TEOREMA 4.

 $\mathcal{D}[\mathbf{M}_n](Q) \simeq \mathcal{E}[\mathbf{M}_n](I)(\mathbf{N}) \simeq \mathcal{D}[\mathbf{M}_n](I)(\mathbf{N}).$

Bibliografía

- [1] Komatsu, H.: Ultradistributions I, Structure Theorems and a Characterization. «J. Fac. Sc. Univ. Tokyo», Sec. IA, 20, n.º 1 (1973), 25-105.
- [2] OGRODZKA, Z.: On simultaneous extension of infinitely differentiable functions. «Studia Math.», 28, 193-207 (1967).
- [3] VALDIVIA, M.: Representaciones de los espacios D (Ω) y D' (Ω). «Rev. Real Acad. Ciencias Exactas, Físicas y Naturales», Madrid, 72, 385-414 (1978).
- [4] Valdivia, M.: Representaciones de los espacios $C^m(V)$ y $\mathcal{D}^m(V)$. «Real Acad. Ciencias Exactas, Físicas y Naturales», Madrid (pendiente de publicación).

UNA NOTA EN CODIMENSION DE SUBESPACIOS DE CIERTOS ESPACIOS LOCALMENTE CONVEXOS (*)

Pedro Pérez Carreras y José Bonet

Departamento de Matemáticas. E. S. I. Industriales de la Universidad Politécnica de Valencia. C. de Vera, s/n, Valencia-10

Departamento de Teoría de Funciones. Facultad de Matemáticas. Burjasot, Valencia:

Some results in codimension are given: Let E be a space and let F be a subspace of E of codimension less than 2^{X_0} . If $E'[\mu(E',E)]$ is complete, then F is countably barreled (w-barreled) if E is countably barreled (w-barreled).

Los espacios vectoriales que usaremos están definidos sobre el cuerpo K de los números reales o complejos. Dado un par dual (F, G) denotamos mediante $\sigma(F, G)$, $\mu(F, G)$ y $\beta(F, G)$ las topologías débil, de Mackey y fuerte, respectivamente. La palabra espacio quiere significar espacio vectorial topológico separado localmen-

^(*) Presentada en la sesión celebrada el 3 de diciembre de 1980.

te convexo. E' es el dual topológico de E y si A es una familia de σ (E', E)-acotados de E' total, denotaremos mediante T_A a la topología sobre E de la convergencia uniforme sobre los elementos de A. Si B es un subconjunto cerrado acotado y absolutamente convexo de E, E_B denota la envoltura lineal de B provista de la topología normada que se deduce de su calibrador. En lo que sigue, se deducirá que ciertas propiedades de tonelación se heredan a subespacios de codimensión menor que 2x, haciendo uso de ciertos resultados debidos a B. Tsirulnikov y a M. Valdivia, resultados que enunciamos a continuación: (a) Sea E un espacio de Fréchet de dimensión infinita y sea F un subespacio denso de E que no es tonelado. Entonces, existe un subespacio cerrado G de E de dimensión infinita tal que $G \cap F = \{0\}$ (ver [3]). (b) Sea E un espacio y sea F un subespacio de E. Sea A una familia de acotados absolutamente convexos de E y cerrados en E tal que contiene a las partes finitas de E y tal que es estable por homotecias y tal que si A, B $\in \mathcal{R}$ entonces existe $C \in \mathcal{R}$ tal que $C \supset A \cup B$. Si $F \cap A$ es cerrado en E para cada $A \in \mathcal{R}$ y si $F \cap E_A$ es de codimensión finita en E_A para cada A de \mathcal{A} , entonces F es cerrado en E si E' $(T_{\mathcal{A}})$ es completo (ver [3]). (c) Sea E un espacio y sea G un subespacio de E' que es σ (E', E)-completo. Sea T una topología en E tal que todo σ (E', E)-acotado de G sea T-equicontinuo. Entonces, G¹ es un subespacio complementado de E (T) (ver [2]).

El siguiente lema se deduce fácilmente de (b):

Lema 1.—Sea E un espacio tal que E' [μ (E', E)] es completo y sea G un subespacio cerrado de E de codimensión menor que 2^{x_0} . Entonces, G' [μ (G', G)] es completo.

Lema 2.—Sea G un subespacio cerrado de un espacio E y supongamos que se cumplen las condiciones: i) Todo conjunto absolutamente convexo y σ (E', E)-compacto de G^{\perp} es equicontinuo. ii) E' [μ (E', E)] es completo. iii) La codimensión de G en E es menor que 2^{x_0} . Entonces G es complementado en E.

Demostración.—Sea B un absolutamente convexo σ (E, E')-compacto de E. Claramente, $E_B \cap G$ es cerrado en $E_B \cap G$ en virtud de iii) y de (a), $E_B \cap G$ es de codimensión finita en E_B , por lo que existe un real positivo r tal que $B \subset r(B \cap G + K)$ donde K es un acotado de dimensión finita. Se comprueba fácilmente que

Diremos que un espacio E es numerablemente tonelado si todo tonel que sea intersección numerable de entornos del origen absolutamente convexos y cerrados es entorno del origen. Un espacio E se dice w-tonelado si toda sucesión de E' que sea σ (E', E)-acotada es un equicontinuo.

TEOREMA 1.—Sea E un espacio numerablemente tonelado tal que E' [μ (E', E)] es completo. Sea F un subespacio de E de codimensión menor que 2^{x_0} . Entonces F es numerablemente tonelado.

Demostración.—Debido al lema 1, basta probar el resultado si F es denso o cerrado en E. Si F es denso en E, sea T un tonel en F tal que $T = \bigcap V_n$, en donde V_n son entornos del origen absolutamente convexos y cerrados, y sea $T^* = \int \overline{V}_n$ en donde las clausuras han sido tomadas en E. La envoltura lineal H de T* será cerrada en E y así coincidirá con E y como E es numerablemente tonelado, T* será un entorno del origen en E y así T será entorno del origen en F. En efecto, bastará comprobar que se satisfacen las condiciones necesarias para poder aplicar (b). Sea B un conjunto de E absolutamente convexo y σ (E, E')-compacto. Debido al resultado (a), E_{B O H} es un normado tonelado, luego existe un r positivo tal que $B \cap H \subset r T$ y así $B \cap H$ es cerrado en E, por lo que E_{BOH} es un espacio de Banach y aplicando (a) tendrá codimensión finita en E_B. Supongamos, ahora, que F es cerrado en E. Tal como se hizo en la prueba del lema 2, es fácil ver que F^{\perp} [σ (E', E)] es completo luego topológicamente isomorfo a un producto de rectas K¹ con card (I) la codimensión de F en E. Como K¹ tiene un sistema fundamental de acotados, cada uno de los cuales es el producto de acotados absolutamente convexos de dimensión uno o dos, se trata de acotados separables luego equicontinuos. Aplicando el 1ema 2, F es complementado en E de donde se sigue que F es numerablemente tonelado, q. e. d.

COROLARIO 1.1.—Sea E un espacio D F localmente completo tal que $E'[\mu(E',E)]$ es completo. Si F es un subespacio de codimensión menor de 2^{x_0} de E, entonces F es un espacio D F.

Nota 1.—En [3] se prueba que si E es tonelado y E' [μ (E', E)] es completo y si F es un subespacio de E de codimensión menor de 2^{x_0} , entonces F es tonelado. Es claro que existen espacios numerablemente tonelados con dual Mackey completo que no son tonelados: por ejemplo, cualquier espacio de Banach reflexivo no separable dotado de la topología de la convergencia uniforme sobre los acotados separables de E'.

TEOREMA 2.—Sea E un espacio w-tonelado tal que E' [μ (E', E)] es completo y sea F un subespacio de E de codimensión menor que 2^{x_0} . Entonces F es w-tonelado.

Demostración.—Debido al lema 1, basta con considerar los casos F denso y F cerrado en E. Sea F denso en E y sea (u_n) una sucesión en F' que sea σ (F', F)-acotada y sean (v_n) sus únicas extensiones continuas posibles. Un razonamiento análogo al de la prueba del teorema 1 sirve para comprobar que $T^* = \bigcap \{v_n\}^0$ es un entorno del origen en E y así (u_n) es un equicontinuo en F'. Supongamos ahora F cerrado en E. Consideremos la familia de acotados \mathcal{R} en E' que sea $(B \subset E')$: B es equicontinuo $U \cap A \subset F^1$: A es absolutamente convexo y σ (E', E)-compacto). La topología U es más fina que la original del espacio y menos fina que la de Mackey y así U es U es U-tonelado y en F coincide con la topología original. Debido al lema 2, F es complementado en U en U por tanto U-tonelado, q. e. d.

Nota 2.—Decimos que un espacio E es sucesionalmente tonelado si toda sucesión de E' que σ (E', E)-converge al origen es un equicontinuo. Con el razonamiento del resultado anterior, puede probarse que si E es sucesionalmente tonelado y E' [μ (E', E)] es completo, entonces todo subespacio cerrado de codimensión menor que 2^{x_0} es sucesionalmente tonelado.

Nota 3.—Existen espacios w-tonelados con dual Mackey completo que no son numerablemente tonelados (ver [1]): Sea (I_n) una sucesión de conjuntos disjuntos dos a dos de índices tales que

$$2x_0 < \text{card } (I_1) < \text{card } (I_2) < \dots \text{ y sea } I = \bigcup I_n.$$

Consideremos l² (I) y la topología sobre él de la convergencia uni-

forme sobre la familia \mathcal{R} de acotados siguiente: $\mathcal{R}=(\mathbb{B}\subset l^2(\mathbb{I}):$ acotados separables) U (envolturas absolutamente convexas y cerradas de $(e_i:i\in I_n),\ n=1,2,\ldots)$. Es claro que $l^2(\mathbb{I})$ es w-tonelado y su dual es Mackey completo; sin embargo, no es numerablemente tonelado. En efecto, sea \mathbb{B}_n la envoltura absolutamente convexa y cerrada de $(e_i:i\in I_n)$ que es un equicontinuo y $\mathbb{B}=\mathbb{U}$ \mathbb{B}_n es un acotado débil. Si \mathbb{B} fuera equicontinuo existiría un $\mathbb{A}\subset l^2(\mathbb{I})$ absolutamente convexo separable y existiría un natural n_0 tal que \mathbb{B} estaría contenido en la envoltura absolutamente convexa y cerrada de $\mathbb{A} \mathbb{U}(\mathbb{B}_1 \mathbb{U} \dots \mathbb{U} \mathbb{B}_{n_0})$ y así \mathbb{B} tendría un subconjunto denso de cardinal menor o igual que el cardinal de \mathbb{I}_n . Sin embargo, $\mathbb{E}[n_1, n_2] = \sqrt{2}$ para cada $\mathbb{E}[n_1, n_2]$ y $\mathbb{E}[n_1, n_3]$ b contiene un subconjunto discreto de cardinal igual al de $\mathbb{E}[n_{n+1}]$, lo cual es absurdo.

Referencias

- [1] Mazón, J. M. (1980). Tres nuevas clases de espacios localmente convexos. Tesis Doctoral, Valencia.
- [2] TSIRULNIKOV, B. (1980). Subspaces with property (b) in locally convex spaces of quasibarreled type. *Proc. Math. Cambr. Phil. Soc.*. 88, 331-337.
- Phil. Soc., 88, 331-337.
 [3] Valdivia, M. A property of Fréchet spaces (pendiente de publicación).

REGIO- Y ESTEREOSELECTIVIDAD EN ALGUNAS REACCIONES DE ADICION A SISTEMAS 4a,12a. DIAZATETRACICLICOS (*)

M. C. Cano, F. Gómez Contreras, A. Sanz y A. Solana

Laboratorio de Química. Colegio Universitario Integrado

Universidad Complutense, Madrid

Se ha estudiado la estereoquímica de algunas reacciones de adición electrófila en el ciclo de tetrahidropiridazina terminal de compuestos 4a,12a-diazatetracíclicos. La mayor parte de los resultados obtenidos favorecen la hipótesis de que estas adiciones transcurren a través de un mecanismo en el que el paso nucleófilo es el

^(*) Presentada en la sesión celebrada el 10 de diciembre de 1980.