, where

$$F = \lim\{x_i : i \in T\}$$

for some finite subset T of I. Then

$$(E,\tau)=(M+F)+N$$

(topologically), where

$$N = \lim\{x_i : i \in I \setminus T\},\$$

[2], (4), p. 29. Hence every f_i , $i \in I \setminus T$, belongs to E', a contradiction with $I \subset D$. Therefore M + H is a dense infinite-codimensional subspace in (E, τ) .

Corollary 2.

Let E be an ultrabarrelled tvs. Then E has its finest vector topology if and only if every subspace of E has infinite codimension in its closure.

REFERENCES

- [1] N. ADASCH, B. ERNST, D. KEIM.: Topological vector spaces, Springer-Verlag, Berlin 1978.
- [2] N. ADASCH, B. ERNST.: Teilräume gewisser topologischer Vektorräume, Collect. Math. 24(1073), 27-39.
- [3] S. DIEROLF, U.SCHWANENGEL.: Examples of locally compact non-compact minimal topological groups, Pacif. J. Math. 82(1979), 349-355.
- [4] S. DIEROLF.: Über Verabbarkeitseingeschaften in topologischen Vektorräumen, Dissertation, München 1974.
- [5] J. O. POPOOLA, I. TWEDDLE.: On the dimension of a complete metrizable topological vector space, Canad. Math. Bull. 20(1977), 271-2.
- [6] J. O. POPOOLA, I. TWEDDLE.: Stability of barrelledness and related concepts in topological vector spaces, Proc. Edinburgh Math. Soc. 27(1984), 321-325.
- [7] W. J. ROBERTSON, S. A. SAXON, A. P. ROBERTSON.: Barrelled spaces and dense vector subspaces, Bull. Austr. Math. Soc. 37(1988), 383-388.
- [8] W. ROELCKE, S. DIEROLF.: On the three-space-problem for topological vector spaces, Collect. Math. 32(1981), 3-25.
- [9] W. ROELCKE.: Topologische Vektoräume I, Vorlesung. München 1976.
- [10] S. A. SAXON, M. LEVIN.: Every countable-codimensional subspace of a barrelled space is barrelled. Proc. Amer. Math. Soc. 29(1971), 91-96.

Institute of Mathematics A. Mickiewicz University 60-769 Poznan Matejki 48/49 Poland Mathematisches Institut der Universität D-8000 München 2 Theresienstr. 39 Bundesrepublik Deutschland

440