
The Schur-Szegö Composition of Real
Polynomials of Degree 2

Soliman ALKHATIB and Vladimir Petrov KOSTOV

Université de Nice
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ABSTRACT

A real polynomial P in one real variable is hyperbolic if its roots are all real.
The composition of Schur-Szegö of the polynomials P =

∑n
j=0 Cj

najx
j and

Q =
∑n

j=0 Cj
nbjx

j is the polynomial P ∗ Q =
∑n

j=0 Cj
najbjx

j . In the present
paper we show how for n = 2 and when P and Q are real or hyperbolic the roots
of P ∗Q depend on the roots or the coefficients of P and Q. We consider also the
case when n ≥ 2 is arbitrary and P and Q are of the form (x−1)n−1(x+b). This
case is interesting in the context of the possibility to present every polynomial
having one of its roots at (−1) as a composition of n−1 polynomials of the form
(x + 1)n−1(x + b).

Key words: composition of Schur-Szegö, hyperbolic polynomial.
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Introduction

Definition. The composition of Schur-Szegö (CSS) of the two degree n polynomials
P =

∑n
j=0 C

j
najx

j and Q =
∑n
j=0 C

j
nbjx

j (notice their not quite usual form) is the
polynomial P ∗Q =

∑n
j=0 C

j
najbjx

j .
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The above definition applies to any complex polynomials. General properties of
the CSS can be found in [4]. In particular, the Szegö theorem which says that if all
roots of P belong to a circular domain K (i.e., to the image of the closed unit disc
under a fractionally-linear map), then every root of P ∗Q is of the form (−ξη) where ξ
is a root of Q and η ∈ K. Thus the CSS can be used to understand how the roots of a
given polynomial are located. (If one can represent a polynomial R as a composition
of two polynomials which play the roles of P and Q, i.e., the location of whose roots
is known, then one can obtain nontrivial information about the location of the roots
of R.)

In the present paper we consider the case when the polynomials are real. Of
particular interest is the subcase when they are hyperbolic, i.e., with all roots real. In
this case one can deduce from the Szegö theorem that if all roots of Q have the same
sign, then P ∗ Q is hyperbolic and its roots belong to the interval [−M,−m] where
m and M are the minimal and maximal pairwise products of roots of P and Q (see
[5, Theorem 5.5.5 and Corollary 5.5.10]).

The finite sequence α := (a0, a1, . . . , an) (defined after the polynomial P ) can be
considered as an operator TP in the space of polynomials of degree n acting diagonally
in the standard monomial basis according to the formula TP (xi) = aix

i. We call α a
finite multiplier sequence of length (n+ 1) (FMS(n+ 1)) if for any hyperbolic polyno-
mial Q the polynomial P ∗Q is also hyperbolic. For the infinite-dimensional analog of
an FMS(n+ 1) (called a multiplier sequence) see [2, Definition 1.4 and Theorem 3.3].

It turns out that α is an FMS(n+ 1) if and only if P is hyperbolic and all nonzero
roots of P are of the same sign, see [1, Theorem 3.7]. This nontrivial fact is the reason
why in [3] the case of hyperbolic polynomials P and Q is considered one of which has
all roots positive or all roots negative. It is shown there (see Proposition 1.4 and
Theorem 1.6) that the multiplicities of the roots of P ∗Q are completely defined by
the ones of P and Q. In particular, Proposition 1.4 says that if xP , xQ are roots
of P , Q of multiplicity respectively mP , mQ where mP +mQ ≥ n, then (−xPxQ) is
an (mP +mQ − n)-fold root of P ∗Q.

These interesting properties in the case when P and Q are hyperbolic motivate
the authors’ desire to understand (at least in low degrees) the behavior of the roots
of P ∗Q when the ones of P and Q change. In the present paper we consider in detail
the case of real and the case of hyperbolic polynomials for n = 2, see section 1. In
these cases it is possible to show easily on figures how the roots of P ∗Q depend on
the coefficients or on the roots of P and Q. In section 1 we consider also (for any
n ∈ N∗) a factorization connected with CSS and (in view of this factorization) the
composition of two polynomials of the form (x− 1)n−1(x+ b).

We take into account not only the presence of multiple roots, but also whether
the real roots are positive, negative or zero, and whether the real parts of the roots of
a conjugate couple are equal to 0 or to the third root. Such information is important
when a polynomial is the characteristic polynomial of an ordinary linear differential
equation and one considers the problem of stability or which of its solutions has the
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greatest growth rate.
Throughout the paper the polynomials are monic. The following lemma (which

is true for any complex polynomials and which can be checked straightforwardly)
is used to normalize some roots or coefficients and thus to decrease the number of
parameters:

Lemma A. For any α, β ∈ C one has P (αx) ∗Q(βx) = (P ∗Q)(αβx).

1. The case n = 2

In subsection 1.1 we consider the case when the two polynomials (of degree 2) P
and Q are hyperbolic; the parameters are their roots. In subsection 1.3 we consider
a generalization of this case for any n ≥ 2, namely, when the polynomials are of the
form (x−1)n−1(x+b). Composition of polynomials of the form (x+1)n−1(x+b) (the
sign of 1 is changed for convenience, for purely technical reasons) takes place when one
considers a factorization connected with CSS, see subsection 1.2. Some of the proofs
of results from subsection 1.1 are postponed till subsection 1.3. In subsection 1.4 we
consider the case when the degree 2 polynomials P and Q are real; the parameters
are their coefficients.

Finally, in subsection 1.5 we consider the “mixed” situation when one of the poly-
nomials P and Q is real and parameterized by its coefficients while the other is hy-
perbolic and parameterized by its roots. Such a situation might seem at first glance
unnatural to consider, yet in applications, when solving a concrete problem in which
the two polynomials play different roles, it might be convenient to have one of them
hyperbolic and the other one real.

In the case n = 2 one can normalize one of the roots or one of the nonzero
coefficients of each polynomial to be equal to 1 thanks to Lemma A. This allows only
two parameters to be used in the description.

1.1. The case of hyperbolic polynomials

Consider for n = 2 the case when the two polynomials are hyperbolic and neither of
them has a double zero root. (In the latter case one has P ∗Q = x2.) In this case one
can use Lemma A and assume that each of them has a root equal to 1, i.e., they are
of the form

P = (x− 1)(x+ b) = x2 + (b− 1)x− b,
Q = (x− 1)(x+ c) = x2 + (c− 1)x− c

(1)

where b, c ∈ R. Hence,

P ∗Q = x2 +
(b− 1)(c− 1)x

2
+ bc.

The roots of P ∗ Q depend on the parameters b and c where (−b) and (−c) are the
second roots of P and Q. This polynomial has a double root if and only if the following
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Figure 1 – The curve ∆.

condition holds:
∆ : (b− 1)2(c− 1)2 − 16bc = 0

We present the curve ∆ on figure 1. It is symmetric w.r.t. the bisector {b = c}
and has two branches. It has also two asymptotes, {b = 1} and {c = 1}, presented by
dashed lines. One of the branches has ordinary tangencies with the coordinate axes
at the points (0, 1) and (1, 0). The curve has an isolated point at (−1,−1) (denoted
by C on figure 1) which is a singular point (an ordinary double point) of ∆ considered
as a complex curve.

The curve ∆ is a particular case of the curve ∆n drawn on figure 3 in subsection 1.3.
(One has ∆ = ∆2.) Therefore we postpone the justification of the description of ∆
till we introduce figure 3. However, most of the properties of ∆ follow from its
parameterization, namely,

b(t) =
(t+ 8)2

(t− 2)2
, c(t) =

(t+ 3)2

25
, t ∈ R.

The latter does not cover the isolated point (−1,−1). We give the table of variations,
see figure 2.

On figure 1 we show also how the roots of P ∗ Q depend on the parameters b, c.
These roots are represented in the small rectangles by two multiplication signs. The
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Figure 2 – The table of variations of the curve ∆.

point 0 is represented by a small circle.
When the multiplication signs are very close to one another, this means that P ∗Q

has a double root. Such is the case in rectangles 2, 12, 14 (a double negative root);
6 (a double positive root); 16 (a double zero root). In rectangle 12 one has b = c = −1
(this is the isolated point of ∆) and the double root equals (−1). In the plane Obc
this point is surrounded by points defining polynomials with two real distinct roots.

In rectangles 3 and 15 there is a complex conjugate couple with negative real part;
in rectangle 4 a couple of conjugate purely imaginary roots; in rectangle 5 a conjugate
couple with positive real part.

The two branches of the curve ∆, its two asymptotes and the two coordinate axes
(we call them “the six sets” for short) divide the plane Obc into 13 domains. Eight
of them constitute four couples of domains symmetric w.r.t. the bisector {b = c}.
Consider any smooth arc VW intersecting the six sets as shown on figure 1. Rectan-
gles 1–11 show the evolution of the roots of P ∗Q along such an arc. Such arcs and
their symmetric ones w.r.t. the bisector {b = c} intersect 11 out of the 13 domains.
Therefore one can understand the evolution of the roots of P ∗Q (excluding only two
of the domains, the ones comprising the square [0, 1]× [0, 1]) by following the arc VW .
Similar arcs are shown for similar reasons on figures 3, 4, and 5.

In rectangle 9a the two roots are opposite to one another. In rectangle 9 (resp. 9b)
the left (resp. the right) of them is closer to 0.

The numbers of the rectangles are chosen such as to have the same numbers (when
no letter “a,” “b,” “c,” or “d” is added) on figure 1 and on figure 3 when the same
configuration of roots occurs.

1.2. A factorization connected with CSS

Observe that the composition of Schur-Szegö is associative and commutative, i.e., one
has P ∗ Q = Q ∗ P and (P ∗ Q) ∗ R = P ∗ (Q ∗ R), so we write simply P ∗ Q ∗ R.
The following proposition shows that every polynomial having one of its roots at (−1)
can be factorized in the sense of CSS into a composition of polynomials which are
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as simple as possible. Lemma A allows one to define a similar factorization for any
polynomial different from xn.

Proposition 1.1. Every degree n polynomial having one of its roots at (−1) is rep-
resentable in the form Ka1 ∗ · · · ∗Kan−1 where Ka := (x+ 1)n−1(x+ a). This repre-
sentation is unique modulo permutation of the ai.

Proof. One has Ka =
∑n
j=0(Cj−1

n−1 + Cjn−1a)xj . Hence,

K := Ka1 ∗ · · · ∗Kan−1 =
n∑
j=0

Ljx
j

where

Lj =
(n−1∏
k=1

(Cj−1
n−1 + Cjn−1ak)

)/
(Cjn)n−2, j < n,

Ln = 1.

Set dj := 1/(Cjn)n−2, σl :=
∑
ν1<···<νl

aν1 · · · aνl
. Hence, for j ≥ 1 one has

Lj = dj

n−1∑
s=0

(Cjn−1)s(Cj−1
n−1)n−1−sσs.

Given a monic polynomial S :=
∑n
j=0 gjx

j , S(−1) = 0, try to find aν , ν = 1, . . . , n−1
such that S = K, i.e., Lj = gj for j = 0, . . . , n − 1. The determinant of this system
of linear equations up to a nonzero factor equals V := W (β1, . . . , βn−1) where W is
the Vandermonde determinant and βj = Cjn−1/C

j−1
n−1 = (n − j)/j. One has V 6= 0.

Hence, the symmetric functions σj of the numbers ai are uniquely defined and up to
permutation, the ai as well.

Remark 1.2. The dependence of the numbers aj on the roots of the polynomial S
is not trivial. In particular, the presence of multiple roots in the polynomial to be
factorized does not imply that there are equal among the numbers aj and vice versa.
Neither does the hyperbolicity of this polynomial imply that all ai are real and vice
versa. We illustrate this by the following examples:

• For the polynomial (x + 1)xn−1 (with an (n − 1)-fold zero at 0) one has
aj = − j−1

n−j+1 , j = 1, . . . , n− 1, i.e., only a1 is 0. Indeed, up to permutation of
the indices j, the coefficient before xj−1 in Kaj

must equal 0.

• If a1 = · · · = an−1 = a > 1, then by [3, Proposition 1.4 and Theorem 1.6] all
roots of Ka1 ∗ · · · ∗Kan−1 are real and simple.

Revista Matemática Complutense
2008: vol. 21, num. 1, pags. 191–206 196
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• For n = 3 one has K0 = x3 + 2x2 + x. Hence K0 ∗K0 = (x + 1)(x + 1
3 )x. For

a, b ∈ R small enough Ka+bi ∗Ka−bi has three distinct negative roots. In this
example the two numbers a1 = a − bi, a2 = a + bi are complex conjugate, no
matter that the roots of Ka+bi ∗Ka−bi are real and distinct.

• For n = 3 one has K−2 = x3 − 3x − 2, K−1 = x3 + x2 − x − 1. Hence,
K−2 ∗K−1 = x3 + x+ 2 which has a single real root (−1), i.e., the composition
of two polynomials Ka1 , Ka2 with ai real can be a polynomial with a complex
conjugate couple.

1.3. The composition of two polynomials of the form (x − 1)n−1(x + b)

Consider the polynomials

S = (x− 1)n−1(x+ b) = xn + (b− (n− 1))xn−1 + · · ·+ (−1)n−1b

and
T = (x− 1)n−1(x+ c) = xn + (c− (n− 1))xn−1 + · · ·+ (−1)n−1c.

For n = 2 one has S = P , T = Q, where P and Q are defined by (1). It follows from
[3, Proposition 1.4] that S ∗ T has an (n− 2)-fold root at (−1). Hence, one has

S ∗T = xn+
(b− (n− 1))(c− (n− 1))xn−1

n
+ · · ·+ bc = (x+1)n−2(x2 +αx+β) (2)

where α = bc−(n−1)(b+c)+1
n , β = bc. The polynomial x2 + αx+ β has a double root if

and only if the following condition holds:

∆n : F (b, c) := n2(α2 − 4β) = (bc− (n− 1)(b+ c) + 1)2 − 4n2bc = 0. (3)

We first prove some properties of the curve ∆n, see Lemmas 1.3, 1.4, and 1.7 and
Remarks 1.5 and 1.6. After this we give the description of the elements of figure 3
which are new w.r.t. figure 1.

Lemma 1.3. The curve ∆n contains no point of the domain {bc < 0}. For b = 0
(resp. c = 0) it contains only the point (0, 1

n−1 ) (resp. ( 1
n−1 , 0)). For b < 0, c < 0,

it contains only the point (−1,−1) which is an ordinary double point of ∆n when
considered as a complex curve.

Proof. The first two claims of the lemma follow directly from the formula defining ∆n.
To prove the third claim consider the graph of the function w = F (b, c) in the space
Obcw. Its critical points are defined by the conditions ∂F

∂b = ∂F
∂c = 0, i.e.,

2
(
bc− (n− 1)(b+ c) + 1

)
(c− (n− 1))− 4n2c

= 2
(
bc− (n− 1)(b+ c) + 1

)
(b− (n− 1))− 4n2b = 0. (4)
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Figure 3 – The curve ∆n.
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For b < 0, c < 0, one has bc− (n− 1)(b+ c) + 1 > 0 and one deduces from (4) that

bc− (n− 1)(b+ c) + 1
2n2

=
b

b− (n− 1)
=

c

c− (n− 1)
,

which implies b = c. It follows from (4) and b = c that one has

2(b2 − 2(n− 1)b+ 1)(b− (n− 1))− 4n2b = 2(b+ 1)(b2 + (2− 3n)b− (n− 1)) = 0,

i.e., either b = c = −1 or b = c = g± where g± = 3n−2±
√

9n2−8n
2 .

For b = c = −1 the function F has a minimum equal to 0. Indeed, the Hessian
matrix of F equals

H =
(

2(c− (n− 1))2 4(b− (n− 1))(c− (n− 1))− 6n2 + 4n
4(b− (n− 1))(c− (n− 1))− 6n2 + 4n 2(b− (n− 1))2

)
.

For b = c = −1 it has two positive eigenvalues. One has F (g−, g−) > F (−1,−1) = 0
because the degree 4 polynomial κ(b) := F (b, b) has minima for b = −1 and b = g+
and a maximum at b = g−.

For r > 2n2

n−1 consider the quarter of a closed disc δ := {b ≤ 0, c ≤ 0, b2 + c2 ≤ r2}.
On the arc {b < 0, c < 0, b2 + c2 = r2} one has α2 > 4β because

−(n− 1)(b+ c) = (n− 1)(|b|+ |c|) ≥ (n− 1)
√
b2 + c2 = (n− 1)r

and
n2α2 = (bc− (n− 1)(b+ c) + 1)2

> 2bc(n− 1)(|b|+ |c|) ≥ 2bc(n− 1)r ≥ 4n2bc = 4n2β.

Therefore the function F attains its minimal value in δ either at (−1,−1) or for
b = 0 or for c = 0. In the last two cases one has F ≥ 0 with equalities only for
(b, c) = (0, 1

n−1 ) and (b, c) = ( 1
n−1 , 0).

Hence, for b < 0, c < 0, one has F ≥ 0 with equality only for b = c = −1. The
matrix H for b = c = −1 being nondegenerate, it is an ordinary double point of ∆n

considered as a complex curve.

Lemma 1.4. (i) The curve ∆n has asymptotes {b = n− 1} and {c = n− 1}.

(ii) The curve ∆n is symmetric w.r.t. the bisector {b = c}. Its equation is invariant
w.r.t. the changes b 7→ 1

b , c 7→ 1
c .

(iii) Except the isolated point at (−1,−1), it consists of two branches.

(iv) One of the branches (denoted by ∆t
n) has ordinary tangencies with the coordinate

axes at the points (0, 1
n−1 ) and ( 1

n−1 , 0). The other branch is denoted by ∆w
n .

(v) Except at these two points there is nowhere a horizontal or a vertical tangent
line to the curve.
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(vi) The equations of the two branches of ∆n are

∆t
n : bc−(n−1)(b+c)+1 = −2n

√
bc, ∆w

n : bc−(n−1)(b+c)+1 = 2n
√
bc.

Remark 1.5. Only for n = 2 do the asymptotes pass through the points of tangency
of ∆n with the coordinate axes.

Proof. 1o. Consider equation (3) as an equation of second degree w.r.t. the variable b
and with parameter c:

(c− (n− 1))2b2 + (−4n2c+ 2(c− (n− 1))(1− (n− 1)c))b+ (1− (n− 1)c)2 = 0. (5)

Its discriminant equals 16n2(n− 1)c(c+ 1)2. Hence, for c > 0, c 6= n− 1, it has two
real distinct roots. For c = n−1 the equation is of degree 1, hence, it has a single real
root. For c = 0 it has a double root b = 1

n−1 . Hence, the curve looks (topologically)
as shown on figure 3 (it is drawn by a solid line of width 3). This proves part (iii) of
the lemma.

2o. When b→ +∞, the equation (up to a nonzero factor) tends to

c2 − 2(n− 1)c+ (n− 1)2 = 0

and its roots are close to n− 1. This means that the line {c = n− 1} is a horizontal
asymptote for ∆n.

3o. The symmetry w.r.t. {b = c} (part (ii) of the lemma) follows from the sym-
metry between S and T in the definition of S ∗ T . The invariance w.r.t. the change
b 7→ 1

b , c 7→ 1
c is to be checked directly. Hence, {b = n − 1} is a vertical asymptote

for ∆n. Part (i) of the lemma is proved.
4o. Write equation (5) in the form

A(c)b2 +B(c)b+ (1− (n− 1)c)2 = 0.

One has B0 := B( 1
n−1 ) 6= 0, hence, for (b, c) close to (0, 1

n−1 ) one has

b = − (1− (n− 1)c)2

B0
+ o((1− (n− 1)c)2),

which proves part (iv) of the lemma.
5o. Consider again (3) as an equation with unknown variable b. When simple, its

roots depend smoothly on the parameter c. Therefore there is no vertical tangent line
to ∆n except at the point (0, 1

n−1 ). Using part (ii) of the lemma, one deduces that
there is no horizontal tangent line to ∆n except at the point ( 1

n−1 , 0). This proves
part (v).

6o. It follows from the equation of ∆n that the equations of its two branches are
(up to permutation) as in (vi) of the lemma. To prove part (vi) it suffices to justify
the minus sign in the right hand-side of ∆t

n. Write the left hand-side of the equation
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of the branch in the form c(b− (n− 1))− (n− 1)b+ 1. When the point of ∆t
n is close

to the asymptote {b = n− 1}, one has c > 0 and b < n− 1, b ≈ n− 1, therefore one
has c(b − (n − 1)) < 0 and (for n > 2) −(n − 1)b + 1 < 0; for n = 2 the left-hand
side of the equation of the branch ∆t

n reduces to (b− 1)(c− 1) which is negative for
large c and b ≈ 1, b < 1.

Remark 1.6. The form of the curve ∆n, see figure 3, can be deduced from the above
lemma. Indeed, consider the intersections of ∆n with the lines {b = b0}, b0 ≥ 0. For
b0 = 0 the intersection is the point (0, 1

n−1 ). For b0 ∈ (0, n−1) the intersection consists
of two points, the c-coordinate of the “above” point is increasing, the c-coordinate
of the point “below” is decreasing on (0, 1

n−1 ] and then increasing on [ 1
n−1 , 0). This

follows from parts (iv) and (v) of the lemma. For b0 ∈ (n− 1,+∞) the c-coordinate
of the point “below” is increasing and as it tends to the asymptote {c = n− 1} when
b → +∞, it must tend to it “from below”. For b0 > n − 1 and close to n − 1 the
point “above” has a large positive c-coordinate. For b → +∞ it must tend to the
same asymptote. The absence of horizontal tangent lines implies that it tends to it
“from above.” This justifies the form of the curve as presented on figure 3 except the
possible presence of more than two inflection points. In particular, it justifies the fact
that each line {b = b0}, b0 > 0, b0 6= n− 1, and each line {c = c0}, c0 > 0, c0 6= n− 1,
intersects the curve at exactly two points.

Lemma 1.7. The curve ∆n has exactly two inflection points as shown on figure 3.

Proof. 1o. The curve ∆n is defined by an equation of degree 4. Therefore the curve can
have an order of contact at most 4 with any line. We call ordinary (resp. degenerate)
inflection point one at which the order of contact of ∆n with the tangent line at the
given point is equal to 3 (resp. to 4).

Recall that the branches ∆t
n and ∆w

n of ∆n were defined in Lemma 1.4. If the
curve ∆n has more than two ordinary inflection points, then at least one of the three
situations takes place:

• there are at least two ordinary inflection points on ∆w
n (their number is even

due to the symmetry of ∆n w.r.t. the bisector {b = c});

• there are three or more ordinary inflection points on ∆t
n to the right of the point

( 1
n−1 , 0) and the same number (due to the same symmetry) of inflection points

above the point (0, 1
n−1 ); the number of inflection points to the right of ( 1

n−1 , 0)
is odd because ∆t

n approaches the asymptote {c = n − 1} from below, see the
above remarks;

• there are at least two ordinary inflection points on ∆t
n between the two points

of tangency (i.e., between (0, 1
n−1 ) and ( 1

n−1 , 0)).

In all three cases the presence of so many ordinary inflection points implies that
there exists a line θ : c = αb+ ε, θ ⊂ Obc, with two points of tangency with ∆n. By
part (v) of Lemma 1.4, this line cannot be vertical or horizontal.
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We prove that the following situation is also impossible:

• the curve ∆n has a degenerate inflection point.

2o. Suppose that one of the four situations from 1o takes place. Set c = λb+ ε in
equation (3):

(b(λb+ ε)− (n− 1)(b+ λb+ ε) + 1)2 − 4n2b(λb+ ε) = 0. (6)

Its left hand-side is of the form

(λb2 +Ab+B)2 − 4n2b(λb+ ε), A = ε− (n− 1)(1 + λ)

and it must be also of the form

(λb2 +Ab+ C)2 (*)

(it is the same A; this coefficient is defined by the monomials in b of degree 3 and 4).
Form (*) results from the fact that there are either two points of tangency or a
degenerate inflection point. Hence,

4n2b(λb+ ε) = (λb2 +Ab+B)2 − (λb2 +Ab+ C)2 = (B − C)(2λb2 + 2Ab+B + C).

This means that one has B + C = 0 and A = ε. The last equality and A = ε −
(n− 1)(1 + λ) imply λ = −1.

3o. Set ϕ := b(−b+ ε). Write equation (6) in the form

(ϕ− (n− 1)ε+ 1)2 − 4n2ϕ = 0. (7)

It has two double roots when considered as an equation with unknown variable b, so
these roots satisfy also the condition

Zϕ′ = 0 where Z(ϕ) = 2(ϕ− (n− 1)ε+ 1)− 4n2. (8)

If one has Z = 0 and (7), then one has ϕ = n2 and ε = −n − 1, i.e., b satisfies the
equation b2 + (n+ 1)b+ n2 = 0 which has no positive root.

If one has ϕ′ = 0 and (7), this implies b = ε
2 , ϕ = ε2

4 , and

(ε2
4
− (2n− 1)ε+ 1

)(ε2
4

+ ε+ 1
)

= 0

whose roots are ε± := 2(2n− 1±
√

4n2 − 4n),−2,−2.
4o. For ε = −2 one obtains the line c = −b − 2 passing through the isolated

point (−1,−1), for the other two values one obtains the tangent lines to ∆n passing
through its intersection points with the bisector {b = c}.
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For ε = ε± the line θ has a contact of order 2 with ∆n. Indeed, if the order is
greater than or equal to 3, then b must satisfy equations (7), (8), and

Z ′ϕ′ + Zϕ′′ = 0. (**)

As we saw in 3o, one has ϕ′ = 0 6= Z. Therefore equation (**) implies ϕ′′ = 0.
However, one has ϕ′′ = −2 which is a contradiction.

For ε = ε± there is just one point of tangency between ∆n and θ. Indeed, the
symmetry of ∆n w.r.t. {b = c} implies that if there is more than one such point, then
there should be at least three of them. This means that equation (7) should be of
degree at least 6 w.r.t. b which is false.

It is impossible to have two, four, six, etc., inflection points between the points
( 1
n−1 , 0) and (0, 1

n−1 ) or on the branch ∆w
n . Indeed, this would mean that there are

more than three distinct values of ε for which there is a line θ : c = −b + ε tangent
to ∆n which is also false.

Hence, neither of the four possibilities mentioned in 1o is realized, i.e., ∆n has
only two inflection points as shown on figure 3; they are ordinary ones.

On figure 3 there are more rectangles than on figure 1 showing different root
configurations because we take into account also the position of (−1) which is a root
of S ∗ T . The latter is represented in the rectangles by a small vertical line. The
great number of rectangles is the reason why we separate them in the two different
pictures comprising figure 3. Some of the rectangles are given in both pictures for
the reader’s convenience. The reader can compare the evolution of the roots given by
rectangles 1–11 on figure 1 and by the ones on the first picture of figure 3.

In rectangles 5a, 5b, and 5 the real part of the complex conjugate couple is re-
spectively smaller than, equal to, and bigger than 1.

On the hyperbola

H0 : (b− (n− 1))(c− (n− 1)) = n(n− 2)

the conjugate couples have zero real part. Indeed, the coefficient before xn−1 of S ∗T
(see (2)) equals the minus sum of the roots of S∗T ; these roots include the (n−2)-fold
root at (−1), the remaining two are not real, hence, they are conjugate and their real
part is 0. This hyperbola is denoted by s−r and s′−r′ on figure 3. It contains the two
points of tangency ( 1

n−1 , 0) and (0, 1
n−1 ) of ∆n with the coordinate axes. Notice that

for n = 2 the equation of H0 defines not a hyperbola, but the couple of asymptotes
{b = 1} and {c = 1}.

On one of the branches of the hyperbola

H−1 : (b− (n− 1))(c− (n− 1)) = n2

the conjugate couples have real part equal to (−1). The reasoning is similar to the
one concerning H0. This hyperbola is denoted by m − q and m′ − q′ on figure 3,
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Figure 4 – The case of real polynomials of degree 2.

and the branch in question is m − q. On the other branch of H−1 the two roots of
S ∗ T different from (−1) are real and symmetric w.r.t. (−1). This branch contains
the isolated point (−1,−1). On figure 1 the hyperbola H−1 is absent because for
n = 2 there is no point in comparing the roots of P ∗Q with (−1).

The two hyperbolas share the same asymptotes with ∆n ({b = n − 1} and
{c = n−1}). These hyperbolas and the branch ∆w

n of ∆n are positioned as shown on
figure 3. This follows from the equations of the hyperbolas and from the equation of
the branch ∆w

n presented in the form (b− (n−1))(c− (n−1)) = n(n−2)+2n
√
bc, see

part (vi) of Lemma 1.4. Indeed, for the right hand-sides one has n(n− 2) + 2n
√
bc >

n2 > n(n− 2); the left inequality follows from b > n− 1 and c > n− 1 on ∆w
n .

1.4. The case of real polynomials

Consider the situation when P and Q are real. Consider first the generic situation
when a1 6= 0 6= b1. Using Lemma A we assume that P = x2 + x+ u, Q = x2 + x+ v.
Hence, P ∗Q = x2 +

x

2
+ uv. This polynomial has a double root if and only if one

has
χ : 16uv = 1.

On figure 4 we present the hyperbola χ and (in the same way as on figure 1) the
roots of P ∗ Q in small rectangles. The root configuration is the same at (u, v) and
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at (v, u) because P and Q play the same roles. It is also the same at (u, v) and at
(−u,−v) because P ∗ Q is the same. The evolution of the roots of P ∗ Q can be
understood if one follows the arc CB.

The polynomials P and Q are hyperbolic respectively for u ≤ 1
4 and v ≤ 1

4 . The
lines u = 1

4 and v = 1
4 (where these polynomials have double roots at (− 1

2 )) are drawn
by dashed lines. The root configuration of P ∗Q does not change when one of these
lines is crossed.

In the case when a1b1 = 0 one can set P = x2 + 2a1x + u, Q = x2 + 2b1x + v,
hence, P ∗ Q = x2 + uv. For uv < 0 this polynomial has two distinct and opposite
real roots ±

√
uv, for uv = 0 it has a double zero root, and for uv > 0 it has a couple

of conjugate imaginary roots ±i
√
−uv. The reader can readily draw a figure similar

to (and simpler than) figure 4 which illustrates this case.

1.5. The mixed case

Consider the families of polynomials P = x2 + x + b and Q = (x − 1)(x + c) =
x2 + (c − 1)x − c. The first of them is parameterized by its coefficient b, the second
by its root (−c). This is the generic situation when the polynomial P has a nonzero
coefficient before x. The above parameterization excludes the possibility P to have
a double root at 0 (in which case one has P ∗ Q = x2). In the generic case the
polynomials P and Q can be given the above form thanks to Lemma A.

One has P ∗Q = x2 + (c−1)x
2 − bc. This polynomial has a double root if and only

if
∆̃ := c(16b+ c− 2) = −1. (9)

This equation defines a hyperbola tangent to the c-axis at (0, 1). (Indeed, for b = 0
equation (9) has a double root c = 1.) The hyperbola has asymptotes {c = 0} and
{16b+ c = 2}. The dependence of the roots of P ∗Q on b and c is shown on figure 5.

If the polynomial P is of the form x2 +b (this is the nongeneric case), then one has
P ∗Q = x2 − bc and the study of this case is analogous to the one of the degenerate
case a1b1 = 0 considered at the end of subsection 1.4.
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[3] V. Kostov and B. Shapiro, On the Schur-Szegö composition of polynomials, C. R. Math. Acad.
Sci. Paris 343 (2006), no. 2, 81–86.

[4] V. V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-
Verlag, Berlin, 2004. Translated from the 2001 Russian second edition by Dimitry Leites.

205
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Figure 5 – The mixed case in degree 2.
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