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ABSTRACT

We present an alternative proof of the Jawerth embedding

F s0
p0q(Rn) ↪−→ Bs1

p1p0(R
n),

where

−∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, 0 < q ≤ ∞

and

s0 −
n

p0
= s1 −

n

p1
.

The original proof given in [3] uses interpolation theory. Our proof relies on
wavelet decompositions and transfers the problem from function spaces to se-
quence spaces. Using similar techniques, we also recover the embedding of
Franke [2].

Key words: Besov spaces, Triebel-Lizorkin spaces, Sobolev embedding, Jawerth-Franke
embedding.
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Introduction

Let Bspq(Rn) and F spq(Rn) denote the Besov and Triebel-Lizorkin function spaces,
respectively. The classical Sobolev embedding theorem can be extended to these two
scales.

Theorem 0.1. Let −∞ < s1 < s0 <∞ and 0 < p0 < p1 ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
. (1)

(i) If 0 < q0 ≤ q1 ≤ ∞, then

Bs0p0q0(Rn) ↪−→ Bs1p1q1(Rn).

(ii) If 0 < q0, q1 ≤ ∞ and p1 <∞, then

F s0p0q0(Rn) ↪−→ F s1p1q1(Rn). (2)

We observe that there is no condition on the fine paramters q0, q1 in (2). This
surprising effect was first observed in full generality by Jawerth, [3]. Using (2), we
may prove

F s0p0q(R
n) ↪−→ F s1p1p1(Rn) = Bs1p1p1(Rn)

and

Bs0p0p0(Rn) = F s0p0p0(Rn) ↪−→ F s1p1q(R
n)

for every 0 < q ≤ ∞. But Jawerth [3] and Franke [2] showed that these embeddings
are not optimal and may be improved.

Theorem 0.2. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, and 0 < q ≤ ∞ with (1).

(i) Then
F s0p0q(R

n) ↪−→ Bs1p1p0(Rn). (3)

.

(ii) If p1 <∞, then
Bs0p0p1(Rn) ↪−→ F s1p1q(R

n). (4)

The original proofs (see [2, 3]) use interpolation techniques. We rely on a differ-
ent method. First, we observe that using (for example) the wavelet decomposition
method, (3) and (4) are equivalent to

fs0p0q ↪−→ bs1p1p0 and bs0p0p1 ↪−→ fs1p1q (5)
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under the same restrictions on parameters s0, s1, p0, p1, q as in Theorem 0.2. Here,
bspq and fspq stands for the sequence spaces of Besov and Triebel-Lizorkin type. We
prove (5) directly using the technique of non-increasing rearrangement on a rather
elementary level.

All the unimportant constants are denoted by the letter c, whose meaning may
differ from one occurrence to another. If {an}∞n=1 and {bn}∞n=1 are two sequences of
positive real numbers, we write an . bn if, and only if, there is a positive real number
c > 0 such that an ≤ c bn, n ∈ N. Furthermore, an ≈ bn means that an . bn and
simultaneously bn . an.

1. Notation and definitions

We introduce the sequence spaces associated with the Besov and Triebel-Lizrokin
spaces. Let m ∈ Zn and ν ∈ N0. Then Qν m denotes the closed cube in Rn with
sides parallel to the coordinate axes, centred at 2−νm, and with side length 2−ν . By
χν m = χQν m we denote the characteristic function of Qν m. If

λ = {λν m : ν ∈ N0,m ∈ Zn },

−∞ < s <∞, and 0 < p, q ≤ ∞, we set

‖λ | bspq‖ =
( ∞∑
ν=0

2ν(s−
n
p )q
( ∑
m∈Zn

|λν m|p
) q
p

) 1
q

,

appropriately modified if p =∞ and/or q =∞. If p <∞, we define also

‖λ|fspq‖ =
∥∥∥∥( ∞∑

ν=0

∑
m∈Zn

|2νsλν mχν m(·)|q
)1/q ∣∣∣∣ Lp(Rn)

∥∥∥∥.
The connection between the function spaces Bspq(Rn), F spq(Rn) and the sequence
spaces bspq, f

s
pq may be given by various decomposition techniques, we refer to [7, chap-

ters 2 and 3] for details and further references.
As a result of these characterizations, (3) is equivalent to (5).
We use the technique of non-increasing rearrangement. We refer to [1, chapter 2]

for details.

Definition 1.1. Let µ be the Lebesgue measure in Rn. If h is a measurable function
on Rn, we define the non-increasing rearrangement of h through

h∗(t) = sup{λ > 0 : µ{x ∈ Rn : |h(x)| > λ} > t }, t ∈ (0,∞).

We denote its averages by

h∗∗(t) =
1
t

∫ t

0

h∗(s) ds, t > 0.
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We shall use the following properties. The first two are very well known and their
proofs may be found in [1, Proposition 1.8 in chapter 2, Theorem 3.10 in chapter 3].

Lemma 1.2. If 0 < p ≤ ∞, then

‖h | Lp(Rn)‖ = ‖h∗ | Lp(0,∞)‖

for every measurable function h.

Lemma 1.3. If 1 < p ≤ ∞, then there is a constant cp such that

‖h∗∗ | Lp(0,∞)‖ ≤ cp‖h∗ | Lp(0,∞)‖

for every measurable function h.

Lemma 1.4. Let h1 and h2 be two non-negative measurable functions on Rn. If
1 ≤ p ≤ ∞, then

‖h1 + h2 | Lp(Rn)‖ ≤ ‖h∗1 + h∗2 | Lp(0,∞)‖.

Proof. The proof follows from Theorems 3.4 and 4.6 in [1, chapter2].

2. Main results

In this part, we present a direct proof of the discrete versions of Jawerth and Franke
embedding. We start with the Jawerth embedding.

Theorem 2.1. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, and 0 < q ≤ ∞. Then

fs0p0q ↪−→ bs1p1p0 if s0 −
n

p0
= s1 −

n

p1
.

Proof. Using the elementary embedding

fspq0 ↪−→ fspq1 if 0 < q0 ≤ q1 ≤ ∞ (6)

and the lifting property of Besov and Triebel-Lizorkin spaces (which is even simpler
in the language of sequence spaces), we may restrict ourselves to the proof of

fsp0∞ ↪−→ b0p1p0 , where s = n
( 1
p0
− 1
p1

)
.

Let λ ∈ fsp0∞ and set

h(x) = sup
ν∈N0

2νs
∑
m∈Zn

|λν m|χν m(x).
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Hence
|λν m| ≤ 2−νs inf

x∈Qν m
h(x), ν ∈ N0, m ∈ Zn.

Using this notation,
‖λ | fsp0∞‖ = ‖h | Lp0(Rn)‖

and

‖λ | b0p1p0‖
p0 ≤

∞∑
ν=0

2−νn
( ∑
m∈Zn

inf
x∈Qνm

h(x)p1
)p0/p1

≤
∞∑
ν=0

2−νn
( ∞∑
k=1

h∗(2−νnk)p1
)p0/p1

.

Using the monotonicity of h∗ and p0 < p1 we get

‖λ | b0p1p0‖
p0 .

∞∑
ν=0

2−νn
( ∞∑
l=0

2nl · (2n − 1) · h∗(2−νn2nl)p1
)p0/p1

.
∞∑
ν=0

2−νn
∞∑
l=0

2nl
p0
p1 h∗(2−νn2nl)p0 .

We substitute j = l − ν and obtain

‖λ | b0p1p0‖
p0 .

∞∑
j=−∞

∞∑
ν=−j

2−νn2n(ν+j)
p0
p1 h∗(2jn)p0

=
∞∑

j=−∞
2nj

p0
p1 h∗(2jn)p0

∞∑
ν=−j

2nν
(
p0
p1
−1
)

≈
∞∑

j=−∞
2njh∗(2nj)p0 ≈ ‖h∗ | Lp0(0,∞)‖p0 = ‖h | Lp0(Rn)‖p0 .

If p1 =∞, only notational changes are necessary.

Theorem 2.2. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 <∞, and 0 < q ≤ ∞. Then

bs0p0p1 ↪−→ fs1p1q if s0 −
n

p0
= s1 −

n

p1
.

Proof. Using the lifting property and (6), we may suppose that s1 = 0 and
0 < q < p0.

By Lemma 1.4, we observe that

‖λ|f0
p1q‖ =

∥∥∥∥( ∞∑
ν=0

∑
m∈Zn

|λνm|qχνm(x)
)1/q ∣∣∣∣ Lp1(Rn)

∥∥∥∥
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may be estimated from above by

∥∥∥∥ ∞∑
ν=0

∞∑
m=0

λ̃qνmχ̃νm(·)
∣∣∣∣ L p1

q
(0,∞)

∥∥∥∥1/q

, (7)

where λ̃ν = {λ̃νm}∞m=0 is a non-increasing rearrangement of λν = {λνm}m∈Zn and
χ̃νm is a characteristic function of the interval (2−νnm, 2−νn(m+ 1)).

Using duality, (7) may be rewritten as

sup
g

(∫ ∞
0

g(x)
( ∞∑
ν=0

∞∑
m=0

λ̃qνmχ̃νm(x)
)
dx

)1/q

= sup
g

( ∞∑
ν=0

∞∑
m=0

2−νnλ̃qνmgνm

)1/q

, (8)

where the supremum is taken over all non-increasing non-negative measurable func-
tions g with ‖g | Lβ(0,∞)‖ ≤ 1 and gνm = 2νn

∫
g(x)χ̃νm(x) dx. Here, β is the

conjugated index to p1
q . Similarly, α stands for the conjugated index to p0

q .

We use twice Hölder’s inequality and estimate (8) from above by

( ∞∑
ν=0

2−νn
( ∞∑
m=0

λ̃p0νm

) p1
p0

)1/p1

· sup
g

( ∞∑
ν=0

2−νn
( ∞∑
m=0

gανm

) β
α

) 1
βq

(9)

Since s0 = n
(

1
p0
− 1

p1

)
and p1

(
s0 − n

p0

)
= −n, the first factor in (9) is equal to

‖λ | bs0p0p1‖. To finish the proof, we have to show that there is a number c > 0 such
that ( ∞∑

ν=0

2−νn
( ∞∑
m=0

gανm

) β
α

) 1
βq

≤ c (10)

holds for every non-increasing non-negative measurable functions g with ‖g | Lβ(0,∞)‖
≤ 1. We fix such a function g. Using the monotonicity of g, we get

∞∑
m=0

gανm =
∞∑
l=0

2(l+1)n∑
m=2ln−1

(
2νn

∫ 2−νn(m+1)

2−νnm

g(x) dx

)α

.
∞∑
l=0

2ln
(

2νn
∫ 2−νn2ln

2−νn(2ln−1)

g(x) dx

)α
≤
∞∑
l=0

2ln(g∗∗)α(2(l−ν)n).
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We use 1 < β < α, Lemma 1.3 and obtain( ∞∑
ν=0

2−νn
( ∞∑
m=0

gανm

) β
α

)1/β

≤

( ∞∑
ν=0

2−νn
( ∞∑
l=0

2ln(g∗∗)α(2(l−ν)n)
) β
α

)1/β

≤
( ∞∑
ν=0

2−νn
∞∑
l=0

2ln
β
α (g∗∗)β(2(l−ν)n)

)1/β

≤
( ∞∑
k=−∞

2kn
β
α

∞∑
ν=−k

2νn( βα−1)(g∗∗)β(2kn)
)1/β

.

( ∞∑
k=−∞

2kn(g∗∗)β(2kn)
)1/β

. ‖g∗∗ | Lβ(0,∞)‖ ≤ c ‖g | Lβ(0,∞)‖ ≤ c.

Taking the 1
q -power of this estimate, we finish the proof of (10).

The Theorems 2.1 and 2.2 are sharp in the following sense.

Theorem 2.3. Let −∞ < s1 < s0 <∞, 0 < p0 < p1 ≤ ∞, and 0 < q0, q1 ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
.

(i) If
fs0p0q0 ↪−→ bs1p1q1 , (11)

then q1 ≥ p0.

(ii) If p1 <∞ and
bs0p0q0 ↪−→ fs1p1q1 , (12)

then q0 ≤ p1.

Remark 2.4. Using (any of) the usual decomposition techniques, the same statements
hold true also for the function spaces. These results were first proved in [4].

Proof. (i) Suppose that 0 < q1 < p0 <∞ and set

λνm =

{
ν−

1
q1 2ν(

n
p1
−s1) if ν ∈ N and m = 0,

0, otherwise.

A simple calculation shows that ‖λ | fs0p0q0‖ < ∞ and ‖λ | bs1p1q1‖ = ∞. Hence, (11)
does not hold.

(ii) Suppose that 0 < p1 < q0 ≤ ∞ and set
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λνm =

{
ν−

1
p1 2ν(

n
p1
−s1) if ν ∈ N and m = 0,

0, otherwise.

Again, it is a matter of simple calculation to show, that ‖λ | bs0p0q0‖ < ∞ and
‖λ | fs1p1q1‖ =∞. Hence, (12) is not true.
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[4] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of Bs
pq

and F s
pq type, Z. Anal. Anwendungen 14 (1995), no. 1, 105–140.

[5] H. Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag,
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