SOBRE c-DUALIDAD Y ESPACIOS c-PERFECTOS

Miguel Florencio Lora (*)

Recibido: 15 octubre 1980

Presentado por el académico numerario D. Manuel Valdivia Ureña

Given a sequence space λ the c-dual $\lambda^c = \{u = (u_n) : \sum u_n x_n \text{ is convergent} \}$ in the sense of Cesàro for every $x = (x_n)$ of λ is introduced. The convergence of the n-sections of a vector of λ is studied for the weak $[\sigma(\lambda, \lambda^c)]$ topology and the c-topology, which is an analogous of the normal topology of Köthe. A necesary and sufficient condition for a sequence space to be c-perfect is given.

1. Introducción

Si p es alguna medida de convergencia de series, podemos definir el p-dual de cualquier espacio de sucesiones λ mediante:

$$\lambda^{p} = \left\{ u = (u_{n}) : \sum_{n} u_{n} x_{n} \text{ es } p - \text{convergente}, \forall x = (x_{n}) \in \lambda \right\}.$$

En este sentido, han sido estudiados el α -dual (cuando p es la convergencia absoluta), el β -dual (cuando p es la convergencia ordinaria) o el ρ -dual (cuando p es la convergencia en el sentido de Abel).

El objeto de este trabajo es estudiar el caso en que p es la convergencia en el sentido de Cesàro, con lo que obtenemos el c-dual de un espacio de sucesiones:

$$\lambda^{c} = \left\{ u = (u_{n}) : \sum_{n} u_{n} x_{n} \text{ es Cesàro-convergente, } \forall x = (x_{n}) \in \lambda \right\}.$$

^(*) Este trabajo ha sido realizado en el Departamento de Matemáticas de la E. S. I. I. de Sevilla que dirige el Prof. Dr. P. Pérez Carreras.

De las implicaciones: convergencia absoluta \Longrightarrow convergencia ordinaria \Longrightarrow convergencia Cesàro \Longrightarrow convergencia Abel; se sigue que $\lambda^{\alpha} \subseteq \lambda^{\beta} \subseteq \lambda^{\rho}$. También es conocido (ver [1]) que si λ es normal entonces $\lambda^{\alpha} = \lambda^{\rho}$ y por tanto $\lambda^{\alpha} = \lambda^{\beta} = \lambda^{\rho} = \lambda^{\rho}$.

2. Propiedades elementales

En este apartado estudiaremos algunas propiedades de la c-dualidad cuyas demostraciones omitimos por poderse realizar de forma análoga a las realizadas en [6] respecto a la α -dualidad.

Proposición 1.—Sean λ y μ dos espacios de sucesiones, entonces se verifican: (a) Si $\lambda \subseteq \mu$, se tiene que $\mu^{\mathfrak{o}} \subseteq \lambda^{\mathfrak{o}}$ y que (b) $\lambda^{\mathfrak{o}\mathfrak{o}} = (\lambda^{\mathfrak{o}})^{\mathfrak{o}} \supset \lambda$.

Definición 1.—Se dice que un espacio de sucesiones λ es c-perfecto si verifica que $\lambda^{cc} = \lambda$.

Proposición 2.—(a) El c-dual de cualquier espacio de sucesiones es c-perfecto. (b) λ^{ec} es el menor espacio c-perfecto que contiene a λ . (c) Si λ es c-perfecto, entonces λ contiene al espacio φ de las sucesiones con solo un número finito de coordenadas no nulas.

En [6] se demuestra que todo espacio α -perfecto es necesariamente normal; el siguiente ejemplo muestra que existen espacios c-perfectos que no son normales, separando de esta forma el concepto de α -dualidad y el de c-dualidad.

EJEMPLO 1.—Sea el vector e=(1,1,...,1,...) y consideremos el espacio unidimensional engendrado por e; es fácil comprobar que el c-dual de dicho espacio es el espacio CS de todas las sucesiones sumables en el sentido de Cesàro. En consecuencia, CS es un espacio c-perfecto (pues se trata de un c-dual) que no es normal, pues la sucesión (1,-1,1,-1,...,1,-1,...) pertenece a CS y sin embargo la sucesión (1,0,1,0,...,1,0,...) no pertenece a CS.

En [3] se prueba que el dual de CS es el espacio L de las sucesiones (u_n) que son convergentes y tales que la serie $\sum n \cdot \Delta^2 u_n$ es absolutamente convergente (donde $\Delta^2 u_n$ indican las diferencias de segundo orden de u_n) y que si a L se le dota de la norma

$$\| (u_n) \| = | \lim_{n} u_n | + \sum_{n=1}^{\infty} n \cdot | \Delta^2 u_n |$$

obtenemos el dual fuerte de CS.

Diremos que un espacio de sucesiones λ es L-invariante si paracada (x_n) en λ y cada (ε_n) en L se tiene que $(\varepsilon_n \cdot x_n)$ pertenece a λ .

Proposición 3.—(a) El c-dual de cualquier espacio de sucesioneses L-invariante. (b) Todo espacio c-perfecto es L-invariante.

3. Convergencia seccional en la topología débil

Recordemos que una sucesión (x_n) se dice sumable en el sentido de Cesàro si la sucesión

$$\sigma_n(x) = \frac{S_1(x) + S_2(x) + \ldots + S_n(x)}{n} \text{ con } S_h(x) = x_1 + x_2 + \ldots + x_h$$

es convergente; en tal caso al límite de dicha sucesión se denotará mediante $\sum_{n=1}^{\infty} x_n(c)$ y se dirá que es la c-suma de (x_n) .

Para cada espacio de sucesiones, debido a la definición de su *c*-dual, tiene sentido considerar la forma bilineal:

$$(x, u) \in \lambda \times \lambda^{c} \longmapsto \langle u, x \rangle = \sum_{n=1}^{\infty} u_{n} x_{n} (c) \in \mathbb{K}.$$

es fácil probar que si λ contiene a φ entonces dicha forma bilineal es separada, por lo que determina al par dual $(\lambda, \lambda^{\varrho})$.

Dado un espacio de sucesiones $\lambda \supset \varphi$, para cada vector $x = (x_n) \in \lambda$, consideremos los vectores $X_n \in \varphi \subseteq \lambda$, n = 1, 2, 3, ... definidos mediante $X_n = (x_1, x_2, ..., x_n, 0, 0, ...)$ y a los que denominaremos secciones de x.

Tomando el caso particular en que λ es el espacio CS podemos comprobar que las secciones de un vector no son necesariamente convergente hacia él en la topología débil $\sigma(\lambda, \lambda^e)$, pues tomando $x = (x_n) \in CS$ con $x_n = (-1)^{n+1}$ y $u = (u_n) \in L$ con $u_n = 1$ para cada n, tenemos que:

$$|\langle x - X_n, u \rangle| = \left| \sum_{n=1}^{\infty} x_k(c) \right| = \left| \sum_{1}^{\infty} x_k(c) - \sum_{1}^{n} x_k \right| =$$

$$= \begin{cases} \left| \frac{1}{2} - 0 \right|, & \text{si } n \text{ es par} \\ \left| \frac{1}{2} - 1 \right|, & \text{si } n \text{ es impar} \end{cases} = \frac{1}{2}.$$

luego (X_n) no converge hacia x en la topología σ (CS, L). No obstante, se cumple el siguiente resultado:

Proposición 4.—Sea λ un espacio de sucesiones que contenga a φ . Entonces, para cada $x \in \lambda$ se tiene que (X_n) c-converge hacia x en la topología $\sigma(\lambda, \lambda^c)$. Es decir, en la topología débil, se verifica que:

$$\lim_{n} \frac{X_1 + X_2 + \ldots + X_n}{n} = x.$$

Demostración.—Para cada $n \in \mathbb{N}$, consideremos

$$B_n(x) = \frac{X_1 + X_2 + \dots + X_n}{n} = \left(x_1, \frac{n-1}{n} x_2, \frac{n-2}{n} x_3, \dots, \frac{1}{n} x_n, 0, 0, \dots\right).$$

Dados $u \in \lambda^c$ y $\varepsilon > 0$, encontraremos $n_0 \in \mathbb{N}$, tal que si $n > n_0$ entonces $| < x - B_n(x), u > | < \varepsilon$. Ahora bien, como $x \in \lambda$ y $\varepsilon \in \lambda^c$, la serie $\Sigma x_k u_k$ es c-convergente y escribiremos su c-suma como $\varepsilon = (u, x) = \Sigma x_k u_k (c)$.

Sea

$$Z_n = u_1 x_1 + \frac{n-1}{n} u_2 x_2 + \ldots + \frac{1}{n} u_n x_n,$$

-como $\sum u_k x_k$ c-converge, se sigue que la sucesión (Z_n) converge a $\sum_{k=1}^{\infty} u_k x_k(c)$ en \mathbb{K} . Por lo que existe $n_0 \in \mathbb{N}$ tal que si $n \gg n_0$, entonces:

$$\Big| Z_n - \sum_{k=1}^{\infty} u_k x_k (c) \Big| < \varepsilon.$$

pero

$$|\langle x - B_n(x), u \rangle| = |\langle x, u \rangle - \langle B_n(x), u \rangle| = |\sum_{k=1}^{\infty} u_k x_k(c) - Z_n|$$

por tanto

$$|\langle x - B_n(x), u \rangle| < \varepsilon$$
, si $n \ge n_0$. C. Q. D.

4. La c-topología de un espacio de sucesiones

Por la proposición 3 (a) se tiene que λ^c es L-invariante, esto es, para cada $u = (u_n) \in \lambda^c$ y cada $(\varepsilon_n) \in L$, se verifica que $(\varepsilon_n \cdot u_n) \in \lambda^c$. Por tanto, para cada $u \in \lambda^c$ fijo, tiene sentido considerar la aplicación:

$$f_u: (\varepsilon_n) \in \mathbb{L} \longrightarrow (\varepsilon_n \cdot u_n) \in \lambda^c$$

que obviamente es lineal.

Proposición 5.—Para cada $u \in \lambda^c$, la aplicación f_u es débil-débil continua; es decir, $f_u : L [\sigma(L, CS)] \longmapsto \lambda^c [\sigma(\lambda^c, \lambda)]$ es continua.

Demostración.—Sea V un σ (λ^{e} , λ)-entorno del origen en λ^{e} , por lo que V será de la forma

$$V = \{x^1, x^2, \ldots, x^k\}^0 = \bigcap_{i=1}^k \{x^i\}^0,$$

con $x^i \in \lambda$ para i = 1, 2, ..., k. Al ser $x^i \in \lambda$ y $u \in \lambda^c$, se tiene que la serie $\sum_{n} x^i_n \cdot u_n$ es c-convergente, esto es, el vector $m^i = (x^i_n \cdot u_n)$ pertenece a CS.

Consideremos el conjunto $\{m^i\}^{\mathfrak{o}} \subseteq L$, que se trata de un \mathfrak{o} (L, CS)-entorno del origen. Ahora bien:

Si

$$b \in \{m^i\}^0 \Longrightarrow |\langle b, m^i \rangle| \le 1 \Longrightarrow \Big| \sum_{n=1}^{\infty} b_n \cdot x^i_n \cdot u_n(c) \Big| \le 1$$

$$\Longrightarrow \Big| \sum_{n=1}^{\infty} (b_n \cdot u_n) \cdot x^i_n(c) \Big| \le 1 \Longrightarrow |\langle (b_n \cdot u_n), (x^i_n) \rangle| \le 1$$

$$\Longrightarrow f_u(b) = (b_n \cdot u_n) \in \{x^i\}^0$$

Por tanto, basta considerar el σ (L, CS)-entorno definido mediante $U = \bigcap_{i=1}^{k} \{m^i\}^0$, para obtener que f_u (U) \subseteq V; es decir, la continuidad de f_u . c. q. d.

Para cada $u \in \lambda^c$, definimos su L-envoltura mediante:

$$\{u\mid L=\{(\varepsilon_n - u_n): (\varepsilon_n)\in L \quad y \quad \|(\varepsilon_n)\|\leq 1\}.$$

Es claro que cada $\{u\}^L \subset \lambda^e$ (pues λ^e es L-invariante) y además $\{u\}^L = f_u$ (B), donde B es la bola unidad cerrada de L y por tanto un σ (L, CS)-compacto. En consecuencia, de la proposición anterior se sigue que $\{u\}^L$ es σ (λ^e , λ)-compacto.

Por otro lado, es obvio que $t \cdot \{u\}^L = \{t \cdot u\}^L$, para cada $t \in \mathbb{K}$. Además, como $u \in \{u\}^L$, se sigue que la unión de todos los conjuntos $\{u\}^L$ da lugar al espacio λ^c . En consecuencia, la familia

$$\{(\{u\}^L)^0:u\in\lambda^c\}$$

define una base de entornos del origen para una topología localmente convexa en λ , y al ser los $\{u\}^L = \sigma(\lambda^e, \lambda)$ -compactos, dicha topología es compatible con el par dual (λ, λ^e) . Llamaremos a esta topología «c-topología» del espacio de sucesiones λ , y la designaremos por τ_L .

Estudiaremos a continuación la convergencia seccional respecto a la c-topología. Para ello haremos uso del siguiente resultado probado en [3]: «Los vectores coordenados (e_n) de CS constituyen una c-base del espacio CS», asímismo haremos uso del siguiente resultado que puede encontrarse en [5]: «Si $x \in CS$ y $u \in L$ entonces

$$\sum_{k=1}^{\infty} x_k u_k(c) = \lim u_n \cdot \sum_{k=1}^{\infty} x_k(c) + \sum_{n=1}^{\infty} \sigma_n(x) \cdot n \cdot \Delta^2 u_n''.$$

Proposición 6.—Sea λ un espacio de sucesiones que contenga a φ . Entonces, para cada $x \in \lambda$, la sucesión (X_n) de las secciones de x es c-convergente hacia x en la c-topología de λ .

Demostración.—Dado U τ_L -entorno del origen en λ tenemos que encontrar $n_0 \in \mathbb{N}$, tal que si $n \gg n_0$, entonces se verifique que:

$$x = \frac{X_1 + X_2 + \ldots + X_n}{n} \in U.$$

Ahora bien, si U es un τ_L -entorno ha de ser de la forma $U = (\{u\}^L)^0$, para algún $u \in \lambda^c$. Por lo que habrá que demostrar que existe n_0 , tal que si $n \ge n_0$, entonces:

$$\left| \langle x - \frac{X_1 + X_2 + \ldots + X_n}{n}, v \rangle \right| \leq 1, \quad \forall v \in \{u\}^L.$$

Por la proposición 4 sabemos que (X_n) es c-convergente hacia x; en la topología $\sigma(\lambda, \lambda^c)$, luego existe n_1 tal que si $n \ge n_1$ entonces:

$$\left| \langle x - \frac{X_1 + X_2 + \ldots + X_n}{n}, u \rangle \right| \leq 1$$
 (1)

Por otro lado, como $x \in \lambda$ y $u \in \lambda^c$, se tiene que el vector $(x_k \cdot u_k)$, pertenece a CS. Sea Yⁿ definido mediante:

$$\mathbf{Y}^{n} = \frac{X_{1} + X_{2} + \ldots + X_{n}}{n} = \left(x_{1}, \frac{n-1}{n}x_{2}, \frac{n-2}{n}x_{3}, \ldots, \frac{1}{n}x_{n}, 0, 0, \ldots\right)$$

por lo que se tiene que:

$$(Y_k^n \cdot u_k) = \left(x_1 u_1, \frac{n-1}{n} x_2 u_2, \frac{n-2}{n} x_3 u_3, \ldots, \frac{1}{n} x_n u_n, 0, 0, \ldots\right).$$

Es obvio que

$$(Y_k^n \cdot u_k) = \frac{S_1 + S_2 + \ldots + S_n}{n},$$

en donde denotamos $S_t = \sum_{k=1}^{t} x_k u_k \cdot e_k$; ahora bien, por ser (e_n) una c-base de CS se sigue que la sucesión $(Y^n_k \cdot u_k)_{n \in \mathbb{N}}$ converge en el espacio de Banach CS hacia el vector $(x_k u_k)$. Por tanto, la sucesión $([x_k - Y^n_k] u_k)_{n \in \mathbb{N}}$ converge a cero en CS; luego existe n_2 , tal que si $n \gg n_2$ entonces $Z^n = ([x_k - Y^n_k] \cdot u_k)$ tiene norma menor o igual a uno en CS. Es decir

$$||Z^n|| = \sup_{m \in \mathbb{N}} |\sigma_m(Z^n)| \le 1, \quad \forall n \ge n_2.$$
 (2)

Consideremos $n_0 = \max(n_1, n_2)$ y veamos que si n es posterior a n_0 se tiene la desigualdad:

$$\left| \langle x - \frac{X_1 + X_2 + \ldots + X_n}{n}, v \rangle \right| \leq 1, \quad \forall v \in \{u, v\}$$

Si $v \in \{u\}^L$, será $v_n = \varepsilon_n \cdot u_n$, con $(\varepsilon_n) \in L$ y $\| (\varepsilon_n) \| \leq 1$, y como $(\varepsilon_n) \in L$, existe $\lim \varepsilon_n = \hat{\varepsilon}$.

Aplicando ahora la nota previa a la proposición, se obtiene que:

$$\langle x - \frac{X_1 + X_2 + \dots + X_n}{n}, v \rangle = \langle x - Y^n, v \rangle =$$

$$= \sum_{k=1}^{\infty} (x_k - Y_k^n) \cdot u_k \cdot \varepsilon_k (c) = \hat{\varepsilon} \cdot \sum_{k=1}^{\infty} (x_k - Y_k^n) \cdot u_k (c) +$$

$$+ \sum_{k=1}^{\infty} \sigma_m (Z^n) \cdot m \cdot \Delta^2 \varepsilon_m.$$

Por tanto, aplicando (1) y (2) y siempre que $n \geqslant n_0$ se tiene que:

$$\left| \langle x - \frac{X_1 + X_2 + \dots + X_n}{n}, v \rangle \right| \le |\hat{\varepsilon}| \cdot$$

$$\cdot \left| \langle x - \frac{X_1 + X_2 + \dots + X_n}{n}, u \rangle \right| + \sum_{m=1}^{\infty} |\sigma_m(Z^n)| \cdot m \cdot |\Delta^2 \varepsilon_m| \le$$

$$\le |\hat{\varepsilon}| + \sum_{m=1}^{\infty} m \cdot |\Delta^2 \varepsilon_m| = ||(\varepsilon_n)|| \le 1.$$

luego (X_n) c-converge hacia x en la c-topología. c. q. d.

Estudiaremos ahora la c-topología del espacio de sucesiones CS.

Proposición 7.—En CS la c-topología y la topología normada coinciden.

Demostración.—Recuérdese que la topología normada de CS (es decir $||x|| = \sup |\sigma_n(x)|$) es compatible con la c-dualidad, pues su dual topológico y su c-dual coinciden con el espacio L (ver [3]). Por tanto, como τ_L es una topología compatible con el par dual (CS, L)

y la topología normada es la más fina de dicho par, se tiene que τ_L es menos fina que la topología normada.

Probemos que τ_L es más fina que la topología normada de CS. Para ello consideremos el elemento $u=(u_n)$ en L, con $u_n=1$ para n=1,2,3,... y sea el τ_L -entorno $(\{u\}^L)^0$. Obsérvese que $\{u\}^L=\{(\varepsilon_n) \in L: \| (\varepsilon_n) \| \le 1\}$ es decir, $\{u\}^L$ es la bola unidad cerrada de L.

Un elemento x pertenece a $(\{u\}^L)^0$, si y solo si, verifica que $\mid \Sigma x_n \cdot \varepsilon_n(c) \mid \leq 1$, para cada $(\varepsilon_n) \in L$ con $\parallel (\varepsilon_n) \parallel \leq 1$.

Para cada $n \in \mathbb{N}$, consideremos el elemento:

$$(\varepsilon_k^n) = \left(1, \frac{n-1}{n}, \frac{n-2}{n}, \dots, \frac{1}{n}, 0, 0, \dots\right) \in L$$

es fácil comprobar que $\|(\varepsilon^n_k)\| = 1$, $\forall n \in \mathbb{N}$; y por tanto que si x pertenece a $(\{u\}^L)^0$ se verifica que:

$$\Big|\sum_{k=1}^{\infty} x_k \cdot \varepsilon_k^n(c)\Big| \leq 1, \quad \forall n \in \mathbb{N}.$$

ahora bien,

$$\sum_{k=1}^{\infty} x_k \, \varepsilon_k^n \, (c) = \sum_{k=1}^n \frac{n-k+1}{n} \cdot x_k = \sigma_n (x);$$

en consecuencia, la relación anterior se traduce en que $|\sigma_n(x)| \leq 1$, para cada $n \in \mathbb{N}$. Esto es:

$$||x|| = \sup_{n \in \mathbb{N}} |\sigma_n(x)| \leq 1.$$

Luego $(\{u\}^L)^0$ está contenido en la bola unidad de CS y por tanto τ_L es más fina que la topología normada de CS, c. q. d.

Dado un espacio de sucesiones λ y dado un elemento fijo $u \in \lambda^{\sigma}$ tiene sentido considerar la aplicación:

$$F_u: x \in \lambda \longrightarrow (x_k \cdot u_k) \in CS$$

Proposición 8.—La aplicación $F_u: \lambda [\tau_L] \longleftrightarrow CS [\tau_L]$ es continua.

Demostración.—Para $v \in L$ sea $V = (\{v\}^L)^0$ que será un τ_L -entorno del origen en CS. Como $u \in \lambda^c$ y $v \in L$, se sigue de ser λ^c L-invariante (proposición 3) que $a = (u_k \cdot v_k) \in \lambda^c$; en consecuencia $U = (\{a\}^L)^0$ es un τ_L -entorno del origen en λ . Probaremos que el conjunto F_u (U) está contenido en V.

Ahora bien, $x \in U$ si y solo si, $|\sum_{n=1}^{\infty} x_n w_n(c)| \le 1$, para cada $w \in \{a\}^L$. Pero $w \in \{a\}^L$, si y solo si, w_n es de la forma $w_n = u_n v_n \varepsilon_n$, con $(\varepsilon_n) \in L$ y $||(\varepsilon_n)|| \le 1$. Luego:

$$x \in U \iff \left| \sum_{n=1}^{\infty} x_n u_n v_n \varepsilon_n(c) \right| \leq 1, \forall (\varepsilon_u) \in L \text{ con } \|(\varepsilon_n)\| \leq 1.$$
 (1)

Como un elemento $z \in \{v\}^L$, si y solo si, $z_k = v_k \cdot \varepsilon_k$, con $(\varepsilon_k) \in L$ y $\parallel (\varepsilon_k) \parallel \leq 1$; se sigue de (1) que para cada x en U y cada z en $\{v\}^L$ se verifica que:

$$|\langle F_u(x), z \rangle| = |\langle (x_k u_k), (v_k x_k) \rangle| = \Big| \sum_{k=1}^{\infty} x_k u_k v_k \varepsilon_k(c) \Big| \le 1$$

1uego, $F_u(x) \in (\{v\}^L)^0 = V$. Esto es, $F_u(U) \subset V$, c. q. d.

Daremos a continuación una condición necesaria y suficiente para que un espacio de sucesiones sea *c*-perfecto; para lo cual necesitaremos la siguiente definición.

Definición 2.—Sea λ un espacio de sucesiones y sea η una topología en λ . Se dice que λ es η -completo a coordenadas, si y solo si, para cada sucesión η -Cauchy en λ , existe un elemento de λ , tal que es límite coordenada a coordenada de dicha sucesión.

Teorema 1.—Sea λ un espacio de sucesiones que contenga a φ . Entonces, una condición necesaria y suficiente para que λ sea c-perfecto es que λ sea τ_L -completo a coordenadas.

Demostración.—(a) Suficiencia: Tendremos que probar que $\lambda^{cc} \subset \lambda$. Sea $x \in \lambda^{cc}$, por la proposición 6 sabemos que $B_n(x) = (X_1 + x_2 + \dots + x_n)/n$ converge hacia x en la c-topología del par dual $(\lambda^{cc}, \lambda^c)$ a la que denotaremos por $\tau_L(\lambda^{cc})$ para distinguirla de la c-topología del par (λ, λ^c) que será denotada por $\tau_L(\lambda)$.

Ahora bien, es fácil comprobar que τ_L (λ^{ee}) induce sobre λ la propia topología τ_L (λ). Por tanto, como (B_n (x)) es una sucesión τ_L (λ^{ee})-Cauchy y B_n (x) $\in \varphi \subset \lambda$, se tiene que (B_n (x)) es una sucesión τ_L (λ)-Cauchy en λ . Por lo que aplicando la hipótesis se sigue que existe $y \in \lambda$ tal que (B_n (x)) converge coordenada a coordenada hacia y.

Obviamente la sucesión $(B_n(x))$ también converge coordenada a coordenada hacia x, por lo que necesariamente x = y, de lo que se sigue que $x \in \lambda$.

(b) Necesidad: Sea (x^n) una sucesión τ_L -Cauchy en λ , tendremos que probar que existe un elemento $x \in \lambda$ tal que (x^n) converge hacia x coordenada a coordenada.

Como τ_L es más fina que $\sigma(\lambda, \lambda^o)$, se sigue que (x^n) es $\sigma(\lambda, \lambda^o)$ Cauchy; en consecuencia, dado $e_k \in \lambda^o$, con k fijo, tenemos que para cada $\varepsilon > 0$, existe $n_0 = n_0(\varepsilon, k)$ de manera que:

$$|x_k^n - x_k^m| = |\langle x^n - x^m, e_k \rangle| \le \varepsilon, \quad \forall m, n \ge n_0$$

lo que indica que la sucesión $(x^n_k)_{m \in \mathbb{N}}$ es una sucesión de Cauchy en \mathbb{K} y por tanto convergente. Pongamos lim $x^n_k = x_k$.

Consideremos el vector $x = (x_k)$; bastará demostrar que x pertenece a λ , y como por hipótesis $\lambda = \lambda^{ee}$, bastará demostrar que $x \in \lambda^{ee}$. Es decir, habrá que probar que para cada $u \in \lambda^{e}$, la serie $\sum x_k u_k$ es c-convergente.

Ahora bien, dado $u \in \lambda^e$, si (x^n) es τ_L -Cauchy en λ , por la proposición 8 se tiene que la sucesión imagen por F_u , esto es, $((x^n_k \cdot u_k))_{n \in \mathbb{N}}$ es τ_L -Cauchy en CS, y por la proposición 7, se sigue que dicha sucesión es $\| \cdot \|$ -Cauchy en CS.

Como (CS, $\| \|$) es un espacio de Banach, se sigue que existe $z = (z_k) \in CS$, tal que $(x^n_k \cdot u_k)$ es $\| \|$ -convergente hacia x en CS, y por tanto, también es convergente coordenada a coordenada, es decir, para cada k fijo, la sucesión $x^n_k \cdot u_k$ converge a z_k en \mathbb{K} . Por otro lado, como se verifica que $\lim x^n_k = x_k$, se sigue que $x^n_k \cdot u_k$ converge a

 $x_k u_k$, por lo que necesariamente $z_k = x_k \cdot u_k$, de lo que se deduce que el vector $(x_k \cdot u_k)$ coincide con z, por lo que también pertenece a CS.

De esta forma queda probado que la serie $\Sigma x_k \cdot u_k$ es c-convergente para cada $u \in \lambda^c$, es decir, que $x \in \lambda^{cc}$, c. q. d.

Siguiendo técnicas similares a [6] en relación a la α-dualidad se puede demostrar el siguiente resultado.

Proposición 9.—Sea λ un espacio de sucesiones que contiene a φ -Entonces, λ es τ_L -sucesionalmente-separable.

5. La c-dualidad y los conjuntos compactos

Con objeto de obtener una caracterización de los conjuntos compactos para topologías compatibles con el par dual (λ, λ^c) daremos unos resultados que están en la línea de (6) y (7).

Utilizando resultados de compacidad contenidos en (8) y (2) y teniendo en cuenta la proposición 9 no resulta difícil dar los siguientes teoremas:

Teorema 2.—Sea λ un espacio de sucesiones tal que (λ,λ^e) es un par dual y sea A un subconjunto de λ . Entonces, las siguientes afirmaciones son equivalentes:

- (a) A es $\sigma(\lambda, \lambda^e)$ -compacto
- (b) A es $\sigma(\lambda, \lambda^{\sigma})$ -numerablemente compacto
- (c) A es $\sigma(\lambda, \lambda^c)$ -sucesionalmente compacto.

Teorema 3.—Sea λ un espacio de sucesiones tal que (λ, λ^e) es um par dual y sea A un subconjunto de λ . Si τ es una topología localmente convexa y compatible con el par dual (λ, λ^e) las siguientes afirmaciones son equivalentes:

- (a) A es τ-compacto
- (b) A es τ-numerablemente compacto
- (c) A es τ-sucesionalmente compacto.

Los detalles de estas pruebas pueden ser encontrados en (9).

El siguiente teorema, que completa el teorema 3, es de gran interés práctico para caracterizar a los conjuntos compactos.

Teorema 4.—Sea λ un espacio de sucesiones y sea τ una topología localmente convexa compatible con el par dual (λ, λ^e) . Si A es un subconjunto de λ , son equivalentes:

- (1) A es τ-compacto.
- (2) A es acotado y para cada sucesión x^n en A que sea convergente coordenada a coordenada hacia un elemento $x^0 \in \omega$, se verifica que $x^0 \in A$ y que x^m τ -converge hacia x^0 .

Demostración.—(1) \Longrightarrow (2): Si A es τ -compacto, la acotación de A es obvia. Sea x^n una sucesión en A que converge coordenada a coordenada hacia un elemento $x^0 \in \omega$. Como A es τ -sucesionalmente-compacto (teorema 3) existe una subsucesión $x^{(n_k)}$ que τ -converge-hacia un punto $y_0 \in A$.

Como τ es más fina que σ (λ , λ^{σ}), se tiene que $x^{(n_k)}$ converge coordenada a coordenada hacia y_0 . Luego necesariamente $x^0 = y_0$, lo que prueba que $x^0 \in A$.

Demostraremos ahora que x^n τ -converge a x^0 . Como x^n converge coordenada a coordenada hacia x^0 , se tiene que x^0 es el único puntoal que x^n puede τ -converger. Así pues, decir que x^n no τ -converge es
equivalente a afirmar que x^n no τ -converge hacia x^0 . Luego, si x^n no
fuese τ -convergente, existiría un τ -entorno U de x^0 , tal que, para
infinitos índices (pongamos para $n \in I$) se tiene que $x^m \notin U$, $\forall n \in I$.

Ahora bien, como $(x^n)_{n \in I}$ es una sucesión en el conjunto τ -sucesionalmente compacto A, se puede extraer una subsucesión que sea τ -convergente hacia un punto y_0 en A, punto que no puede ser otroque x^0 , esto es $y_0 = x^0$.

Pero al ser $x^n \notin U$, $\forall n \in I$, se tiene que $y_0 \notin \mathring{U}$ y en consecuencia $y_0 \neq x^0$, con lo que llegamos a una contradicción.

 $(2)\Longrightarrow (1)$: Teniendo en cuenta el teorema 3, bastará probarque A es τ -sucesionalmente compacto.

Sea x^n una sucesión en A, habrá que demostrar que x^n posee una subsucesión que τ -converge hacia un elemento de A.

Como A es acotado, se sigue que $A_i = \langle A, e_i \rangle$ es acotado en \mathbb{K} , para cada i fijo; luego la sucesión $(x_i^m)_{n \in \mathbb{N}}$ está contenida en el acotado A_i de \mathbb{K} , por lo que es posible extraer de ella una subsucesión convergente. Y como esto es factible para cada coordenada, podemos usar el procedimiento diagonal para obtener una subsucesión de x^m que sea convergente coordenada a coordenada hacia un cierto elemento $x^0 \in \omega$. Basta ahora usar la hipótesis, para poder afirmar que dicha subsucesión τ -converge hacia x^0 y que $x^0 \in A$, c. q. d.

Referencias

- [1] Antonino, J. A. Propiedades de los espacios de sucesiones, ρ-dualidad y espacios casi-perfectos. Tesis doctoral. Universidad de Valencia.
- [2] DIEUDONNE, J. y SCHWARTZ, L. (1950). La dualité dans les espaces (F) et (LF). Ann. Inst. Fourier, 1, 61-101.

- FLORENCIO, M. y PÉREZ CARRERAS, P. (1981). Sobre sumabili-[3] dad Cesàro en el espacio CS (I). Rev. R. Acad. Ci. Madrid, **75**, 1185-1198.
- GARLING, D. J. H. (1967). The β- and γ-duality of sequence spaces. *Proc. Camb. Phil. Soc.*, 63, 963-981. [4]
- HARDY, G. H. (1973). Divergent Series. Oxford U. P. KÖTHE, G. (1969). Topological vector spaces I. Springer-[6]Verlag.
- [7]MARQUINA, A. Algunas propiedades de compacidad en espacios de sucesiones. Rev. Real Acad. Tomo LXVII, cuaderno 1...
- Valdivia, M. (1972). Some criteria for weak compactness. J. reine angew. Math., 255, 165-169.
- FLORENCIO, M. (1980). Sumabilidad Cesàro en espacios de sucesiones. Tesis doctoral. Sevilla.

Departamento de Matemáticas E. S. I. I. de la Universidad de Sevilla