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Abstract 

The paper concerns a boundary value problem for a system of hyperbolic partial differential 
equations of arbitrary order with two independent variables that is a generalization of the problem 
examined by Z. Szmydt [7]. 

1. Boundary value problems for hyperbolic equations or systems of 
order higher than two with the boundary conditions given on more than two 
non-characteristic curves have been examined by O. Sjostrand [6], Z. Szmydt 
[7], A. Borzymowski [l]-[3] and M. Michalski [4], [5]. 

The aim of this paper is to study a boundary value problem generalizing 
that of Z. Szmydt [7] (cp. Remarks 1 and 3 in the sequel). We reduce our 
problem to a system of nonlinear integro-functional equations and then 
apply the Schauder fixed point theorem. The uniqueness of the solution is 
proved by using the Banach fixed point theorem. 

2. Let p , ^ E IN, where IN is the set of all positive integers, and let ri 
and 2̂ be positive divisors ofp and q, respectively, such that k\ = p/ri = 
= q/r2 . Consider the rectangle n = [0, ^ ] x [0, 5] (0 <A,B < oo) and 
introduce two systems of curves placed in Í2 and given by the equations 
y = faix) ( a = 1, 2, ..., ^2) and x = /ẑ  O) 03= 1,2, . . . , r i ) , respectively. 

For fixed w E IN we introduce the following notation 
« 

u={u'} (/= 1,2, ...,n); 

V = {v,;a] with V,;a = D'^^ D ^ "" I^'"^ w; 

W = {Wf_ p} with Wf,p =D'^'~^ DC" L'-^ u; 

Z = {zj, p,a} with zy, 0,a= D"^' ' " D^^ "" Ü-' u 
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ij= 1,2, ,..,k- a = 1,2, . . . , r , ; ^ = 1,2, . . . , r i ) , where L = D^ D^^-

L^u = u; Uu = L {V-^u) for \<v<k. 
Consider the following system of partial differential equations 

L^u{x,y) = F[x,y,Z{x,y), V{x,y), W{x,y)] (2) 

((x,j^)EÍ2), where F = { F ' } (/= 1, 2, ...,n) is a given function. 
We denote by ok the class of functions u\ Í2 -> IR" such that the deri­

vatives Vj^a, ^j,^ and Zy,^,a ( /= 1, 2, ..., ^; a = 1, 2, ..., 2̂ ; /3 = 1, 
2, ..., ri ) introduced in (1) exist, are continuous and do not depend on the 
order in which the last mixed differentiation(*) is performed. 

By a solution of equation (2) in Í2 we mean a function UGM posses­
sing continuous derivative L^u and satisfying system (2) at each point 
(x,y)Ea. 

We pose the following problem (P): 
Find a solution u of system (2) in f2 satisfying the boundary conditions 

Vf^oc [X, faix)] = ej'^a(x, Z[x, fa(x)], W[x, fa(x)]); 

w/,^ [hp (y), y]=gf^(3 (y, Z[hp O), y], V [h^ (y), y]) 

and 

{{x,y) E Í2 ; 7 = 1,2, ...,/c; a = 1,2, ...,^2; i3= 1, 2, . . . , r i ) , where ej^Q,= 

= {e'.^^} and gf^^ = {g[^} 0' = 1, 2, ,..,n) are given functions, W/̂ ^̂ Q, = 

= {ui Q ^} (/ = 1, 2, . . . , n), where áí ^ Q, are given numbers, and the points 

(Xj\ /3, a, yf, /3, a) are arbitrarily fixed in Í2. 
We make the following assumptions that will be in force in sections 

3 and 4: 

I. The functions /« : [0, A] -> [0, B] and h^: [0, B] -^ [0, A] 
ia= 1,2, ...,^2 ; i3= 1, 2, ...,ri ) are continuous. 

II. The function F: Í2 x IR*̂  -> ]R" (where K = kn (ri +^2+^1 2̂ )) 
is continuous and satisfies the condition(**) 

\F(x,y,A,H',H^)\<K, + K^^ç, + K'2% (5) 

(2 = % ^ , a } , ^ ' = ivU}, H^ = ivLh i = 1, 2, ..., n; j = 1, 
2, ..., k; « = 1 , 2 , ..., r2; jS = 1,2, . . . , r i ) , where iri,Â"2 and 7̂ :2 
are positive constants, and ^Q and ^0 are given by 

(*) That is the differentiation 1)^1 i)^2 ^, D^i ^ / ) ^ and 2)̂ 1 ^Z)^2 «, respectively. 

(**) Above, \F ix,y,-Z,H^ ,H^)\= max |F^ (x , ; ; ,E , / / \ / / ^ ) | . The symbols |e/̂  ^Oc,E, 
1< i<n 

'-f^\\ an/1 lir. _ A, •=• fJ^ ^ H )| and l^y/j (y, E, / / )| etc. appearing in the sequel wül be understood in a simüar way. 
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?o= 2 2 2 lê;,^,ar* (6) 
7=1 a = i /3=i 

and 

?;>= 2 2 ¡T?/,ar*+ 2 2 Í7?/,^r*, (7) 

respectively, with r^ G(0, 1). 
III. The functions e/,a: [0, ̂ ] x IR''-^"''2 -> IR'̂  and g/,^. [0 ,5 ]x 

X ]R'<-^«^ -^iR« (/= 1,2,...,/:; a = l , 2 , . . . , r 2 ; ^ = l , 2 , . . . , r i ) 
are continuous and satisfy the conditions 

respectively, where K^, K¿^ and ^̂ 4 are positive constants, a n d ^ i 
and ^2 denote the expression ^¿ (cp. (7)) with the first or second 
term, respectively, being omitted. 

Remark L— If ri = p; r2 = q (as a consequence k=j=l), then our 
problem (P) is identical with the problem ( 0 examined by Z. Szmydt [7]. 

3. In this section we will prove some lemmas. 

Lemma l.— lfu is of class M and satisfies condition (4), then 

+ 2 J- --{ ^^ "^\^^ w;,.(0,r?)c/T? + 

+ S d — >= 
= 1 '̂̂  ( a - M ) ! / 

• / . ( a - 1)! ^'^ M = i ( Û : - M ) ! 
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i I . y , M ( t O ) d ^ + 2 a" - ; > (9) 

( ( x , j ) E Í 2 ; / = 1,2, ...,Â:; a = 1, 2, ...,^2 ; /3= 1, 2, ...,ri ), where Cl^ = 

= {C^''} are functions of V and H' defined recursively by the formulai*) 

{y-\)\ 

V ^V -S f 'yj,v,fji .o 

—^ — wf, s (0, T?) dr? + 
(M- 1)! 

+ 2 C ' , ^^^^^^ ^^^^^^ (10) 
i < i < . ^'' ( ^ - 5 ) ! ( M - / ) ! 

s+Kv + n 

(u=l,2,...,p; M = l , 2 , . . . , a ) . 

Proof. Let >> G [0, 5 ] be fixed. We can write the following Taylor's 
formulae 

and 

Z)f-z ; ,^ ,«(0 , ; ; )= 2 / " " \ D^'^D^^'^Zj^^^a (0,0) + 

J 0 

•y ^ . a - i 

^(^_^\), z);i?r''^/.ft«(o,^)^^. (12) 

Substituting (12) into (11) and using notation (1) and the assumption 
u E G¡Í, we easily conclude that the first of equalities (9) holds good with 

Cf = Zfj^^^ (0, 0). The proof of the second one is analogous. Finally, 

relation (10) follows from (9) and (4). 

(*) AS usual, we set | . , = O f o r a < , . 
r=7 
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Remark 2.-If Zj^^^a (J = 1,2, ..., k; ¡3= \ ,2, ...jr, a= 1,2, ...,r2) 
are given by formula (9), then we shall write (cp. (1)) 

Zix,y) = R[V(.), W(.), x,y]. (13) 

Now, let us consider the following system of integro-functional equations 

Vi,a(x,y) = ef,a(x,R[Vi.), W (.), x, f^ (x)], W[x,faix)]) + 

+ / f/.a-i Oc,ri)dri; (] = \,2,...,k; a = 2, 3, ...,^2) 

Vj.x Oc,y)= e;,i (x, R [V {.), W {.), x, f, (x)], W[x, f, (x)]) + 

J u (^\ Jo '̂̂ 1 - '̂'• 
+ 

' / I (X) -^ 0 

• i X I ' I f 

+ 

(14) 

I'fc,! ix,y) = ek,i ix,R[Vi.), W(.), X, A (X)], W[x, A (x)]) + 

+ r F(x,n, R[V(.), W(.), x, n], v(x,n), W(x,'n))dT); 

Wi,& Oc,y)=gj,& {y,R[V{.), W{.), hp (y), y], V [hp (y), y]) + 

+ Í w¡_p_, (^,y)d^; U=U2,...,k; ^ = 2,3,...,ri) 
•^ft/j (y) 

Wj.i (x,y)=gi^, (y, R[V(.), W (.), h, (y), y], V[hi iy), y]) + 

~> hi (y) J 0 
+ / d%\ _ W; + i,^j (^,17) d^ + 

+ 
M 

'2 /2-M r r r (^_fjjx-\ 
2 -̂ ^ - ^ dû ^^ '——Vi^,,^{.o,Q)da^ 
= 1 ( r 2 - M ) ! U A i (,,) J o ( ' • i - D ! 
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+ 2 q ; M - ^ -dá; (j=l,2,...,k-l) 

Wfc,, {x,y) = gj,,y O , R[V{.), Wi), h, (y),y], V [h, {y),y]) + 

^ hi 

+ / F{^,y,R[V{X W{.), ^,yl Va,y), W(ly))dl 
iy) 

Lemma 2— If u is a solution of the (P)-problem, then V and W are 
continuous and system (14) is satisfied. 

Proof. - If follows from the present assumptions, formulae (1) and 
Lemma 1 that V and W are continuous and relation (13) holds good. Let us 
observe (cp. (1) and (2)) that the following formula 

i vi,a-i for / = 1,2, ...,;c; Û: = 2 , 3, ...,^2 

F for i = k\ ot= \ (15) 
/̂ + i,ri,r2 for / = 1,2, ...,k - 1; a = 1 

is valid. Integrating (15) over [fa (x), y] and using conditions (3), equation 
(2) or formula (9), respectively, we get the first three of equations (14). The 
derivation of the remaining three of these equations is analogous. 

Lemma 3.— If relation (13) holds true, where the system (F, W) is a 
continuous solution of system (14), then 2i,ri,r2 is a solution of the 
problem (P). 

Proof— It easily follows from our assumptions that 

. . .f^f^ur^r, for 7 = 1 , 2 , . . . , / : - 1 
^ ' ^ ' ^ - ^ ^ " i F f o r / = yt. ^^^^ 

As a consequence of (16) we get 

L^~'^hr,,r^ =^Un.r^ (17) 

(/= 1,2, ...,k). Moreover, using (9), (14) and (17), we have 

= D;•'-°'vf,r^=Vf,a (18) 
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{i=\,2,...,k; a=\,2,...,r2). 
In a similar way we get the relations 

Dl^^-^ D;^ n-' z,,r„n=Wj,^ (19) 

and 

D^^-^ D;--^li-' z,^run=^L&,oc (20) 

(/= 1,2,...,/:; o¿= 1,2, ...,^2; /3= l , 2 , . . . , r i ) . 
It follows from equalities (18)-(20) that the function ^i,/-i,r2 belongs 

to &C. Evidently, by (16) and (17) the said function satisfies system (2) in Í2. 
Finally, one can easily deduce from (9), (10), (14), (19) and (20) that con­
ditions (3) and (4) are satisfied. Thus, the proof of Lemma 3 is completed. 

As a result of Lemmas 2 and 3 we can formulate the following 

Proposition L— There is one-to-one correspondence between the solu­
tions u of the problem (P) and continuous solutions (F, W) of system (14). 

4. In this section we will prove the existence of a continuous solution 
of system (14) and hence (cp. Proposition 1) of a solution of problem (P). 
To this end we will apply the well known Schauder fixed pointtheorem. 

Let A be the Banach space of all systems 0 = (F, Ĥ ) of continuous 
functions(*) with the norm 

11011 = max [ max sup ly/̂ ĉ  (x,;;)!, max sup |w/^^ (x,:^)|]. (21) 

1 < Q : < 7-2 l < i 3 < r i 

We consider the set % of all points 0 E A that are equicontinuous and 
satisfy the condition 

II0IKP (22) 

where p is a parameter to be suitably chosen in the sequel (cp. p. 9). 
Evidently, '^ is a closed convex and compact set. 
In view of system (14), we map the set % by the following transfor­

mation 

0 = r 0 (23) 

(0 = (F, M/)G^; 0 = (F, lî^), where F = {?/,«>; lï'={w/,^}) with 

(*) F = {ly^^}; W = {wj-^^}, Where 7 = 1, 2,...,/^; a=l.2, ....r^; ^= 1,2, ...,r^. 
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+ / ^i.a-i{x,ri)dr¡; (j^ 1,2, ...,k; a = 2,3, ...,r^) ^ / î '/.a-i (X,-
J fa W 

y/.i ix,y) = ej,, ix, R[V{.), W{.), X, U {x)\, Ml{x, f, (x)]) + 

' / i 

+ 

J / j (x) J o Ĉ i - 1)! 

':̂  ^''^ Í r r in-op-' . 
2 - < rfT? — Wj + i u {0,o)do + 

'•2 ^ r-̂  T?''2"^ ^ 

î fc.i ix,y)^ek,i (X, RlVi.), W(.), X, / i (X)], W[x, f, W ] ) + 

•J A 

+ 1 Fix, n, R[V{.), Wi.), X, V], V(x,v), Wix,v))dv; 
' /I M 

(24) 

w/,p (^ , j )=g/ .p (;̂ , iíEí^C), ^ ( . ) , ^i O), 7] , ^[^0 (y), y]) + 

+ 1 w,^p_,(^,y)d^; g=\,2,...,k; p = 2,3,...,r,) 
hp (y) 

Wi,,{x,y) = gi,,(y,R[V(.), W (.), h^ (y), y], V[h,(y),y]) + 

•^ h^ (y) -f 0 
^ / "^^l \r2^-iy. ^/+i.'-i (^ '^^'^^^ 

ri ' ^»•, - 1 
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Wk.i {x,y) = gk,i (y,R[V(,:), Wi.), h, {y),y], V[h, {y),y]) + 

^ hi {y) 

where Cl'^^ are given by formula (10) with i;/,^ and Wŷ^ replaced by 

iJ/̂ iu and w; ,j, respectively (and; by / 4- 1). 
We will find sufficient conditions for the inclusion T {%) C %. 
Let us observe that by formulae (9) and (22), and Assumptions I-III, 

the following inequalities 

\F{x,y,R{Vi.), H/(.), x,y], V{x,y), W{x,y))\<M, (25) 

((x,j^)GÍ2) and 

|e;,a (X, R [F ( . ) , W {,), x, fa (x)], W[x, fa (x)])\<M2 

\gL^(y,RlV(,),Wi.),h^(y\y], V[h0(y),y])\<M2 

i(x,y) G Í2; / = 1,2,...,/:; a= l , 2 , . . . , r2 ; 13= 1,2, . . . ,ri) are valid, where 

M, =Q[K,+K2(l+ (APP ) + K'^P'* ] 

M2 = Ci [7̂ :3 + A (1 + iÂpr*) + K'^p'*] ^ 

{A = max (A, 5)) with Ci being a positive constant independent of p. 
By using (24)-(26) one can prove that 

I ?/, aix,y)\<C2(Â+M2+ AM, ) 
\Wj,^ix,y)\<C2ÍA^M2+AMi), 

where C2 is a constant of the same type as Ci above. 
It is easily seen that by Assumptions I-III, the construction of the set 

% and formula (24), the functions ^=T<t> (0 G ^ ) are equicontinuous. 
Thus, bearing in mind afore-obtained results, we can conclude that 

T{%) C% if the following inequality 

C{\ +ÂK, +K^+(ÂK2 +K,^)[l-^(Âpy-] + {ÂK'2 +K'^)p'-}<p (29) 

is satisfied, where C is a positive constant independent of p . 
It is clear that (29) holds good if the parameter p in (22) is chosen 

sufficiently large. 
One can also prove that the following lemma is valid 

Lemma 4.— The transformation (23) is continuous. 

Thus, all assumptions of Schauder's fixed point theorem are satisfied 
and using this theorem we can conclude that there is a fixed point 0"* = 
= {V*, W^) E ?î  of transformation (23), whence (V*, W*) is a continuous 
solution of system (14). As a consequence (cp. Lemma 3), we can assert that 
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the corresponding function ^f,ri,r2 (cp- formula (9)) is a solution of the 

problem (P) and so the following theorem is established. 

Theorem 1.— If Assumptions I-III are satisfied, then problem (P) has a 
solution. 

Remark 3.— Let us note that we have proved the global existence of a 
solution of problem (P), and hence also of problem {Q) of paper [7], for 
arbitrary values oí K^ /K2 ,K'^ ( ^ = 1 , 2 , 3 , 4 ) and without any additional 
conditions on the curves considered (cp. [7], Theorems 1-3 and Remark 4). 

5, This section is devoted to the existence of a unique solution of 
problem (P). 

We retain Assumption I and replace Assumptions II and III by the 
following ones: 

IF. The function F\ Í2 x IR*̂  -» IR" is continuous and satisfies the 
Lipschitz condition 

\F{x,y,:^,H\íf)-F{x,y,^,H\tí')\< 

<Ks'^o+K's%o, (30) 

where Ks and K5 are positive constants, and ^ 0 and PQ are 
given by 

^ ^ k n n 
^Q= X 2 2 1̂ . ^ Q: - ?/,^,Û: I (31) 

/ = i Û: = I i3=i 

and 

k /"? k f\ 

? ¿ - S 2 |Tj /a - i? /a l+ 2 2 Ivh-Vlpl, (32) 
y = l a = i / = ! 0=1 

respectively (particular symbols are understood analogously as the 
corresponding symbols in (6), (7)). 

III'. The functions e,,a: [ 0 , ^ ] x iR«-fc'"-2 ^ |R" and gf,^: [0, B] x 
xiRK-fc«n ^ iR« (j ^ 1,2, ...,k; oc= 1,2, ...,r2; ^= 1,2, ...,r,) 
are continuous and satisfy the Lipschitz conditions 

\ej,a(x,^,íP)-ef,aix,KíP)\<K,'$o + K'^%\; 

where K^ and K'^ are positive constants and 'i^l ( ^=1 ,2 ) denote 

the expression ^ ¿ with the first or second term, respectively, 
being omitted. 
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Remark 4.— Let us denote 

K:, = max/sup \F {x^y, 0, 0, 0)¡, 

max max sup k/,a (x, 0, 0)i, 
l<f<k l<a<r2 [0,A] 

max max sup \gj\^ (y,0,0)\\. (34) 

l < / < / c l < | 3 < r i [0, B] J 

It follows from Assumptions IF and IIF that 

\F(x,y,KH' ,iP)\<K, + Ks'^o. + K's%. 

ky,a {x,A,iP)\<K, +Ke%, ^ K'e%.- (35) 

where %^ and ^l^ (^ = 0, 1,2) denote the expressions ^o and ^l (P -
= 0, 1,2), respectively, with T;̂  = 1. 

Now we will apply the Banach fixed point theorem. Let us consider the 
set % (cp. p. 7) and the transformation T (cp. (23)). Evidently, % can 
be treated as a complete metric space with the distance d (0i , 0) = 
=11 (̂ 1 — 02 II • Moreover, it follows from the results obtained in Section 4 and 
from Remark 4 that, under Assumptions I, IF and IIF, the inclusion 
T (%) C % holds good if the following inequality. 

C 1(1+A)K,+(Ks -^K's +Ke)il+Âp) + K'eP]<P (36) 

is valid, where C' is a positive constant independent of p. 
It is clear that (36) holds good if p is properly chosen and if the 

Lipschitz coefficients K5, K^, K^, or the Lipschitz coefficient K'^ and the 

value of ^ (cp. p. 9), are sufficiently small. 
Thus, in order to apply the Banach fixed point theorem we have only 

to prove that the transformation Tis a contraction. 
Let us observe that by formulae (9), (10), (30) and (33) we have 

\F(x, y, R [Fi (.), W^ (.), x, y], V, {x,y\ W, {x,yy)-

-F(x, y, R[V2 (.), W2 (.), X, yl V^ (x,y\ W2 (x,y))\< 

<C^ iÂKs+K's)d((!>,, (I>2l (37) 

|e,. a (X, R [V, (.), W^ (.), x, fa (x)], W^ [x, fa (x)]) -

- ej,a(x, R [V2 (.), W2 (.), X, fa (x)l W2 [x, fa (x)])\< 

<C^iÂKe+K'e)d{(l>^,(t>2) (38) 

and 



246 ANDRZEJ BORZYMOWSKI AND MAREK W. MICHALSKI 

1 /̂,̂  (y, R [V^ (.), W, (.), h^ (y), y], V^ [h^ (y), y]) -

-gf,^(y,R[V2 (.), W2 (.), h^(y),yl v^ \h^{y),y\)\< 

<C^(ÂK, +K'^)di(t>^,(}>2) (39) 

i^v ^ (Vp, %) ^^l ^= 1,2), where Q (z^=3,4) are positive constants 
independent of 0i and 02 . 

Using (37)-(39) and (24), one can prove that 

Haix,y)-vla(x,y)\<Cs [A (Ks + iT^ + iT^) + ^ 5 ] ^ (0i , ^2) 

\wljix^y)-wfj{x,y)\<Cs [A (Ks + K^ + K's) + Ke]d {(t>^ ,(t>2) 

with C5 being a constant of the same type as C3 and C4 above, and as a 
consequence of (40) we can assert that the transformation T is a contraction 
provided that 

C'[Â(Ks +Ke+K's) + K'e]<U (41) 

where C" is a positive constant independent of (pi and 02 • 
Evidently, (41) is satisfied if the Lipschitz coefficientsJSTS ,K5,K(, and 

K'(,, or the Lipschitz coefficient K'^ and the value of ^ , are sufficiently small. 
Let us assume that inequalities (36) and (41) are satisfied. It follows 

from the Banach fixed point theorem that the transformation T (cp. (23)) 
has a unique fixed point 0^ G ^ , whence, and by (14) and Lemma 3, we 
can assert that there is a unique solution of problem (P). 

As a consequence, we can formulate the following 

Theorem 2.— If Assumptions I, IF and IIP are satisfied and if the 
inequalities (36) and (41) hold good, then there exists a unique solution of 
problem (P). 
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