BOUNDEDLY COMPLETED SUBSPACES IN LOCALLY CONVEX SPACES

Bella Tsirulnikov

Department of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

Recibido: 10 octubre 1979

Presentado por el académico numerario D. Manuel Valdivia

Boundedly completed and quasi-distinguished spaces and subspaces were introduced in [9] and [10]. In this article we investigate the conditions for a subspace of a locally convex space E to be boundedly completed or quasidistinguished in E and study the topological properties of E connected with the above concepts. We obtain:

1. In an ultrabornological space E every dense countable-codimensional subspace is boundedly completed in E. In a locally complete bornological space E every dense countable-codimensional subspace is quasi-distinguished in E, (follows from Corollaries 6 and 7).

2. If G is boundedly completed in E, then the associated with $(E', \mu(E', G))$ barrelled (ultrabornological) topology is equal to the associated with $(E', \mu(E', E))$ barrelled (ultrabornological) topology. Hence if any dense subspace is boundedly completed in E, the associated with $(E', \mu(E', E))$ barrelled and ultrabornological topologies are minimal on E', (Theorem 1).

3. Let G be a dense subspace in E. If G is boundedly completed, then G satisfies the following hereditary properties:

a) if E is α -u-quasi-barrelled, G is α -u-quasi-barrelled, (Proposition 8).

b) if E is semi-dualmetric, resp. dualmetric, resp. a (DF)-space, then G is semi-dualmetric, resp. dualmetric, resp. a (DF)-space, (Theorem 9).

Finally, using the concept of a quasi-distinguished space, we slightly extend some results of [7] and [8].

Los conceptos de subespacios acotadamente completos y casi-distinguidos los hemos introducido en [10]. En este artículo investigamos las propiedades topológicas de espacios localmente convexos, ligados con los conceptos citados. En particular, obtenemos que si un espacio E es α -u-casi-tonelado [resp. semi-dualmétrico, dualmétrico, (DF)-espacio], y el subespacio G es acotadamente completo, entonces G es α -u-casi-tonelado [resp. semi-dualmétrico, dualmétrico, (DF)espacio].

Let G be a subspace of a locally convex space E. We say that G is quasi-distinguished (boundedly completed) in E, if every bounded set (element) of E is contained in the closure of a bounded set of G. We say that E is quasi-distinguished (boundedly completed), if E is quasi-distinguished (boundedly completed) in its completion. In [10] we studied the conditions for a locally convex space to be boundedly completed. In this article we obtain the conditions for a subspace of E to be boundedly completed in E and investigate the topological properties of boundedly completed subspaces.

Given a vector space E over the field K of the real or complex numbers, we write (E, t) when E is equipped with the topology t. All topologies on E will be locally convex and separated. We denote by E' and E* the topological and algebraic duals of (E, t), respectively. Let $\langle E, F \rangle$ be a dual pair. We denote by β (E, F), μ (E, F) and σ (E, F) the strong, Mackey and weak topologies on E, respectively. An absolutely convex set is called a disk. For a bounded disk A of a locally convex space E we denote by E_A the linear hull of A equipped with the norm, associated with A. We say that A is a *Banach disk*, if E_A is a Banach space. Given a set M in E, we denote by \overline{M} its closure in E, and by M* its closure in the weak bidual $(E'', \sigma (E'', E'))$ of E.

By t (E, F), [resp. u b (E, F)], we denote the associated with (E, μ (E, F)) barrelled, [resp. ultrabornological], topology, it means, the weakest barrelled, [resp. ultrabornological], topology on E, finer than μ (E, F), ([1], p. 35).

THEOREM 1.—Let G be a subspace of a locally convex space E. If G is boundedly completed in E, then t(E', G) = t(E', E) and u b(E', G) = u b(E', E).

PROOF.—It is clear that $t (E', G) \leq t (E', E)$. On the other hand, every barrel in $(E', \sigma(E', G))$ is a barrel in (E', t (E', G)), hence $t (E', G) \geq \beta(E', G)$. Since G is boundedly completed in E, $\beta(E', G)$ is finer than $\sigma(E', E)$. Hence t (E', G) is finer than $\mu(E', E)$, therefore t (E', G) = t (E', E).

Let B be a bounded Banach disk in $(E', \sigma(E', G))$. According to Banach-Mackey theorem, ([4], p. 252), B is bounded for $\beta(E', G)$, hence for $\sigma(E', E)$, therefore $(E', \sigma(E', G))$ and $(E', \sigma(E', E))$ have

*626

the same bounded Banach disks, thus u b (E', G) = u b (E', E), q. e. d.

A barrelled, resp. ultrabornological, topology on E is *minimal*, if there is no weaker separated locally convex barrelled, resp. ultrabornological, topologies on E, [3].

COROLLARY 2.—Let E be a locally convex space. If every dense subspace is boundedly completed in E, then t(E', E) is the minimal barrelled and u b(E', E) is the minimal ultrabornological topologies on E'.

Let \mathcal{A} be a family of disks in E. We say that \mathcal{A} satisfies the *ideal property*, if for every A_1 , A_2 in \mathcal{A} and λ in \mathbb{K} there exists A_3 in \mathcal{A} such that $\lambda (A_1 + A_2) \subseteq A_3$.

For the next proposition we shall need the following result of Valdivia:

a) ([12], Lema 1) Let G be a one-codimensional subspace in a locally convex space E and \mathcal{A} a family of closed bounded disks in E, satisfying the ideal property. Suppose for some $B_0 \in \mathcal{A}$ the set $B_0 \cap G$ is not closed. Then for any $B \in \mathcal{A}$ there exists $A \in \mathcal{A}$ such that $B \subseteq \overline{A \cap G}$.

The next proposition slightly extends Proposition 1 of [9].

PROPOSITION 3. — Let E be a locally convex space. Then $(E', \beta(E', E))$ is complete if and only if every dense finite-codimensional subspace of E is quasi-distinguished in E.

PROOF.—Let G be a dense subspace of finite codimension in E. Denote by Q the polar of G in E*. Take a basis $f_1, f_2, ..., f_n$ in Q and denote by

$$\mathbf{G}_{k} = \bigcap_{i=1}^{k} f_{i}^{-1}(0).$$

Since f_1 does not belong to E' and (E', β (E', E)) is complete, we conclude, applying ([4], p. 270), that there exists a closed bounded disk A in E, such that A $\bigcap G_1$ is not closed. Hence by a), β (E', E) = β (E', G₁).

Since $f_2 \notin E'$ and $(E', \beta(E', G_1))$ is complete, we use the same arguments and conclude that $\beta(E', G_1) = \beta(E', G_2)$. Continuing, we obtain: $\beta(E', E) = \beta(E', G_n) = \beta(E', G)$. Hence G is quasidistinguished in E.

Suppose $(E', \beta(E', E))$ is not complete. Take an element f imits completion, such that $f \notin E'$, and denote by $F = f^{-1}(0)$. By ([4], p. 270) F is not quasi-distinguished in E, q. e. d.

COROLLARY 4.—Let E be a locally convex space with a completestrong dual. Suppose for any dense subspace G of E the strong dual $(E', \beta(E', G))$ is complete, (for example, E and each of its dense subspaces are bornological). Then any dense subspace of E isboundedly completed in E.

PROOF.—Let G be dense in E. Take $x \in E \setminus G$ and denote by F the linear hull of $G \cup \{x\}$. By Proposition 3, G is quasi-distinguished in F. Hence G is boundedly completed in E, q. e. d.

PROPOSITION 5.—Let E be a locally convex space and A a family of closed bounded Banach disks covering E and satisfying the ideal property. Suppose E' endowed with the topology of A-convergence is complete. Then any dense subspace F, whose codimension in the linear hull of $F \cup A$ is finite for every $A \in A$, is boundedly completed in E.

PROOF.—Denote by

$$L = \bigcup \{ \overline{A \cap F} : A \in \mathcal{A} \}.$$

We shall prove that L = E. Assume the opposite and let X be an algebraic complement to L in E. Take $A \in \mathcal{A}$. The codimension of the linear hull of $\overline{A \cap F}$ in E_A is finite, hence by [7] and by Ptak's open map theorem, E_A is isomorphic to a locally convex direct sum of $E_{\overline{A \cap F}}$ and a finite-dimensional subspace. Therefore there exist B in \mathcal{A} and a bounded disk K in X, such that the linear hull of K is finite-dimensional and $A \subset \overline{B \cap F} + K$. But then $A^* \subset (\overline{B \cap F})^* + K$. Denote by t' the topology of \mathcal{A} -convergence on E' and by E''_{0} the dual of (E', t'). Since covers E, X is still an algebraic complement to

$$\bigcup \{ (\overline{\mathbf{A} \cap \mathbf{F}})^* : \mathbf{A} \in \mathcal{H} \}$$

in E''_0 . Hence denoting by ξ the topology on E' of uniform convergence on $\{A \cap F : A \in \mathcal{R}\}$, we conclude that

$$t' = \sup \left(\xi, \sigma(\mathbf{E}', \mathbf{E_0}'') \right).$$

Therefore by Corollary 1 of [9], (E', t') cannot be complete, thus a contradiction. Hence L = E, therefore F is boundedly completed in E, q. e. d.

COROLLARY 6.—Let E be a locally convex space such that $(E', \mu, (E', E))$ is complete, (for example, let E be ultrabornological). Then every dense countable-codimensional subspace is boundedly completed in E.

PROOF.—Take the family \mathcal{R} of all weakly compact disks in E. If F is countable-codimensional, then by [13] the codimension of $A \cap F$ in E_A is finite for every $A \in \mathcal{R}$. Hence the corollary, q. e. d.

We say that E is *locally complete*, if every closed bounded disk of E is Banach.

COROLLARY 7.—Let E be a locally complete space with a complete strong dual. Then every dense countable-codimensional subspace is quasi-distinguished in E.

PROOF.—Let F be a dense subspace of countable codimension in E. Take a closed bounded disk A in E. By [12], E_A is isomorphic to the locally convex direct sum of $E_{\overline{A} \cap \overline{F}}$ and a finite-dimensional normed space Y. Let K be the unit ball of Y. By Proposition 5, F is boundedly completed in E, hence there exists a bounded disk B in E such that $K \subset \overline{B \cap F}$. But then A is contained in the closure of $r(A \cap F + B \cap F)$ for some r > 0. Hence F is quasidistinguished in E, q. e. d.

Let E be a locally convex space. Given an infinite cardinal number α and a topology u on E compatible with the duality $\langle E, E' \rangle$, we say that E is α -u-barrelled, [resp. α -u-quasi-barrelled] if every σ (E', E)-bounded, [resp. β (E', E)-bounded] set, which is a union of at most α u-equicontinuous sets, is equicontinuous with respect to the initial topology of E. The next proposition provides a hereditary property of an α -u-quasi-barrelled space E.

PROPOSITION 8.—A dense subspace G of a locally convex space E is α -u-quasi-barrelled, if one of the following holds:

- 1) E is α -u-quasi-barrelled and G is quasi-distinguished in E;
- 2) E is α -u-barrelled and G is boundedly completed in E;
- 3) E is a-u-quasi-barrelled and G is boundedly completed.

PROOF.—We shall identify the dual of G with E'. Let U be as β (E', G)-bounded union of not more than α u-equicontinuous sets.

1) If G is quasi-distinguished in E, β (E', G) = β (E', E). Since E is α -u-quasi-barrelled, U is equicontinuous. Hence G is α -u-quasi-barrelled.

2) If G is boundedly completed in E, β (E', G) is finer than σ (F', E). Since E is α -u-barrelled, U is equicontinuous. Hence G is α -u-quasi-barrelled.

3) Denote by \tilde{E} the completion of E. Then E is α -u-barrelled and G is boundedly completed in \tilde{E} . Hence by part 2, G is α -u-quasi-barrelled, q. e. d.

A locally convex space is sequentially quasi-barrelled, if every sequence, which converges to zero in $(E', \beta(E', E))$, is equicontinuous, [14]. The next definition generalizes the concepts of a (DF)-space, [2], and a dualmetric space, [5]. A sequentially quasibarrelled space with a fundamental sequence of bounded sets is called' *semi-dualmetric*. Spaces of this type were studied by W. Ruess, [6]. The next theorem provides a hereditary result for these spaces and' slightly extends Corollary 2.4 of [6].

THEOREM 9.—A dense subspace G of a semi-dualmetric, [resp. dualmetric, (DF)-], space E is semi-dualmetric, [resp. dualmetric, (DF)-space], if and only if G is boundedly completed.

PROOF.—If G is semi-dualmetric, then G is quasi-distinguished by Proposition 10 and Corollary 2 of [10]. Hence G is boundedly completed.

Now suppose G is boundedly completed. Denote by \tilde{E} the completion of E.

1) Let E be semi-dualmetric. Then $\beta(E', E) = \beta(E', E)$ and $(E', \beta(E', E))$ is Frechet. Since G is boundedly completed, $\beta(E', G)$ is finer than $\sigma(E', E)$. Hence any $\beta(E', G)$ -bounded set is $\sigma(E', E)$ -bounded. But according to Banach-Mackey theorem, every barrel in E is bornivorous. Hence any $\beta(E', G)$ -bounded set is $\beta(E', E)$ -bounded. But $(E', \beta(E', G))$ is metrizable, hence bornological, thus we conclude that $\beta(E', G) = \beta(E', E)$. Hence every sequence, convergent to zero in $(E', \beta(E', G))$, is equicontinuous, therefore G is semi-dualmetric.

2) Let E be dualmetric. Then E is \varkappa_0 - σ (E, E')-quasi-barrelled. By proposition 8, G is also \varkappa_0 - σ (E, E')-quasi-barrelled. Since G has

a fundamental sequence of bounded sets, we conclude that G isdualmetric.

3) Let E be a (DF)-space. Denote by t the initial topology of E. Then E is x_0 -t-quasi-barrelled, hence by Proposition 8, G is x_0 -t-quasi-barrelled, therefore G is a (DF)-space, q. e. d.

It is known, that the topology of a barrelled countable-dimensional space E is the finest locally convex topology of E, [7]. This result can be extended, using the concept of a quasi-distinguished space.

PROPOSITION 10.—Let E be a countable-dimensional locally convex space. Then $\beta(E, E')$ is equal to the finest locally convex topology of E.

PROOF.—The space $(E', \sigma(E', E))$ is separable and metrizable, hence quasi-distinguished, ([2], p. 62), therefore $\beta(E, E') = \beta(E, E^*)$, q. e. d.

In [8] S. A. Saxon and A. Wilansky proved that given a Hamel' basis in a metrizable barrelled space, all but a finite number of the coefficient functionals are discontinuous. The same result follows from our next proposition.

PROPOSITION 11.—Let E be a locally convex space and H a Hamel basis in E such that the set $\{f_i: i \in I\}$ of continuous coefficient functionals on E is not empty. Then there exists a subspace in E, whose dimension is equal to Card I and on which the induced by $\beta(E, E')$ topology equals to the finest locally convex topology.

PROOF.—Let $\{x_i: i \in I\}$ be the set of corresponding to $\{f_i: i \in I\}$ elements of H. Denote by X and F the linear hulls of $\{x_i: i \in I\}$ and $\{f_i: i \in I\}$, respectively. Since the polar of F in E equals to the linear hull of $H \setminus \{x_i: i \in I\}$, the topology σ (E', E) coincides on F with σ (F, X). Identifying X* with the topological product \mathbb{K}^I , we observe, that all elements of X* with at most finitely many non-zerocomponents are contained in F. Hence (F, σ (F, X)) is quasi-distinguished, therefore β (X, F) equals to the finest locally convex topology of X. But the induced by β (E, E') topology on X must be finerthan β (X, F). Hence the conclusion, q. e. d.

In [8] S. A. Saxon and A. Wilansky proved that every Banacher space has a larger non-barrelled norm. Using their method, we sharpen their result in the next proposition.

PROPOSITION 12.—Let E be a vector space. There exists a normed topology q on E, satisfying the following: being E' the dual of (E, q), the strong topology $\beta(E, E')$ equals to the finest locally convex topology of E. If another norm, p is given on E, we can chose q finer than p.

PROOF.—Take a Hamel basis H in E. Denote by U the absolutely convex hull of H and by q the gauge of U. Clearly (E, q) is normed. Identifying E* with the topological product \mathbb{K}^{H} , we conclude that E' contains all elements of E* with at most finitely many non-zero elements. Hence (E', σ (E', E)) is quasi-distinguished, therefore β (E, E') = β (E, E*). If another norm, p, is given on E, then we take H in the unit ball of (E, p), q. e. d.

References

- [1] M. DE WILDE (1978). Closed Graph Theorem and Webbed Spaces. *Research Notes in Mathematics*, 19, Pitman.
- [2] A. GROTHENDIECK (1954). Sur les espaces (F) et (DF). Summa Brasil. Math., **3**, 57-123.
- Y. KōMURA (1962). On linear topological spaces. Kumamoto J. Science, Series A, 5, 148-157.
- [4] G. Köthe (1969). Topological Vector Spaces, I. Berlin-Heidelberg-New York, Springer.
- [5] A. PIETSCH (1972). Nuclear Locally Convex Spaces. Berlin-Heidelberg-New York, Springer.
- [6] W. RUESS (1977). On the locally convex structure of strict topologies. Math. Z., 153, 179-192.
- S. A. SAXON, M. LEVIN (1971). Every countable-codimensional subspace of a barrelled space is barrelled. *Proc. Amer. Math.* Soc., 29, 91-96.
- [8] S. A. SAXON, A. WILANSKY (1977). The equivalence of some Banach space problems. *Colloquium Math.*, **37**, 217-226.
- [9] B. TSIRULNIKOV (1978). On the locally convex noncomplete quasi-distinguished spaces. Bull. Soc. Roy. Sci. Liège, 47, 147-152.
- [10] B. TSIRULNIKOV. Quasi-distinguished and boundedly completed locally convex spaces. (to appear).
- [11] B. TSIRULNIKOV. On conservation of barrelledness properties in locally convex spaces. (to appear in *Bull. Soc. Roy. Sci. Liege*).

BOUNDEDLY COMPLETED SUBSPACES IN LOCALLY CONVEX SPACES

- [12] M. VALDIVIA (1972). On subspaces of countable codimension of a locally convex space. J. Reine Angew. Math., 256, 185-189.
- [13] M. VALDIVIA (1971). Absolutely convex sets in barrelled spaces. Ann. Inst. Fourier, Grenoble, 21, 3-13.
- [14] J. H. WEBB (1973). Sequentially barrelled spaces. *Math. Colloq.* U. C. T. VIII, 73-87.