On the structure of a vector measure 1

BY BALTASAR RODRIGUEZ-SALINAS

Recibido: 9 de mayo de 1990

Académico Numerario

Abstract

The Rosenthal's lemma and the Diestel-Faires theorem are generalized. As a consequence the subspace of $l_{\infty}(I)$ are studied and it is proved that this space is primary when I as an infinite set.

We will denote by z(I) the subspace of $l_{\infty}(I)$ formed by the elements having countable support. A characterización of Banach spaces containing an isomorphic copy of $l_{\infty}(I)$ and z(I) is stablished. Clearly it follows from the Hahn-Banach theorem that such copies of $l_{\infty}(I)$ are complemented subspaces.

1. Lemma

(Generalization of the Rosenthal's lemma). Let Σ be a σ -algebra of subsets of a set Ω . Let $(\mu_i)_{i \in I}$ be a uniformly bounded infinite family of finite additive scalar-valued measures defined on Σ . Then, if $(E_i)_{i \in I}$ is a disjoint family of members of Σ and $\epsilon > 0$, there is a sub-family $(E_i)_{i \in J}$ of $(E_i)_{i \in I}$ such that card J = card I and

$$|\mu_i|\left(\bigcup_{\substack{j\in\Delta\\j\neq i}}E_j\right)<\epsilon$$

for all countable subsets Δ of J and all $i \in J$. If $\Sigma = 2^{\Omega}$ then the family $(E_i)_{i \in J}$ may be chosen such that

$$|\mu_i|\left(\bigcup_{\substack{j\in\Delta\\j\neq i}}E_j\right)<\epsilon$$

for all $i \in J$.

If Σ is an algebra the first result holds for all finite subset Δ of J.

¹Supported in part by DGICYT PB88-0141.

Proof.

Being card $(I \times I) = \text{card } I$ we can proved like in [1] taking a partition of I formed by a disjoint family $(M_i)_{i \in I}$ of subsets such

$$\bigcup_{i \in I} M_i = I \quad \text{and} \quad \operatorname{card} M_i = \operatorname{card} I$$

for all $i \in I$, and remarking that for every μ_i there exists an extension $\tilde{\mu}_i$ on 2^{Ω} such that $\|\tilde{\mu}_i\| = \|\mu_i\|$ and

$$|\mu_i|(A) \leq |\tilde{\mu}_i|(A)$$
 for all $A \in \Sigma$.

.

(See [3]).

2. Theorem

(Generalization of the Diestel-Faires theorem). Let Σ be σ -algebra of subsets of a set Ω and $G: \Sigma \to X$ be a Banach valued bounded measure. If $(E_i)_{i \in I}$ is a non finite and disjoint family of sets $E_i \in \Sigma$ such that

$$\|G(E_i)\| > \epsilon \quad (\epsilon > 0)$$

for every $i \in I$, then there exists an isomorphism $T : z(I) \to X$ and a subfamily $(E_i)_{i \in J}$ of $(E_i)_{i \in I}$ with card J = card I such that

$$T(e_A) = G(E_{i(A)})$$

for every subset A of I with $\chi_A \in z(I)$ (in this case A is countable), being

$$e_A = \chi_A (= 1_A)$$

$$E_{j(A)} = \sum_{i \in A} E_{j(i)}$$

and $j: I \rightarrow J$ a bijection.

In the case of being $\Sigma = 2^{\Omega}$, the last result holds also if z(I) is replaced by $l_{\infty}(I)$.

If Σ is only an algebra then the result holds only if z(I) is replaced by $c_0(I)$.

Proof.

We can proceed like in [1] using the Lemma 1.

3. Definition

Let J be a set, we say that a set I is J-primary if

$$I = \bigcup_{j \in J} I_j$$

implies the existence of some I_j having the same cardinal than I.

Whatever the infinite set J be, there exists J-primary sets. In fact, if

$$\alpha \ge \operatorname{card} J$$
 and $\operatorname{card} I = \alpha + 1$,

we have that I is a J-primary set.

Remark.

If the set I is N-primary then the condition

$$\|G(E_i)\| > \epsilon$$

can be substituted by $G(E_i) \neq 0$. In fact, there exists $n \in N$ such that the set

$$\{i \in I : \|G(E_i)\| > 1/n\}$$

has the same cardinal than I.

If

$$I=\bigcup_{n\in N}I_n$$

with card $I_n < \text{card } I$ for every $n \in N$, then the vector measure

$$G:2^{I}\rightarrow l_{\infty}\left(I\right)$$

defined by

$$G(A)(i) = 1/n \quad \text{if} \quad i \in A \cap \left(I_n - \bigcup_{k=1}^{n-1} I_k \right)$$

$$G(A)(i) = 0 \quad \text{if} \quad i \notin A.$$

verifies that $G(\{i\}) \neq 0$ for every $i \in I$ and, nevertheless, there is not any disjoint family $(E_i)_{i \in I}$ of subsets of I verifying that

$$\|G(E_i)\| > \epsilon$$

for some $\epsilon > 0$ and every $i \in I$.

4. Corollary

Let I be a N-primary set and Γ a total subset of the dual space X^* of the Banach space X. If $\Sigma_{i \in I} x_i$ is a (formal) series in X with $x_i \neq 0$ for every $i \in I$, and such that every countable subseries is Γ -convergent, in the sense that for every countable subset A of I there exists $x_A \in X$ such that

$$\sum_{i\in A} x^* x_i = x^* x_A$$

for every $x^* \in \Gamma$, then the space X contains an isomorphic copy of z(I).

If in addition every subseries of $\Sigma_{i \in I} x_i$ is Γ -convergent, then X contains an isomorphic copy of $l_{\infty}(I)$.

Proof.

If we define $G: \Sigma \to X$ such that $G(A) = x_A$ for every $A \in \Sigma$, being Σ the σ -ring of the countable subsets of I or 2^I , we can apply the Theorem 2 since it follows from the Dieudonné-Grothendieck theorem that the vector measure G is bounded.²

5. Corollary

Let I be an N-primary set. If $\Sigma_{i \in I} f_i$ is a (formal) series in C(K) of functions $f_i \neq 0$ such that every countable subseries is pointwise convergent on a dense subset H of K, to some function of C(K), then C(K) contains an isomorphic copy of z(I).

If in addition every subseries of $\Sigma_{i \in I} f_i$ is pointwise convergent on H to some function of C(K), then C(K) contains an isomorphic copy of $l_{\infty}(I)$.

Remark.

If $G: \Sigma \to X$ is a bounded vector measure (for instance with X = C(K)) and $\mu: \Sigma \to R$ is a non negative finetely additive measure, then

$$G_x(A) = G(A) + \mu(A)x \quad (A \in \Sigma, x \in X)$$

defines a bounded vector measure $G_x : \Sigma \to X$. If $(E_i)_{i \in I}$ is a disjoint family of non void sets $E_i \in \Sigma$ the measure μ can be chosen such that $\mu(E_i) = 0$ for every $i \in I$ and

$$\mu\left(\bigcup_{i\in J}E_i\right)=1$$

for some countable subset $J \subset I$. Therefore, there exists vector measures $G_x \neq G$ such that

²Theorem 2 holds for measures defined on a σ -ring Σ since they can be extended to a σ -algebre taking $G(A) = -G(A^c)$ when $A^c \in \Sigma$ if $\Omega \notin \Sigma$.

$$G_x(E_i) = G(E_i)$$

for every $i \in I$.

6. Definition

A family $(X_i)_{i \in I}$ of complemented subspaces of a Banach space X is said to be a *projective representation* of X when $P_i x = 0$ for every $i \in I$ implies that x = 0, being $P_i : X \to X_i$ the projection associated to X_i . An important particular case appears when $P_i P_j = 0$ if $i \neq j$.

A Banach space X is said to be *primary* if for every direct sum $Y \oplus Z = X$ we have that X is isomorphic to Y or Z. In a similar way, if J is a set, we say that the Banach space X is *J*-primary if for every projective representation $(X_j)_{j \in J}$ of X there is an X_j isomorphic to X.

7. Theorem

Let be $X = l_{\infty}(I)$ or X = z(I), where I is a J-primary set and J is an infinite set. If $(X_j)_{j \in J}$ is a projective representation of X, then there exists an X_j containing an isomorphic copy of X.

Therefore, if $X = l_{\infty}(I)$, this X_j is isomorphic to X and $l_{\infty}(I)$ is a J-primary Banach space.

Proof.

Let us suppose that $X = l_{\infty}(I)$. Then there exists a bounded vector measure $G: 2^{I} \to X$ and a disjoint family $(E_{i})_{i \in I}$ in 2^{I} such that $||G(E_{i})|| > \epsilon$ for every $i \in I$ and some $\epsilon > 0$. Let be $G_{j} = P_{j}G$, being P_{j} the projection associated to X_{j} , then there exists an X_{j} such that

$$I_i = \{i \in I : G_i(E_i) \neq 0\}$$

has the same cardinal than *I*. Therefore, since $G_j: 2^I \to X_j$ is a bounded measure, it follows from the Theorem 2 that the space X_j has a subspace which is isomorphic to $l_{\infty}(I)$ and, therefore, complemented (in X_j).

Being $X = X_{j \oplus} Y$ and $X_{j} \approx X_{\oplus} Z$ it follows from Pelczyński's decomposition method that

$$X \oplus X_j \approx X \oplus (X \oplus Z) \approx (X \oplus X) \oplus Z \approx X \oplus Z \approx X_j$$

and

$$\begin{array}{rcl} X \oplus X_j &\approx & (X \oplus X \oplus \ldots)_{\infty} \oplus X_j \approx ((Y \oplus X_j) \oplus (Y \oplus X_j) \oplus \ldots)_{\infty} \oplus X_j \\ &\approx & (Y \oplus Y \oplus \ldots)_{\infty} \oplus (X_j \oplus X_j \oplus \ldots)_{\infty} \oplus X_j \\ &\approx & (Y \oplus Y \oplus \ldots)_{\infty} \oplus (X_j \oplus X_j \oplus \ldots)_{\infty} \end{array}$$

$$\approx ((Y \oplus X_j) \oplus (Y \oplus X_j) \oplus \ldots)_{\infty}$$
$$\approx X$$

and, therefore, $X_j \approx X$.

In a similar way we can proceed when X = z(I) (or $X = c_o(I)$) for the first part.

Remark.

If I is not J-primary the Theorem 7 does not hold since $(l_{\infty}(I_j))_{j \in J}$ is a proyective representation of $l_{\infty}(I)$ if

$$I=\bigcup_{j\in J}I_j.$$

The same happens for X = z(I).

8. Theorem

If I is an infinite set then $l_{\infty}(I)$ is a primary space.

Proof.

It is enough to proceed like in the Theorem 7 with some evident modifications.

Remark.

The Theorem 2 can also be used for proving that l_{∞} is a prime space, in particular for proving the Lemma 2.a.8 of [2].

REFERENCES

- [1] DIESTEL, J. AND UHL, J. J. JR.: Vector Measures. A.M.S. Providence, R.I., 1977.
- [2] LINDENSTRAUSS, J. AND TZAFRIRI, L.: Classical Banach Spaces, I. Springer, Berlin Heidelberg New York, 1977.
- [3] ROSENTHAL, H. P.: On relatively disjoint families of measures, with some applications in Banach space theory. Studia Math. 37 (1970).