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Abstract

In this article projectional resolutions of identity are constructed in a class of metrizable locally
convex spaces that contains the weakly countably determined Fréchet spaces. It is also proved that if a
Fréchet space E has E" [f (E", E'))/E separable then E is the topological direct sum of two subspaces
F and G with G"[B(G", G')] separable and F reflexive.

Resumen

En este articulo se demuestra que existen resoluciones proyectivas del operador identidad en los es-
pacios localmente convexos metrizables de una amplia clase que contiene a los espacios de Fréchet débil
numerablemente determinados.

Se obtiene, como aplicacion, que si E es un espacio de Fréchet tal que E” [f (E", E"))/E es sepa-
rable entonces E es la suma directa topologica de dos espacios de Fréchet F y G, de manera que F es
reflexivoy G" [B(G", G")] es separable.

1. INTRODUCTION AND NOTATIONS

All the topological spaces considered here will be Haudorff and comple-
tely regular topological spaces.

If X is a topological space {X}* denotes its Stone-Cech compactifica-
tion. It is said for a sequence of subsets (A4,) of X that determines X if
givenany x in X there is a subsequence (4,) of (4,) such that

x€ B, CX,
j=1

where B; denotes the closure of 4, in {X}*, j=1,2,.. Itissaid that X
is countable determined if there is some sequence of subsets of it that determi-
nes it. It is said that X is K-analitic if it can be obtained through the Suslin
operation with closed subsets of {X}*. Obviously every K-analytic space is
countably determined. If X is the continuous image of a K-analytic space it

(*) Supported in part by CAICYT.
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is also K-analytic; every closed subspace of K-analytic space is K-analytic
'too, and the countable product of K-analytic space with the product topolo-
gy is K-analytic, [2].

If Y isa subset of a topological space X and .# is the topology of X,
Y [.#] denotes the topological space Y with the topology induced by .7

N will be the set of positive integers. If 4 isaset, | 4| denotes its car-
dinal number. The first infinite ordinal will be w. If « is an ordinal number,
|| denotes its cardinal number; particularly |w| =¥,. If X is a topologi-
cal space, we set d (X) to denote the density character of X, we mean the
first cardinal number such that there is a dense subset 4 of X with
d(X)=|A4]|.

All of the vectors spaces we shall use here are defined over the field K
of real or complex numbers; if K is real, H denotes the field of rational
numbers, and if K is complex, H denotes the subfield of numbers a + bi
with a and b rational numbers.

Given a dual pair {E, F) of vector spaces with the bilinear from <., .),
we write o (E, F), u (E, F) and f (E, F) to denote the weak, Mackey and
strong topologies on E, respectively.

If E is a locally convex space, E’ is its topological dual and E” its
bidual, i.e., E” is the topological dual of E’[f (E', E)]. E denotes the alge-
braic dual of E’. We identify, as usually, E with a subspace of E. If 4 is
asubset of E, A, A and A* are the closures of 4 in E” [0 (E", E')],
Elo (E, E)] and {E[o (E, E")]}*, respectively; A4, and also (4), is the
closure of A in the completion £ of E. A° is the polar set of 4 in E’,
and A* is the subspace of E’ which is orthogonal to A. If x belongs to
E and u to E', we write {(x, u) instead of u (x). If P is a continuous
projection in E, P’ is the adjoint projection in E’.

If a locally convex space E is such that E [0 (E, E')] is K-analytic
(resp. countably determined) we say that E is weakly K-analytic (resp.
weakly countably determined). It is easy to see that every reflexive Frechet
space is weakly K-analytic.

Let E be a metrizable locally convex space of infinite dimension. Let
I.ll., n=1,2, ..., bea family of continuous seminorms on E that defines
its topology. Let p be the first ordinal with |u| =d (E). A resolution of
identity in E, associated with ||.|[,, n=1,2, ..., is a family

{P; o < o< p}

of continuous projections in E such that, for w < a < f < u, the fo-
llowing conditions are satisfied:

1) ”Pa”nzl, n=1,2,..,
2) PaOPﬂ:PaZPﬂOPa,

3) d(P.(E) < |af,

4) P, istheidentity in E,
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5) if « isa limit ordinal, w < a, the closure of

U{Pn(E): o<n<a
in E coincides with P, (E).

If (X, ||.]]) is a weakly countably determined Banach space, L. Vasak
proves in [11] that there is a resolution of identity in X, associated with ||.||.
This result extends a previous one of D. Amir and J. Lindenstrauss for
weakly compactly generated Banach spaces. In this paper we obtain resolu-
tions of identity in a class of metrizable locally convex spaces that contains
the weakly countably determined Fréchet spaces. On the other hand, our
method to construct the projections applied to Banach spaces drastically sim-
plifies the Amir-Lindenstrauss-Vasak way of doing it.

We shall need later the following two results that we have proved in [7]
and [8], respectively:

a) Let E be a Fréchet space. Let F be a subspace of E” such that
E"=E+ F and F[B(E", E')] is separable. If x is a point of E”
there is a sequence (x,) in E which converges to x in
EII [o_ (E/I E )]

b) If F is a closed subspace of a Fréchet space E, then E + F is
closedin E” [ (E", E")].

2. WEAKLY COUNTABLY DETERMINED METRIZABLE LOCALLY
CONVEX SPACES

Let (A4,) be a sequence of subsets in a locally space E. We shall say
that (4,) is quasi-bounded if it is a decreasing sequence such that for every
neighbourhood of the origin U in E there is a positive integer m such that

A, CmU.

Proposition 1— Let (A,) be a quasi-bounded sequence in a locally
convex space E. If
N 4.CE
n=1

then

Proof — 1t is clear that
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is a weakly compact subset in E. Let us take a point x in E which is not

in A. Let V be a closed neighbourhood of x in E [o (E, E')] which does
not meet A. Let us suppose that there are vectors

x, €A, 0V, n=1,2, ...

The sequence (x,) is bounded in E, so it has a cluster point x, in
E" [0 (E", E")]. Obviously,

xoE€E A, n=1,2, ...,
from where it follows that
XoEANV
which is a contradiction. Therefore, there is a positive integer m with

A, N V=g
Thus, .
x€&E A,
and we have

N 4= 4.
n=1 n=1
g.e.d.

Proposition 2.— If (A,) is a decreasing sequence of subsets in a locally
convex space E, the following are equivalent:

~

A,CE.
1

1) (4, is a quasi-bounded sequence and

n

DX

2) () AXCE
n=1
Proof - Let us take a point x in () A% ( N }f,,). We set
n=1 n=1

{Vijedy

to denote a neighbourhood basis of x in {E [o (E, E"]}* (E" [0 (E", E"))).
For the product N x J we introduce the order relation:

) (m, j2), (12, j2) EN X J,
(nlpjl) < (nz,jz) if n < ny and I/le I/jz‘

We choose for every (n, /)€ N xJ a vector

x(npeA,nV,.
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Obviously, the net
{x(m.j): m, JENXJ, <} 6]

convergesto x in {E[o (E, ENI}* (E" [0 (E", E")).

Firstly let us suppose that 1) holds.

Given any u of E’, we could find a neighbourhood of the origin U in
E such that

sup { |y, w>|: yEU} < 1.
The quasi-boundedness of (4,) give us a positive integer m such that
A, CmU.

We set u=u, + iu, with u, and wu, real forms. For k=1,2, y€ E, we
write:

m, if w()>m,

we )= w @), if -m<wu@<m,

-m, if w(y) <-m.

Let us take x in () A and a neighbourhood basis {V;: j€J} of x in

n=1
{E[o (E, E")]}*. Then, the net (1) converges to x in that space, hence, given
any ¢ > 0, we could find (n, jo) € N xJ with ne > m such that

[ Wi (x (11, J1) — Wi (x (12, J2))| < k=1,2,

€
“2— )
(n1, /1), (2, o) ENXJ, (11, 41)s (12, 72) = (1o, jo)-
Obviously,
w (x (i) = Wi Cx (i), hk=1,2,
and therefore
|u (x (1, J1) — x (12, J2))| <
<y (x (4, ) = 42 (% (12, o)) |+ Ltz (6 () - 2 O (may j2)) | <
€ €

<—2—+7:8

from where we see that (1) is a Cauchy net in E [0 (E, E')], so it must be

E (E, E')-convergent to a point z of A, n=1,2, .. If we apply the former
proposition we obtain that z belongs to E and thus z=x.

Conversely, let us now suppose that 2) holds. If x belongs to () A,

n=1
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and {V;: jeJ} isa neighbourhood basis of x in E”[o (E”, E)], then the
net (1) converges to x in that space. Oviously, this net has a cluster point
z in {E[o (E, E)]}* that belongs to 4% n=1,2, ..., from where we know
that z belongs to E and, consequently, z=x. Therefore we have

 4,CE.
n=1

On the other hand, let us suppose that (4,) is not a quasi-bounded sequence
in E and so we have a neighbourhood of the origin U in E such that

AmémU, m:l’ 2, “ee
We chosse
X € Ay X E mU, m=1,2, ..

(x,) is an unbounded sequence in FE [o (E, E')] and therefore there is some
u in E’ such that

sup {|{xmuy|: m=1,2, ..} =0
Taking a subsequence of (x,,), that we follow denoting it by (x,), we have

[{Xmsup] > m+1, m=1,2,..

Let y be an element of () A} thatis a cluster point of (x,). We know

n=1

from 2) that y belongsto E. Let us write

Vi={te E: |{t,u)| < |[{y,up| +1}

which is a ¢ (E, E’)-neighbourhood of y from where we obtain a positive
integer p > |<{y, uy| such that x, belongs to V. Nevertheless,

|| +1> [Kxp 3| > p+1> [ up| +1,

which is a contradiction to finish the proof.
qg.ed.

Theorem 1.— If E is a metrizable locally convex space the following are
equivalent:

1) E is weakly countably determined.

2) There is a sequence (U,) of neighbourhoods of the origin in E
such that, for every x in E, there is a quasi-bounded subsequence
(U,) of (U,) with
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Proof—1)= 2). Let (A4,) be a sequence of subsets in E that determines
E (o (E, E")]. Without lose of generality we can suppose that (A4,) is closed
by finite intersection of its elements and that the origin belongs to A4,
n=1,2,.. Let

ViDVyD..DV,D..

be a fundamental system of neighbourhoods of the origin in E. We set
Us=A4,+V,, n=1,2,..
If x belongsto E, there is a subsequence (B,) of (4,) such that
xe () BiCE.
n=1

So we have a subsequence (4,) of (4,) such that

A, = n@} B,

where (m;) is a strictly increasing sequence of positive integers. In accordan-
ce with the former proposition, (4,) is a quasi-bounded sequence and

xed:= ) Zf,,jCE.

Jj=1

If is immediate that (U,) is a quasi-bounded sequence. Let z be any point

of E” that does not belong to 4. Let W be a closed neighbourhood of z
in E"[o (E", E")] such that

Let us suppose that there are vectors

XEWAU,,  j=1,2..
We write
szyj+ Zj, ijAnj, Zje an, _]: 1, 2,
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Since (z;) converges to the originin £ and (y;) is a bounded sequence, we
have a cluster point x, in E” [ (E”, E’)] of the sequence (x;) which is a
cluster point of (y;) also. It now follows that

Xo€EWN ( N /T,,j):a
j=1
Which is a contradiction. So we have now
xe () U,CE
j=1

2)=1). Let (U,) be a sequence of neighbourhoods of the origin in E
that verifies condition 2). Given any x in E, we find a quasi-bounded
subsequence (U,) of (U,) such that

xe€ () ﬁnjCE.
j=1

Then, after the former proposition, we know that

x€ () UtCE
j=1

j=

from where it follows that (U,) determines the space E[o (E, E)].
g.e.d.

Proposition 3.— Let (A,) be a quasi-bounded sequence in a locally
convex space E such that

 4,CE.
j=1

Let B, be the absolutely convex cover of 4,, n=1,2, ... If A is the abso-

lutely convex cover of () /T,,j in E"[o (E", E")] then
j=1

A= () B.
n=1
Proof— Let us take a point x in E” that does not belong to 4. Since

A is o (E", E")-compact we deduce that there is an element » in E’ and a
number k < 1 such that
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{x,uy =1, sup {|<y, uy|: ye A} < k.
Let us write
Vi={z€E" |{z,uy| =k}
and suppose we have a sequence
X, €A, NV, n=1,2,..
From the quasi-boundedness of (4,) in E we know that (x,) is bounded in

E and therefore it has a cluster point x, that belongsto A4 and ¥V, we
mean

XoE A, [{xo, u)| = k

which is a contradiction. Consequently, there is a positive integer n, such
that

AN V=0
and thus
x¢& B,
from where it follows that
A= ﬂ E,,.
n=1

q.ed.

Theorem 2.— If E is a Fréchet space, the following conditions are equi-
valent:

1) FE is weakly countably determined.

2) The is a sequence (U,) of absolutely convex neighbourhoods of
the origin in E such that, for every x in E, there is a quasi-
bounded subsequence ( U,,j) of (U,) with

Proof— 1t is a straight consequence of Theorem 1, Proposition 3 toge-
ther with Krein’s theorem [6, p. 325].
g.e.d.
Our Theorem 2 suggest the following

Definition— A metrizable locally convex space E is weakly countably
convex-détermined if there is a sequence (U,) of absolutely convex neigh-
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~ bourhoods of the origin such that, for every x in E, there is a quasi- -
bounded subsequence (U,) of (U,) such that

xe () U,CE
j=1

Proposition 4.— Let E be a Fréchet space. If there is a metrizable locally
convex topology .# on E” which is coarset than u (E”, E’) then E"[.7]
is weakly countably convex-determined.

Proof — Let
U,oU,>..0U,D..

be a fundamental system of neighbourhoods of the origin in E that we take
absolutely convex and closed. Let us consider the family of subsets of E”

m0) A (m0) ... (m,,(7,,)

where p, my, m,, ..., m, are positive integers, and we order it in a sequence
(V}). Weset Z, to denote the closure of ¥V, in

D:=(E" £V [0 (E" s (B D))

Let us take any point x of E”. For every positive integer n we could find
another s, such that

~

x€s, U,

We extract a subsequence (V) of (V) which is also a subsequence of

Obviously, (};) is a decreasing sequence and

xEV,j

j=1,2, ..

(V,) is also a quasi-bounded sequence in E” [.#']. Indeed, if W isan abso-

lutely convex closed neighbourhood of the origin in E” [.#'], and W, is the
polar set of W in (E” [.#]), we have a positive integer n such that W,
is contained in U? because the boundedness of W, in E'[c (E’, E)]. Con-

sequently U,C W. If
Gn=Max {81, S2, ..., Sn}
then
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&:W> () 50D,
j=1

Jj=

Now, let us take any point z& (E”[.# ])” whichisnotin E”. Obviously

vi=(\ ¥,
ji=1

is a countably compact subset of E” (¢ (E”, E")], [3] (see also [6, p. 394]),
and therefore V' is weakly compact in E” [.#]. It now follows that there is
a closed neighbourhood T of z in D that does not meet V. Let us suppo-
se there is a sequence.

XEV,NT,  j=12,..

The sequence (x;) is bounded in E” (¢ (E”, E')], hence it has a cluster point
Xo in this space and

Xo€VNT

which is a contradiction. It follows from that

Z,CE".
=1

J

it is now obvious, bearing in mind that V, is absolutely convex, r=1, 2, ...,
that E” [#] is weakly countably convex-determined.
g.e.d.
Proposition 5.~ Let E be a locally convex space. Let (4,) be a quasi-
bounded sequence of absolutely convex subsets of E. If

N 4,CE,
n=1

co

theset (| A9 isa neighbourhood of the origin in E’ [u (E’, E)].
1

Proof.— Given

uceE’, ue ﬂ AS

we find, for every positive integer 7,
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X0 € A | <X up| > 1.

The sequence (x,) is bounded in FE and has a cluster point x, in
E"[o (E", E")] and

Xo & ﬂ /Zn C E
n=1
from where it follows that |<{x,, u)| > 1. Then

{veE': 1K, 93] < 1, x€ ) ,Z,,}c N 4. o)
n=1

n=1

Since |) A, is absolutely convex and weakly compact in E the conclusion

n=1
follows from (2).
g.ed.

3. RESOLUTIONS OF IDENTITY IN WEAKLY CONTABLY
CONVEX-DETERMINED METRIZABLE SPACES

Teorem 3.— Let E be an infinite dimensional metrizable locally convex
space. Let (U,) be a sequence of absolutely convex and closed neighbour-
hoods of the origin in E such that, for every x in E, there is a quasi-
bounded sequence (U,,j) of (U,) with

x< () U,CE.
j=1

Let 4, and B, be infinite subsets of £ and E’, respectively, and let 1 be
a cardinal number such that |4, < 4 and |B,| < A. Then there exists a
continuous projection 7" on E that verifies the following conditions:

) T(E)DA, d(T(E)<4i, TWU)CU, n=12,..

2) T (E"YDB, d(T'(EY)|[o(E,FE)]<A

Proof— Let us write |.|,, for the Minkowski functional of U, and
U in E and in the linear hull L (U%) of U in E’, respectively, m =

=1, 2, ... For every positive integer r and every x in E, u (x,r)EE’ is
choosed such that

el =1 xl=<x u )

Given positive integers r, s and a vector x of E’ u (x,r,s) istakenin E
such that
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u(x,r,s)=0 if x& L (U,

lu(x,r, 9|, =1, [{u(x,r,s), x)| = S—S—l— x|, if xeL(Up.

We proceed by recurrent. It is supposed that 4, C E, B, C E’, with
|A,] < A, |B,] < 4, has been obtained for a non negative integer n. C,
and D, are going to be the sets of linear combinations of vectors in 4, and
B,, respectively, with scalar taken in H. We define

Ap1=Cou{u(x,r,8): x€D,, r,5=1,2,...}

B,y1i=D,u{u(x,r); x€C, r=1,2,..}

We set F and G to denote the closures of | ) 4, and () B, in E and

n=0 n=1

E' (o (E', E)], respectively. Since 4,,,D> C, and B,,,D D, it follows that
F and G are vector spaces. Obviously,

d(F) < 4, d(F(o (E',E)) < A

Given xeF, z€(G*), reN and & > 0, a positive integer n and 1€ 4,
is chosen such that |x—¢|, < §. Then

x|, < |x—t],+ |t], < 6+t ut,))=06+t+z, u(t,n) <
SO+ [x+z, u@t, )|+ |[Kt—-x, u(t, )| <
SO+ |x+z|,+ | t—z], < |x+z|,+20

and consequently
x|, < |x+2z|, r=12,.. 3)
Let us suppose that there exists some vE G N FX, v#0. Let x, be some
point in E with {xo, v) = 3. We find a quasi-bounded subsequence (U,)
of (U,) such that
XEM:= () (7,,ch
j=1

Obviously,
V+M)N"M°=op. 4

According to Proposition 5, we know that () Us is a neighbourhood of
j=1

the origin in E’ [u (E', E)], hence we have some U, in (U,) and x € E

such that
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xe@+lwyw(ﬁ B),  xeL(U. (5)
n=1

It follows from (4) and (5) that
x|, > 1, [x—v|, < 1.
A positive integer s such that

-1
S_— |X|,> 1
S

can be also determined. Then u (x, r, s) € F and, consequently,

-1
1> |x—v], = [<u@r,s), x—vy| = |<ulxrs), xp| > -

[x], > 1
S

which is a contradiction. Therefore G n F* = {0}, so we have F+ (G') =
= E. Tt follows from (3) that F(G*) ={0} and,if P denotes the projection
of E onto F along (G*) it follows that

PUy)cU, n=1,2, ..

Let un take a point z € E. We find a quasi-bounded sequence (U,) of
(U, such that

ze () U,CE.
j=1

Then

and thus

P@e(

s

| (7mj)mFCEmF:F

j=1
and consequently the restriction 7" of P on E is a continuous projection of
E onto F with kernel G*. It is quite obvious now that T satisfies condi-
tion 1) and 2) of the theorem.

q.ed.

Theorem 4— Let E be a weakly countably convex-determined metriza-
ble locally convex space of infinite dimension. Let

Nl e < e € 1l < o
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be a fundamental system of continuous seminorms of E. If u is the first
ordinal such that |u| =d (F) there is a resolution of identity in E

{P; 0 <o < p}
associated with ||.||,, n=1,2, ...

Proof— Let (U,) be a sequence of absolutely convex closed neighbour-
hoods of the origin in E such that, given any x € E, there is a quasi-
bounded sequence (U,) of (U,) such that

xe () (7,,jCE.
j=1

Without any restriction, it is assumed that the sets
{xeE: (x|, <1}, n=1,2, ..,

are members of the sequence (U,) and that it contains the finite intersections
of its elements.

If d(E)=2¥,, itisenough to take P, for the identity mapping and the
conclusion is obvious. If d(F) > N,, we take

{x: v <y}

a dense subset of E. We determine a continuous projection 7 in E that
verifies conditions 1) and 2) of the former theorem when

Ao={xy v < 0}, B,={0}, A=,

Let us denote by P, this projection. Let us take w < a < u and suppose
se have continuous projections in E,

{Pp o < B<af,

that have been defined in such a way that they verifie conditions 1) and 2) of
Theorem 3 for T=Ps, A=|B|, Ao={x,: v < B} and B,={0}. Itis also
assumed that

P,oPi=P,=P°P, os<n<{<o.
If o is not a limit ordinal, there is y such that y+ 1 =« and we take two

dense subsets 4, and B, of P,(E) and P;(E’) [0 (E', E)], respectively,
verifying

|4, (E)| =d (P, (E)), |B,| =d(P; (E') [0 (E', E))).

If we apply Theorem 3 with
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Ao=A4, 0 {x,: v <a}, A=al, B,=B

7

a continuous projection 7 in FE is obtained verifying conditions 1) and 2)
of it. Let us denote by P, the operator 7. Obviously, P, (E) contains
P,(E) and P, (E’) D Py (E’) because P, (E’) is o (E’, E)-closed. Conse-
quently,

P,oP,=P,=P,0P, o<y<a (6)

If o is a limit ordinal, we set
F=U{Ps(E) o < B <a}, G=n{P;'(0): 0 < p < a}.
Let us take any vector u of E’. We find a positive integer r such that
ue UP. Since
Py (U,)C U, o< pf<a, n=1,2, .., @)
the net
{Ps(u): o < f<a}

belongs to U° n G and it has a o (E’, E)-cluster point v belonging to
G*. Since

u— Pj (1) € Py (E), o< f<a,
we have -

u-ven {Py(Ey: o < B <a}=F

from where it follows that F*- + G* = E’ and consequently F n G ={0}.
If m is any positive integer and x is a point of E with || x||,,=1 we
find a quasi-bounded subsequence (U,) of (U,) such that

(=]

xeM:=( U,CE,  U,={y€E |yln< 1}
1

If follows from (7) that the net
(Py(xy o < f<a)

is contained in the weakly compact set M n F and it hasa o (E, E')-cluster
point z in that set. Obviously, || ||, < 1. Since

x— Pg (x) € P (0), o< p<a,

we have x —z€ G. Thus, E=F n E+ G and if we write P, to denote the
projection from E onto Fn E along G we have P,(x)=z andso P, is
continuous. It is quite obvious that conditions 1) and 2) of the former theo-
rem for
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T=P, Ao={xs o < v < a}, B, = {0}, A=lal,
are satisfied. On the other hand, if @ < f < o, then

Py (E) C P, (E), Py (E')D Py (E'),
and we have
Pso P,=Py=P,0 P,
Finally,
{xy: v < u}CP,(E),

so P, must be the identity operator. obviously,
{Py o < o< p}

answer the request of the theorem.
q.e.d.

Note— For a weakly countably determined Banach space X there is a sequen-
ce (A4,) of bounded neighbourhoods of the origin in X, closed and absolutely
convex, that determines X [o (X, X")], [11]. So our theorems 3 and 4 can be applied
without mention to our part 2. In that way the results of Vasak, [11], extending
previous ones of Amir-Lindestrauss, [1], are obtained. Apart from being formulated
for weakly countably convex-determined metrizable locally convex spaces, our theo-
rem 3 and 4 use a method to be proved that we have introduced in [10] and that is
more simple and direct than the Amir-Lindestrauss-Vasak way, [1] and [11].

4. FRECHET SPACES E WITH E” [ (E", E)]/E SEPARABLE

Proposition 6.— Let P and Q be two closed subspaces of a complete
(DF)-space E such that

PL+Qt=FE, Pt~ Q*t={0}.

If P is semireflexive and E/P is ultrabornolo§ical then E is the topological
direct sum of P and Q. Moreover, Q- is a reflexive subspace of
E'[B(E', E)].
Proof — Let
A, CA,C..CA4,C..
be a fundamental system of bounded subsets of E that we choose absolutely

convex and closed. E” is the topological dual of the Fréchet space
E'[B(E', E)] and

A,cA,C..C A,C..
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is a fundamental system of equicontinuous sets of E”. Since P is reflexive
it follows that

Pn A, n=1,2,..

are o (E”, E')-compact subsets and, therefore, if we apply the Krein-Smulian
theorem, [5, p. 246], P is o (E", E')-closed. The space E’ [ (E’, E)] is the
topological direct sum of P and Q%, consequently,

P+O=E, PnQ=1{0}.
Since P =P, it follows that
P+Q=E,  PnQ=1{0.

Let ¢ be the canonical mapping from E onto E/P. Let 7 be the topology
on @ such that Q [#] is the ultrabornological space associated with Q.
We have that

¢: Q[#1— E/P ®)

is a continuous, injective and surjective mapping. We can apply the closed
graph theorem in the form given by Grothendieck, [4, p. 17], because Q [7]
is a (LB)-space, and the fact that (8) an isomorphism immediately follows.
Then

¢: Q— E/P
is an isomorphism too, and from that we know as Q is a topological comple-
ment of P in E.

E/Q is a semireflexive (DF)-space, and its topological dual with the
Mackey topology would be reflexive Fréchet space. On the other hand, Q*
can be identify, as it is usual, with the topological dual of E/Q, and it is
immediate that B (E’, E) coincides with p (Q*, E/Q) on Q. The conclu-

sion now follows.
g.e.d.

Theorem 5.~ Let F be a closed subspace of a Fréchet space E. If

F'[B (F', F)] is separable and E + F= E", there is a closed suspace G of
E with the following properties:

1) GDF.

2) G'[B(G', G)] is separable.

3) Theis a reflexive subspace L of E”[f(E”, E')] such that
L+G=E", LnG={0}.

Proof— Let
uo>U,>..0U,D..



RESOLUTION OF IDENTITY IN CERTAIN METRIZABLE LOCALLY CONVEX SPACES 93

be a fundamental system of neighbourhoods of the origin in E, that we take
closed and absolutely convex. If u is an element of E” then u=v+w,
vEE and weF, so u coincides with v of F, from where we see that the
topologies ¢ (E’, E”) and o (E', E') coincide on F*. It is now deduced
that F* n U? is weakly compactin E’' [B(E', E")], n=1,2, ...

Let ¢ be the canonical mapping from E’ onto E'/F:. Obviously,

¢: E'[B (E,, EY]— (E'[F") [B(E'[F*, F)]

is continuous. We have (E'/F‘) [B (E'/F*, F)] is isomorphic to F'[§ (F’,
F)] and it follows that (E’/F1)[B (E'/F*, F)] is ultrabornological because
the separability of F' [B (F', F)], [3] (see also [6, p. 399]). If 7 is the topolo-
gy of E’ such that E’[7%] is the ultrabornological space associated with
E' [B (E', E)], we have an (LB)-space E' [7’]. The continuous mapping

¢ E'[#1— (E'[F*)[B(E'|F", F)]

is open after the closed graph theorem given by Grothendieck, [4, p. 17]. It
now follows from the separability of (E'/F*) [ (E'/F*, F)] the existence of
a sequence (u,) in E’ such that the linear hull of

{u: n=1,2,..} UF*

isdense in E' [B (E', E)]. Given a positive integer n, we denote by A, the
absolutely convex closed cover of {u,, us, ..., u,} in E'[B(E’, E)]. We set

W,=FY A U+ nA,
and W) for the polar set of W, in E”. It immediately follows that
WD WD ..DW2D ...

is a fundamental system of neighbourhoods of the origin in E” for a locally
convex metrizable topology T coarser than u (E”, E').

In accordance with Proposition 4, E” [T] is a weakly countably con-
vex-determined space. We apply Theorem 3 to obtain a separable closed
subspace M of E”[ ] that contains F and has a topologycal complement
L in E"[#]. Let M, be the orthogonal subspace to M in E’. Obviously,
M, is o (E', E")closed and it is contained in FX. Then M, n U? is
o (E', E)-closed, n=1, 2, ..., and the theorem of Krein-Smulian affirms that
M, is o (E', E)-closed [5, p. 246]. Consequently, if G: = M n E, we have
G=M and G' =M, Let ¥ be the canonical mapping from E’ onto
E'|G*. Obviously,

Y E'[B(E, EN]— (E'/GY) [B(E'/G, G)] )

is continuous and therefore ¥ (W,) 1is a weakly compact subset of
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(E'JGY) [B (E'/GY, G)] which is metrizable because the separability of G,
from where we deduce that (E'/GY) [B (E'/G*, G)] is ultrabornological.
Consequently

Vi E' [#1— (E'|GT) [B (E'[G*, G)]

is an homomorphism and (9) too, the fact that E’ [B (E’, E]/G* is ultrabor-
nological is clear now. If Q is the closed subspace of E’ which is orthogonal
to L, we see that Q and G* and two closed subspace of the (DF)-space
E' [B (E', E] such that their orthogonal subspace L and G in E” meets
only at the zero vector and L + G = E”. Moreover G is a semireflexive
subspace of E’ [ (E’, E]. The former proposition is now applied to obtain
that L is a reflexive subspace of the Fréchet space E’ [ (E’, E'] and the
proof is finished.

g.ed.

Proposition 7— 1If E is a Fréchet space with E” [ (E”, E'|/E separable
there is a closed separable subspace F of E” [f (E”, E'] such that
E+F=E"

Proof— Let
u>U,>..0U0,D..

be a fundamental system of neighbourhoods of the origin in E. Let ¢ be
the canonical mapping from E” onto E”/E. For every positive integer #,

we take a subset of U,
Ay ={Xp m=1,2, ...}

such that ¢ (4,) is dense in ¢ (U,) in the quotient space E” [B (E”, E']/E.
Let F be the closed lineat hull of U {4, n=1,2, ..} in E"[B (E", E']
and ¥ the restriction of ¢ on F. Obviously ¥ is continuous and the
closure of ¥ (U, n F) in E" [B (E", E')/E contains ¢ (U,), n=1,2, ... So
¥ is an homomorphism from F onto E” [f (E”, E']/E in accordance with
the open mapping theorem, from where it follows that E+ F=E".

q.ed.

Theorem 6.— If E is a Fréchet space with E” [f (E”, E']/E separable
then E is the topological direct sum of two subspaces P and @ such that
P" [B(P", P'] is separable and Q is reflexive.

Proof— Let ¢ be the canonical mapping from E” onto E”/E. Let us
determine a sequence (x,) of E” such that

{0 x): n=1,2,...}

is a dense subset of E” [B (E”, E")/E. For every positive integer n, we apply
result a) together with the former proposition to obtain a sequence (X,,)m= |
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in E that o (E", E')-converges to x,. Let F be the closed linear hull of
{Xpm: myn=1,2,..}.

E + F is a dense subspace of E” [8 (E”, E'] and according with result b) we
have

E'=E+F.

Let W be the restriction of ¢ on F. It is immediate that ¥ is an homo-
morphism from F[B (E”, E'] onto E” [f(E", E')/E with kernel F. Conse-
quently, F[B (E”, E'] is separable. Every point of F is in the o (E”, E')-
closure of a sequence in F, thus F is the topological dual of (E'/F*) [
(E'/F*, F]. If we identify in the usual way F’ with E’/F! it follows that
F [p (E", E')] is isomorphic to F” [ (F”, F'] and the separability of
F"[B (F', F")] follows from that of F” [f (F", F']. Theorem 5 is now applied
to obtain a separable closed subspace G of E that contains F and such
that G has a reflexive topological complement L in E” [8 (E”, E']. Thesam
argument used above for F gives us a proof for the separability of
G [B (E", E'. Then E”[B (E", E1] is isomorphic to the product of two
weakly K-analytic spaces G [ (E”, E'] and L[B (E", E'], from where it is
deduced that E is a weakly K-analitic. Theorem 3 is applied at this point to
obtain a closed separable subspace P of E that contains F and has a topo-
logical complement Q in E. It is easy to see now that P” [ (P", P")] is se-
parable and Q is reflexive.

g.e.d.

Note— If X is a Banach space with X" [B (X', X")]/X seperable, it is proved

in [9] that X is the topological direct sum of two Banach spaces X; an X, with

1 [B (X7, X1)] separable and X, reflexive. The proof of this result uses a theorem

of Amir-Lindenstrauss on weakly compactly generated Banach spaces [1]. Theorem

6 is much more difficult to prove than the corresponding one for Banach spaces and

we are based upon Theorem 5 which is even new for Banach spaces up to our
knowledge.
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