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Abstract 

The purpose of this paper is to characterize the class of locally convex spaces E for which the space of 
integrable f'-valued functions L¿ is quasi-complete and to connect this problem with the Radon-Nikodym 
Property, martingale convergence, geometric properties of £ and nuclearity of operators in LiL"^, E). Also 
permanence properties and examples of locally convex spaces for which L^ is quasi-complete are given. 

0. INTRODUCTION 

Throughout this paper {X, E, n) will stand for a complete finite measure space, 
m:T. ^ E will be a vector measure while {E, P) will denote a locally convex space E 
with system of seminorms P. 

In case £" is a Banach space the Radon-Nikodym Theorem for the Bochner 
integral can be formulated as follows (see [15], Theorem 8, p. 244). 

Radom-Nikodym Theorem. If(X, S, /i) is a finite positive measure space and if 
m:T -^ E, E a Banach space, is a measure, then there exists a Bochner integrable 
function f such that for each Á elL, m(A) = J^ fdpi iff: 

i) m « jU. 

ii) \m\{X) < +00. 

and one of the following equivalent conditions is satisfied: 

RNl: m has locally relatively compact average range. 
RN2: m has locally relatively weakly compact average range. 
RN3: m has locally deniable average range. 
RN4: m has locally o-dentable average range. 
RN5: m has locally small average range. 
In a foregoing paper [2] we have proved a Radon-Nikodym Theorem in case E 

is a general locally convex space whereby the integral we have used generalizes the 
Bochner integral. In order to get both necessary and sufficient conditions for the 
existence of a density, it turns out that one has to impose conditions on the average 
range which ly between î A l̂ and RN5. Although in this general setting the most 
natural condition seems to be RN5, by the lack of countability of the system of 
seminorms P, RN5 does not imply the existence of a density. 

On the other hand, it is well known that if £" is a Banach space the existence of a 
density is closely related to the nuclearity of operators in LiL"^, E) (see [19]) and the 
convergence of vector valued martingales (see [4]). 
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In section two these relationships are extended to locally convex spaces. It is 
shown that RN5 can be replaced by the nuclearity by seminorm of the correspondig 
operator of LiL"^, E) or by the fact the corresponding martingale is L|-Cauchy. 

In the third section we characterize those locally convex spaces for which RN5 or 
one of its equivalent formulations is both necessary and sufficient for m to be 
indefinite integral of an ^'-valued function. It appears that this holds exactly for the 
class of locally convex spaces for which the space L | of integrable JE"-valued functions 
is quasi-complete. We also investigate the relationship between the quasi-
completeness of L¿ and the Radon-Nikodym Property (RNP) of E. In section four a 
relationship between the Radon-Nikodym Property and s-dentabiHty for locally 
convex spaces is established. Hare again it appears that the completeness of Ll plays 
a fundamental role. 

Let us remark that in [11], Egghe has already noticed that RNP and cj-dentabiHty 
are equivalente notions under certain completeness conditions for L¿. 

Finally, in the fifth section we give permanence properties and examples of 
locally convex spaces for which L | is quasi-complete. 

1. DEFINITIONS AND PRELIMINARIES 

Let {X, S, m), {E, P) and m be as before. For the terminology used in the sequel 
concerning locally convex spaces we refer to [13]. 

For every seminorm p e P the /7-variation of m over A e S is defined by: 

\m\p{A) = sup X P(^(^i)) 
iAi)eP(A} (i) 

where P{A) denotes the set of all finite partitions of A by means of measurable sets 
Ai. If for each p e P, \m\p{X) < + oo, then m is said to be of bounded variation 
(notation \m\{X) < oo). The vector measure m is called absolutely continous with 
respect to fi iff for each p e P, \m\p{A) -> 0 whenever fi{A) -> 0 (notation m « fi). 

The set A^(m) = j ' — : B eT^ ana B a AV where Z+ = { 5 G I : ¡^(B) > 0}, is 

called the average range of m on ^ e Z. 
Axim) is said to be locally small if for each p e P, s > 0 and A el.'^ there exists B 

G E^, with B a A, such that Agim) has p-diameter less than Is. 
Let us now define a type of integrability of ^'-valued functions which generalizes 

the classical Bochner integral. Let us first recall that a function/: X-^ Els said to be 
simple if range/ i s finite and for every y e range/ , /_ i ( j )GS. 

The integral of a simple función / = X yt^Ai is defined by J^ fd/j, = 
(i) 

Definition l.l. A function/: X -^ E is said to be integrable by seminorm if for 
each p e P there exist a set Xg cz X, with ii{Xl) = 0, and a sequence {f^)neN c>f 
simple functions such that: 

(i) lim p{f(x) — /f(x)) = 0, for each x e X \ X^, i.e. / is measurable by 

seminorm; 
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(ii) p{f{x) - f„%x)) G L\X, E, fil for every « G N and jim ¡^ p(f{x) - //(x)) dfi 

= 0, for all /7 G P; 
(iii) for each A eH there exists y^^ E such that for every seminorm peP: 

Í/' lim p( fídix - yA = 0. 

We then define y^ = J^ fdjx. 
For further properties on measurability and integrabihty by seminorm we refer 

to [1] and [6]. 

Definition 1.2. Call L¿(Z, S, ¡x) the set of all functions f.X-^E which are 
integrable by seminorm and r¡ the subset of L¿(X, S, ^) consisting of those elements/ 
such that for each p e P: 

p{fix))dfi = 0. 

Define L¿ = L^X, E, fi) = L¿(Z, S, /¿)/^ and /7*(/*) = J;, p{f) dfi, for each/* G Li 
and peP. Then onviously P* = {/?* :/? G P} is a system of seminorms on L^. 

In the sequel, when we shall speak of the completeness of L|, convergence in L|, 
etc., then these notions are always Hnked to the system of seminorms P*. 

Definition 1.3. A locally convex space E is said to hace the Radon-Nikodym 
^Property {RNP) if for every complete finite measure space (X, E, p) and every vector 
measure m:X -^ E with m « fi and \m\{X) < 4- oo there exists a function/: X -^ E 
which is integrable by seminorm such that for each y4 G E, m(Á) = J^ fdfx. 

Many authors (see e.g. [11], [16], [18],...) impose a supplementary condition on 
the vector measure m in the definition of PA^P, namely m has (locally) bounded 
average range. Locally convex spaces which satisfy this form of Radom-Nikodym 
Property are called [PA^P]-spaces. 

In the sequel we shall use the following notations: 

(i) For each p e P calle Êp the completion of the quotient space E/p-i{0) 
provided with the norm p deduced from the seminorm p and denote by jp the 
projection E -^ Êp. 

(ii) n is the set of all finite partitions Tu of X by means of measurable sets. 

For each TÎ , 712 G 11 we define TII ^ 712 iff each member of TUJ is /i-almost the 
union of members of 712 • 

2. VECTOR MEASURES, ABSOLUTELY SUMMING 
OPERATORS IN L{L^. E) AND MARTINGALES 

In the sequel we assime £" to be a quasi-complete locally convex space. Let us 
first recall some definitions about operators (see [7]). 
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Definition 2.1. Let (£", P) and (i% Q) be locally convex spaces. 

(i) An operator T E L{E, F) is said to be nuclear by seminorm if for each qeQ 
there exist p e P , {tX^N in R, {y'XeN in E' and (x„)„g^ in F such that: 

T{y) = I tn<yn, y}Xn 

a 

whereby ^ kj < + oo, j ^ e è^(l) and q{x^ < 1 (notice that = means convergence 

for the seminorm q), 
(ii) An operator T G L{E, F) is said to be absolutely summing if it maps 

unconditional convergent series in E into absolutely convergent series in E. 
In this section we shall give an extension of the relationship established in [19] 

between absolutely summing operators in L{L'^, E) and jE'-valued measures, E being 
a Banach space, to the case where £" is a general locally convex space. 

Let m : E -^ £" be a vector measure with m « ¡i and |/t2|(X) < +00. 
Define for each scalar valued simple function h' = Yj ^Í^AÍ-

(i) 

W) = h dm = YJ ^i^i^i)' 
(0 

Since p{¡x h'dm) ^ \W\\Jm\piX\ the operator T.L"^ -^ E is well defined and Te 
L{L^, E). 

Conversely, let T e /.(L*^, E)\ the m{A) = T{ôy^ defines a finitely additive vector 
measure. 

The operator T is absolutely summing if and only if the corresponding (finitely 
additive) vector measure has bounded variation. 

In case £" is a Banach space or a Fréchet space, m has a density if an only if the 
induced operator Tis nuclear (see [19]). It is possible to give a partial generalization 
of this result for locally convex spaces. 

Proposition 2.2. A ji-continous E-evalued masure m of bounded variation has 
locally small average range if and only if the corresponding absolutely summing 
operator T: L"^ ^ E is nuclear by seminorm. Moreover m possesses a density f which 
is integrable by seminorm if and only if T is of the following form: 

W) = hfdpi, for each h' G L"^. 

Now let us show vector measures are realted to vector valued martingales. 

Definition 2.3. Let (/, « ) be a directed set and (ZXei a family of sub cr-algebras 
of S such that Ẑ ^ c: E„ ,̂ whenever a^ « 0i2-

Let furthermore /^ : Z -> £" be a family of functions which are S„-measurable by 
seminorm and integrable by seminorm. 
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The family (Z ,̂ EJ^ ^ ̂  is called a martingale iff: 

f^djjL = ffidfx, for all P » a and A G IL^. 
J A J A 

We always assume that cr( (J Z^ ) = Z. A martingale (Z, EJ is said to be uniformly 

integrable if for each p e P: 

lim sup pifjdfi = 0 

Now let m : Z -> £• be a vector measure with m « ¡i and \m\{X) < +00. Define: 

Jn — ¿^ / A\ ^A 

where (7{n) is the cr-algebra generated by n. 
Then (Z,, a(7ü))̂  g n is a bounded and uniformly integrable martingale in L¿. 
Moreover J^ fj^dfi -^ m{A\ for each A € X. 
Conversely, let (Z, ZJae/ be a bounded and uniformly integrable martingale and 

define for each A e [j H^: 

m{A) = lim fJli 

Then, just as in the Banach space setting, m may be extended to a cr-additive 
IL -^ E vector measure with m « ¡x and \m\{X) < +00. 

Now we formulate the results of Proposition 2.2 in terms of uniformly integrable 
martingales. By doing this we generalize [4], Theorem 6. 

Proposition 2.4. A vector measure m:J. -^ E with m « ¡n and \m\{X) < + 00 has 
locally small average range if and only if the corresponding bounded and uniformly 
integrable martingale is L^-Cauchy. Moreover this vector measure possesses a density 
which is integrable by seminorm if and only if the corresponding martingale is conver
gent in L|. 

Proof Follows immediately from the Radon-Nikodym Theorem in Banach 
spaces applied to each measure ŷ  ° m : Z -^ î ,̂ and [12], Theorem 6. 

Combining the previus results, we obtain: 

Theorem 2.5. Let E be a quasi-complete locally convex space. Then the following 
are equivalent: 

(i) Every vector measure mill -^ E with m « fi and \m\{X) < + 00 has locally 
small average range; 

(ii) Every absolutely summing operator T e L{L'^, E) which induces a a-additive 
vector measure is nuclear by seminorm; 

(iii) Every uniformly integrable martingale is h^-Cauchy. 
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Teorem 2.6. Let E be a quasi-complete locally convex space. Then the following 
are equivalent: 

(i) E has RNP; 
(ii) Every absolutely summing operator T e L{L'^, E) which induces a G-additive 

vector measure can be written as T{h') = J;̂  h'fdii, whereby f e L | ; 
(iii) Every uniformly integrable martingale is h\-convergent. 

Remark that if E is either a Banach space or a Fréchet space the conditions in 
Theorem 2.5 are equivalent to those in Theorem 2.6. In the following section we 
show that this equivalence fails if iE" is a general locally convex space. It will appear 
that this is due essentially to the lack of quasi-completeness of L¿. 

3. THE COMPLETENESS OF Li 

In [2] we have proved a general Radon-Nikodym Theorem for ^'-valued func
tions by associating a density to a lifting p for (Z, Z, ^) in the following way. 

Ley for every x e X: 

S{x) = {p{A):xe p{A) and A e S"̂ } 

and p{A) « p{B) iff p{B) a p(A). 

Theorem 3.1. (Radon-Nikodym). Let E be a locally convex space, let {X, E, ¡x) 
be a complete finite measure space and let p be a lifting on S. 

If m is an E-valued vector measure, then there exists a function f: X ^ E which is 
integrable by seminorm such that m{A) = ^^fdfi,for each A ell, if XQ a X may be 
found, with piXç^ = 0, such that: 

(i) m « jii; 

(ii) m has finite variation; 
(iii) m has locally small average range; 

( miA)\ 
—— I converges for every x e X \ XQ. 

Á^)/AeS{x) 

If one analyses carefully the proof of Theorem 3.1 (see [2]) then one may observe 
that condition (iv) is necessary for the construction of the density/while conditions 
(i), (ii) and (iii) yield the integrabihty by seminorm of / But when the system of 
seminorms is countable, condition (iv) becomes superfluous. It should be interesting 
to characterize those spaces for which condition (iv) of Theorem 3.1 is unnecessary. 
From what follows it apperars that this question if closely related to a fundamental 
problem in vector valued integration theory, namely the completeness of L¿. 

First we associate to a bounded Cauchy net in L | a vector measure in the 
following way. 

Let {E, P) be a quasi-complete locally convex space and let {f^^ g ^ be a bounded 
Cauchy net in L¿. 

Put for each A elL, m{A) = Hm J^ f^dpi. Since for each p e P, (jp ° f^^ei is a 
a e / 

Cauchy net in L¿ , there exists a Bochner integrable density for ŷ  o m. Hence w is a 
/^-continuous measure of bounded variation with a locally small average range. We 
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call m limit measure of the Cauchy net (/J^g^. Let us now show how the limit of a 
bounded Cauchy net in L¿ is related to the density of the corresponding limit 
measure. 

Lemma 3.2. Let {fj^ ^j be a Cauchy net in L | and let m : 11 -^ E be its limit 
measure. If there exists a function f: X -^ E which is integrable by seminorm and such 
that for each A EH, m{A) = J^ fd^, then f^^f 

Li 
Proof Define for each 7i G n the simple function: 

The clearly (/j, a{n)) u {/, Z} is a martingale and fn-^f 

Let p e P and e > 0 be given. Since for each a G /,/^ is integrable by seminorm, 
there exist simple functions iga)<xei such that: 

o 

Choose (XQ E I such that for a, j8 » ao: 

pifa - fp)dn ^ -• 
X " 

For each a E I, K^ETI can be found such that for the corresponding gj: 

gldii 

Y ^— 
Aen tl{A) 

à A = gl 

and this for every n ^ n^. 
Finally choose TTQ G H in such a way that, if TT ^ TÜQ, 

I P{f - fn) dtl ^ 

Whenever a » ao, take n > (TCQ, n^. Then 

^ 2 + 

Pif - fa) du ^ 

PiL - g^)dn + 

Pif-fJdn + PÍA - fa) du ^ 

z 
Aen 

gadH - fjA 

ÁA)-
àA du + 
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+ I 
fj^i - m(A) 

li(A) 
dfi ^ 

p{gl - Qdii + I /̂  Ld\i - m{A)\ ^ 

e fi e ,. 

^ Ô + ^ + Z + ^™ 
z o o fie/ 

P{L - ffi) dfi ^ S 

Hence/« - ^ / i n L¿. • 

Theorem 3.3. If E is a quasi-complete locally convex space, then the following 
conditions are equivalent: 

(i) L | is quasi-complete; 
(ii) For every vector measure m:T -^ E whit h m « fi, \m\{X) < + oo, and having 

locally small average range, there exists a density which is integrable by seminorm; 
(iii) For every absolutely summing operator T e L{L'^, E) which induces a o-

additive vector measure and which is nuclear by seminorm there exists a function f 
which is integrable by seminorm such that 

T{h') = hfdfi, for each h e L" 

^ (iv) Every bounded and uniformly integrable martingale which is L^-Cauchy is 
hy convergent. 

Proof. It is sufficient to prove (i) <=> (ii). 
The implication (ii) => (i) follows immediately from Lemma 3.2. Conversely, let 

L | be quasi-complete and let m be a vector measure with m « /i, \m\{X) < + oo and 
having locally small average range. By similar arguments as in the Banach setting 
(see [10]) one can easily prove that (/^, cr(7i))̂ gn5 with 

m{A) 

/tn li{A) 

is a bounded Cauchy net for which the hmit / satisfies m{A) = ¡Afdl^^ for each A e 
X. • 

Remark 3.4. Since un general the space L | is not quasi-complete, condition (iv) 
in Theorem 3.1 can not be omitted. Combining Theorem 2.5 and Theorem 3.3, we 
are now able to give a relationship between the Radon-Nikodym Property for a 
locally convex space E and the quasi-completeness of Ll. 

Theorem 3.5. A quasi-complete locally convex space E has RNP if and only ifh^ 
is quasi-complete and one of the equivalent statements in Theorem 2.5 is satisfied. 
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4. RIVIP AND <T-DENTABILITY 

In case Eis a Banach space or a Fréchet space the problem of giving geometrical 
characterizations of T^A^P-spaces has been the subject of intensive research (see [14], 
[17], etc.). 

These results have been extended to locally convex spaces in which every 
bounded subset it metrizable (see [18]). For a treatment in general locally convex 
spaces we refer to [12] and [16]. 

Let us recall that a subset 5 of a locally convex space {E, P) is said to be a-
deniable if for every p e P and £ > 0 there exists y G B such that y 4 (^{B \ bp{y, e)), 
whereby: 

{ oo 00 ^ 

X^ ^iyt lyteB, a, ^ 0 and J^ a, = 1 j 
The space E is called a-dentable if every non-empty bounded subset of E is o-
dentable. 

The following theorem is due to Egghe (see [12], Theorem 3). 

Theorem 4.1. Let E be a quasi-complete locally convex space. Then E possesses 
l^RNP'] if and only if E is a-dentable and every uniformly bounded Cauchy net in L | is 
convergent. 

In [16], Rodriguez-SaUnas proves the equivalence between [^RNP~\ and G-
dentabiUty for general locally convex spaces. Yet remark that the density in his defi
nition of [i^A^P] takes values in the bidual E". 

5. PERMANENCE PROPERTIES AND EXAMPLES 

From sections three and four it follows that many results concerning the repre
sentation of Banach space valued measures by means of an integrable density can be 
extended to locally convex spaces if and only if L | is quasi-complete or complete 
with respect to uniformly bounded nets. In this section we intend to give per
manence properties and examples of locally convex spaces for which L | satisfies this 
completeness conditions. For that purpose. Theorem 3.3 will be very usefull. 

Obviously for every RNP-spacc (resp. [PA^P]-space) E, L | is quasi-complete 
(resp. complete w.r.t. uniformly bounded nets). For examples of such spaces we refer 
to [3]. Since for every Banach space E, L | is complete, but on the other hand not 
every Banach space possesses PA^P, it makes sense to search for examples of locally 
convex spaces E for which L¿ is quasi-complete (resp. complete w.r.t. uniformly 
bounded nets) without assuming that E possesses RNP (resp. [PJVP]) . 

We start with some permanence properties. 

Proposition 5.1. Let (Ei, PÍ)ÍCN ^^ ^^ increasing sequence of quasi-complete 
locally convex spaces for which L | is quasi-complete (or complete w.r.t. uniformly 
bounded nests). If the inductive limit E of the spaces (Ei, Pi)ieN ^^ strict and moreover 
localizes convergent sequences, then L¿ is quasi-complete (or complete w.r.t. uniformly 
bounded nets). 
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Proof. Let m." Z -> £" be a jU-continuous measure of bounded variation with 
locally small average range. Then there exists a partition (Â iX-ĝ v of ^/i.a.e. with Xi e 
Z" ,̂ such that Ax^{m) a E^. 

If this was not the cse, one could choose a pairwise disjoint sequence (v4¿Xĝ  in 
£+ for which m[A¡) G E^ \ £'i-i. But since m{A¡) -> 0, there exists an integer n such 
that for each / G N, m{Ai) e E„, a contradiction. 

Now let for each / G Â , E¿ = Z n Z¿; then m¿ : Ef -^ Ei is a. /z-continuous vector 
measure of bounded variation with locally small average range. In view of Theorem 
3.3 there exists/¿ G L¿.(X¿, Z¿, JU) such that mi{A) = ¡AÍi^f^^ ^ ^ ^i-

00 

Then the function/ = ^ fôx^ is a density for m, and by Theorem 3.3 the space 

L | is quasi-complete. • 

Let (E, P) and (F, g) be locally convex spaces. Let J^ be a family of bounded 
subsets of E such that \J B = E and for all B, B' e #", there exist B" e #" and c > 

BE ^ 
0 such that B, B' c= cB". The space Lj^íF, F) is the space L(E, F) equiped with the 
topology defined by the seminorms q^ij) = sup q(Ty\ B e ^ and q e Q. 

yeB 

Proposition 5.2. Let {Ei, P¿)¿ ̂ ^ be an increasing sequence of separable locally 
convex spaces. Let furthermore (F, Q) be locally convex space and suppose that for 
each i e N, l^h^E^, F) is complete w.r.t. uniformly bounded nets. If the inductive limit (F, 
P) of the spaces (Ei, //X-ĝ v ^^ hypers trie t then Llp{E,F) is complete w.r.t.-uniformly 
bounded nets. 

Proof Let m : E -> L^{E, F) be a //-continuous measure of bounded variation 
with an average range which is bounded and locally small. 

Define for each / G N, m¡ : Z -^ L^{Ei, F), with mi{A) = m{A) \ F¿. Then m¿ has the 
same properties as m. 

Since Li^(£., F) is complete w.r.t. uniformly bounded nets, there exists an 
Lj^{Ei, F)-valued density f for m ,̂ which is integrable by seminorm. 

Now let J G F and let i e N be the smalles integer for which y G F¿. 
Since for each 7 ^ z, ¡Afii^Màfi = mi{A){y) = mjiA){y) = J^y}(x)(j)¿//x, there 

exists a set Xf^, with ii(X¡^j) = 0 such that f^x){y) = fj{x){y\ for all x€X\X\^y Let 
C» 00 

{yi,n II « e A/̂ } be a countable dense subset of F¿. Call XQ — \J \J \J X^¡f, then 
i=l j> i n=i 

fiiXo) = 0. 
Define/: X -^ L^{E, F) as follows: 

fix)iy) = fiix)iyl if yGE, and XEX\XO 

fix) = 0, if xe Xo. 

Then / is the desired density for m. • 

Corolario 5.3. Let (F|, F¿)¿g;v èe ¿2̂2 increasing sequence os separable locally 
convex spaces such that for each ne N, L(t¡); is complete w.r.t. uniformly bounded nets. 
If the inductive limit (F, P) of the space (Ei, Pi)i g jy is hyperstrict, then Lfe;. is complete 
w.r.t. uniformly bounded nets. 
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Proposition 5,4. Let (Ei, Pi)i^^ be a sequence of locally convex spaces for which 
L¿. is quasi-complete (resp. complete w.r.t. uniformly bounded nets). If E is the 
product of the spaces {Ei, Pi)iem ^^^^ L¿ is quasi-complete (resp. complete w.r.t. 
uniformly bounded nets). 

Proof. Apply Theorem 3.3 to each projection mi'.J. -^ Ei of m. • 

Proposition 5.5. Let E be a closed linear subspace of a Suslin space F and suppose 
that h\ is quasi-complete (resp. complete w.r.t. uniformly bounded nets). Then L | is 
also quasi-complete (resp. complete w.r.t. uniformly bounded nets). 

Proof Follows immediately from [20], Property VIII. 

Let us give examples of locally convex spaces for which L | is quasi-complete 
(resp. complete w.r.t. uniformly bounded nets). 

Examples 5.6. Let E be a quasi-complete locally convex space in which bounded 
subset is metrizable. Then L¿ is complete w.r.t. uniformly bounded nets. 

Proof Apply [18], Theorem 2.5 and Theorem 4.L • 

Example 5.7. Let E be a quasi-complete locally convex space with property 
(BM) (see [5]). Then L¿ is quasi-complete. 

Proof Let m .• S -^ £" a ju-continuous measure of bounded variation. According 
to [5], Theorem 3.1, it is possible to find a partition {X)içj^ of X p.a.e., such that 
Axiim) is contained in a bounded metrizable subset of E. The conclusion follows as 
in Example 5.6. • 

Consequently if £ is a Fréchet space or a strict (LF)-space, L | es quasi-complete 
locally convex spaces with the property (BM) we refer to [5]. 

Example 5.8. Let E be a separable évaluable space and let F be a quasi-complete 
Suslin space for which L | is complete w.r.t. uniformly bounded nets. Then the space 
Li e(E,F) ^^ complete w.r.t. uniformly bounded nets. 

Proof. Let m:l. -^ LpXE, F) be a ju-continuous measure of bounded variation 
and with an average range which is bounded and locally small. Since E is évaluable, 
Axim) is equicontinuous. Let {yi \\ i G Â } be a countable dense subset oíE. Define for 
each 

/ e Â , mi : S -^ F by m,(^) = m{A){y^, A elL. 

Then m¿ is a /¿-continuous F-valued measure of bounded variation with an average 
range which is bounded and locally small. Hence there exists a function f: X -^ F 
which is integrable by seminorm such that m¡{A) = ¡Afi^l^^ A eH. Since Fis a SusHn 
space, a set XQ^ ¿ c X, with ¡AÍXQ^ i) = 0, may be found such that for every x e X \ 
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( m(A)\ ^' 

--^—~ converges (see [2], Proposition 3.4). Let JTQ = U ^o b 
then ii{Xo) = 0. 

^miA)\ Considérer for each x e X \ XQ, the net . . 

In view of the Banach-Steinhaus Theorem this net is convergent in Lp^E, F). 
Consequently the space L¿̂ ^̂ £ p) is complete w.r.t. uniformly bounded nets. • 

Example 5.9. Let E be a FréchetSchwartz space and let F be a quasi-complete 
Suslin space for which L | is complete w.r,t. uniformly bounded nets. Then the space 
L¿(§F Is complete w.r.t. uniformly bounded nets. The same conclusion holds in case E 
is a strict inductive limit of FréchetSchwartz spaces and F is quasi-complete Suslin 
space of type Q (see [9], p. 84). 

Proof. In both cases, the tensor product E © F is a closed subspace of the 
SusHn space LpXE¡„ F) (see [8], [9]). In view of Proposition 5.3 we may restrict 
ourselves to the case where E is a Fréchet-Schwarts space. Then E¡j is a separable 
évaluable space, and so the conclusion follows by means of Example 5.8 and 
Proposition 5.5. 
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