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ABSTRACT

If a metric subspace Mo of an arbitrary metric space M carries a doubling
measure µ, then there is a simultaneous linear extension of all Lipschitz functions
on Mo ranged in a Banach space to those on M . Moreover, the norm of this
linear operator is controlled by logarithm of the doubling constant of µ.
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1. Formulation of the main result

Let (M,d) be a metric space and X be a Banach space. The space Lip(M,X) consists
of all X-valued Lipschitz functions on M . The Lipschitz constant

L(f) := sup
m6=m′

{
‖f(m)− f(m′)‖

d(m,m′)
: m,m′ ∈ M

}
of a function f from this space is therefore finite and the function f 7→ L(f) is a
Banach seminorm on Lip(M,X).

Let Mo be a metric subspace of M , i.e., Mo ⊂ M is a metric space endowed with
the induced metric d|Mo×Mo .
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Convention. We mark all objects related to the subspace Mo by the upper “o”.

A linear operator E : Lip(Mo, X) → Lip(M,X) is called a simultaneous extension
if for all f ∈ Lip(Mo, X)

Ef |Mo = f

and, moreover, the norm

‖E‖ := sup
{

L(Ef)
L(f)

: f ∈ Lip(Mo, X)
}

is finite.
To formulate the main result we also need

Definition 1.1. A Borel measure µ on a metric space (M,d) is said to be doubling
if the µ-measure of every open ball

BR(m) := {m′ ∈ M : d(m,m′) < R }

is strictly positive and finite and the doubling constant

D(µ) := sup
{

µ(B2R(m))
µ(BR(m))

: m ∈ M, R > 0
}

(1)

is finite.
A metric space carrying a fixed doubling measure is called of homogeneous type.

Our main result is

Theorem 1.2. Let Mo be a metric subspace of an arbitrary metric space (M,d).
Assume that (Mo, do) is of homogeneous type and µo is the corresponding doubling
measure. Then there exists a simultaneous extension E : Lip(Mo, X) → Lip(M,X)
satisfying

‖E‖ ≤ c(log2 D(µo) + 1) (2)

with some numerical constant c > 1.

Let us discuss relations of this theorem to some known results. First, a similar
result holds for an arbitrary subspace Mo provided that the ambient space M is
of pointwise homogeneous type, see [1, Theorem 2.21; 2, Theorem 1.14]. The class of
metric spaces of pointwise homogeneous type contains, in particular, all metric spaces
of homogeneous type, Riemannian manifolds Mω

∼= Rn × R+ with the path metric
defined by the Riemannian metric

ds2 := ω(xn+1)(dx2
1 + · · ·+ dx2

n+1), (x1, . . . , xn, xn+1) ∈ Rn × R+,

where ω : R+ → R+ is a continuous nonincreasing function (e.g., the hyperbolic
spaces Hn are in this class), and finite direct products of these objects.

The following problem is of a considerable interest.

Revista Matemática Complutense
2006: vol. 19, num. 2, pags. 347–359

348



A. Brudnyi/Yu. Brudnyi Extension of Lipschitz functions on metric subspaces

Problem 1.3. Is it true that Theorem 1.2 is valid for Mo(⊂ M) isometric to a
subspace of a metric space (M̂, d̂) of pointwise homogeneous type with ‖E‖ ≤ c(M̂)?
(Here c(M̂) depends on some characteristics of M̂ only.)

It is proved in [2] that as such Mo one can take, e.g., finite direct products of
Gromov hyperbolic spaces of bounded geometry and that the answer in Problem 1.3
is positive in this case.

Second, as a consequence of Theorem 1.2 we obtain a deep extension result due to
Lee and Naor, see [4, Theorem 1.6]. The latter asserts that a simultaneous extension
E : Lip(Mo, X) → Lip(M,X) exists whenever the subspace (Mo, do) of (M,d) has
the finite doubling constant δ(Mo) and, moreover,

‖E‖ ≤ c log2 δ(Mo)

with some numerical constant c > 1.
Let us recall that the doubling constant δ(M) of a metric space (M,d) is the

infimum of integers N such that every closed ball of M of radius R can be covered
by N closed balls of radius R/2. The space M is said to be doubling if δ(M) < ∞.

To derive the Lee-Naor theorem from our main result we first note that without
loss of generality one may assume that (Mo, do) is complete. By the Koniagin-Vol’berg
theorem [6] (see also [5]) a complete doubling space M carries a doubling measure µ
such that

log2 D(µ) ≤ c log2 δ(M)

where c ≥ 1 is a numerical constant. Together with (2) this implies the Naor-Lee
result.

On the other hand, it was noted in [3] that if M carries a doubling measure µ,
then this space is doubling and

log2 δ(M) ≤ c log2 D(µ) (3)

with some numerical constant c > 1. Hence, Theorem 1.2 is, in turn, a consequence
of (3) and the Lee-Naor theorem. However, the rather elaborated proof of the latter
result is nonconstructive. (It exploits an appropriate stochastic metric decomposition
of M \Mo.) In contrast, our proof is constructive and is based on a simple average
procedure. Therefore our proof can be also seen as a streamlining constructive method
of the proof of the Lee-Naor theorem.

2. Proof of Theorem 1.2

We begin with the following remark reducing the required result to a special case.
Let M and Mo be isometric to subspaces of a new metric space M̂ and its sub-

space M̂o, respectively. Assume that there exists a simultaneous extension Ê :
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Lip(M̂o, X) → Lip(M̂, X). Then, after identification of Mo and M with the cor-
responding isometric subspaces of M̂ , the operator Ê gives rise to a simultaneous
extension E : Lip(Mo, X) → Lip(M,X) satisfying

‖E‖ ≤ ‖Ê‖.

If, in addition, ‖Ê‖ is bounded by the right-hand side of (2), then the desired result
immediately follows.

We choose as the above pair M̂o ⊂ M̂ metric spaces denoted by Mo
N and MN

where N ≥ 1 is a fixed integer and defined as follows.
The underlying sets of these spaces are

MN := M × RN , Mo
N := Mo × RN ;

a metric dN on MN is given by

dN ((m,x), (m′, x′)) := d(m,m′) + |x− x′|1

where m,m′ ∈ M and x, x′ ∈ RN , and |x|1 :=
∑N

i=1|xi| is the lN1 -metric of x ∈ RN .
Further, do

N denotes the metric on Mo
N induced by dN .

Finally, we define a Borel measure µo
N on Mo

N as the tensor product of the mea-
sure µo and the Lebesgue measure λN on RN :

µo
N := µo ⊗ λN .

We extend this measure to the σ-algebra consisting of subsets S ⊂ MN such that
S ∩Mo

N is a Borel subset of Mo
N . Namely, we set for these S

µ̄N (S) := µo
N (S ∩Mo

N ).

It is important for the subsequent part of the proof that every open ball BR((m,x)) ⊂
MN belongs to this σ-algebra. In fact, its intersection with Mo

N is a Borel subset of
this space, since the function (m′, x′) 7→ dN ((m,x), (m′, x′)) is continuous on Mo

N .
Hence,

µ̄N (BR((m,x))) = µo
N (BR((m,x)) ∩Mo

N ). (4)

Auxiliary results. The measure µo
N is clearly doubling. Therefore its dilation

function given for l ≥ 1 by

Do
N (l) := sup

{
µo

N (Bo
lR(m̂))

µo
N (Bo

R(m̂))
: m̂ ∈ Mo

N and R > 0
}

is finite.
Hereafter we denote by m̂ the pair (m,x) with m ∈ M and x ∈ RN , and by Bo

R(m̂)
the open ball in Mo

N centered at m̂ ∈ Mo
N and of radius R. The open ball BR(m̂)

of MN relates to that by
Bo

R(m̂) = BR(m̂) ∩Mo
N
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provided m̂ ∈ Mo
N .

In [1] the value Do
N (1+1/N) is proved to be bounded by some numerical constant

for all sufficiently large N . In the argument presented below we require a similar
estimate for a (modified) dilation function DN for the extended measure µ̄N . This is
given for l ≥ 1 by

DN (l) := sup
{

µ̄N (BlR(m̂))
µ̄N (BR(m̂))

}
(5)

where the supremum is taken over all R satisfying

R > 4d(m̂,Mo
N ) := 4 inf{ dN (m̂, m̂′) : m̂′ ∈ Mo

N } (6)

and then over all m̂ ∈ MN .
Due to (4) and (6) the denominator in (5) is not zero and DN (l) is well defined.
Comparison of the above dilation functions shows that Do

N (l) ≤ DN (l). Never-
theless, the converse is also true for l close to 1.

Lemma 2.1. Assume that N and the doubling constant D := D(µo), see (1), are
related by

N ≥ [3 log2 D] + 5. (7)

Then the following is true:

DN (1 + 1/N) ≤ 6
5
e4.

Proof. In accordance with the definition of DN , see (5), we must estimate the function

µ̄N (BRN
(m̂))

µ̄N (BR(m̂))
where RN :=

(
1 +

1
N

)
R. (8)

Since the points m̂′ of the ball BRN
(m̂) of MN satisfy the inequality

d(m,m′) + |x− x′|1 < RN ,

the Fubini theorem and (4) yield

µ̄N (BRN
(m̂)) = γN

∫
Mo∩BRN

(m)

(RN − d(m,m′))N dµo(m′). (9)

Here γN is the volume of the unit lN1 -ball.
We must estimate the integral in (9) from above under the condition

dN (m̂,Mo
N ) < R/4. (10)

To this end split the integral into one over B3R/4(m)∩Mo and one over the remaining
part (BRN

(m) \B3R/4(m))∩Mo. Denote these integrals by I1 and I2. For I2 we get

I2 ≤ γN (RN − 3R/4)Nµo(BRN
(m) ∩Mo). (11)
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Further, from (10) we clearly have

d(m,Mo) < R/4.

Pick a point m̃ ∈ Mo so that

d(m,Mo) ≤ d(m, m̃) < R/4.

Then we have the following embeddings

Bo
RN /4(m̃) ⊂ BRN /2(m) ∩Mo ⊂ BRN

(m) ∩Mo ⊂ Bo
5RN /4(m̃).

Applying the doubling inequality for the measure µo, see (1), we then obtain

µo(BRN
(m) ∩Mo) ≤ D3µo(BRN /2(m) ∩Mo) .

Moreover, due to (7)
D3 < 2[3 log2 D]+1 ≤ 2N−4.

Combining the last two inequalities with (11) we have

I2 ≤ γN2−N−4
(
1 +

4
N

)N

RNµo(BRN /2(m) ∩Mo) . (12)

To estimate the integral I1 we rewrite its integrand as follows:

(RN − d(m,m′))N =
(
1 +

1
N

)N

(R− d(m,m′))N

(
1 +

d(m,m′)
(N + 1)(R− d(m,m′))

)N

.

Since m′ ∈ B3/4R(m), the last factor is at most
(
1+ 3R/4

(N+1)R/4

)N =
(
1+ 3

N+1

)N . This
yields

I1 ≤ γN

(
1 +

1
N

)N(
1 +

3
N + 1

)N
∫

B3R/4(m)∩Mo

(R− d(m,m′))N dµo(m′)

≤ e4µ̄N (BR(m̂)).

Hence for the part of fraction (8) related to I1 we have

Ĩ1 :=
I1

µ̄N (BR(m̂))
≤ e4. (13)

To estimate the remaining part Ĩ2 := I2
µ̄N (BR(m̂)) we note that its denominator is

greater than

γN

∫
Mo∩BRN /2(m)

(R− d(m,m′))N dµo(m′).
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Since here d(m,m′) ≤ RN/2, this, in turn, is bounded from below by

γN2−N
(
1− 1

N

)N

RNµo(BRN /2(m) ∩Mo).

Combining this with (12) and noting that N ≥ 5 we get

Ĩ2 ≤ 2−4
(
1− 1

N

)−N(
1 +

4
N

)N

<
1
5
e4.

Hence the fraction (8) is bounded by Ĩ1 + Ĩ2 ≤ 6
5e4, see (13), and this immediately

implies the required estimate of DN (1 + 1/N).

In the next lemma we estimate µ̄N -measure of the spherical layer BR2(m̂)−BR1(m̂),
R2 ≥ R1, by a kind of a surface measure. For its formulation we set

AN :=
12
5

e4N. (14)

Lemma 2.2. Assume that
N ≥ [3 log2 D] + 6.

Then for all m̂ ∈ MN and R1, R2 > 0 satisfying

R2 ≥ max{R1, 8dN (m̂,Mo
N ) }

the following is true

µ̄N (BR2(m̂) \BR1(m̂)) ≤ AN
µ̄N (BR2(m̂))

R2
(R2 −R1).

Proof. By definition MN = MN−1 × R and µ̄N = µ̄N−1 ⊗ λ1. Then by the Fubini
theorem we have for R1 ≤ R2 with m̂ = (m̃, t)

µ̄N (BR2(m̂))− µ̄N (BR1(m̂)) = 2
∫ R2

R1

µ̄N−1(Bs(m̃)) ds

≤ 2R2µ̄N−1(BR2(m̃))
R2

(R2 −R1).

We claim that for arbitrary l > 1 and R ≥ 8dN (m̂,Mo
N ) := 8dN−1(m̃,Mo

N−1)

Rµ̄N−1(BR(m̃)) ≤ lDN−1(l)
l − 1

µ̄N (BR(m̂)). (15)

Together with the previous inequality this will yield

µ̄N (BR2(m̂))− µ̄N (BR1(m̂)) ≤ 2lDN−1(l)
l − 1

· µ̄N (BR2(m̂))
R2

(R2 −R1).
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Finally choose here l = 1 + 1
N−1 and use Lemma 2.1. This will give the required

inequality.
Hence, it remains to establish (15). By the definition of DN−1(l) we have for l > 1

using the previous lemma

µ̄N (BlR(m̂)) = 2l

∫ R

0

µ̄N−1(Bls(m̃)) ds ≤ 4l

∫ R

R/2

µ̄N−1(Bls(m̃)) ds

≤ 4lDN−1(l)
∫ R

R/2

µ̄N−1(Bs(m̃)) ds ≤ 2lDN−1(l)µ̄N (BR(m̂)).

On the other hand, replacing [0, R] by [l−1R,R] we also have

µ̄N (BlR(m̂)) ≥ 2lµ̄N−1(BR(m̃))(R− l−1R) = 2(l − 1)Rµ̄N−1(BR(m̃)).

Combining the last two inequalities we get (15).

Extension operator. We define the required simultaneous extension

E : Lip(Mo
N , X) → Lip(MN , X)

using the standard average operator Ave defined on continuous and locally bounded
functions g : Mo

N → X by

Ave(g; m̂,R) :=
1

µ̄N (BR(m̂))

∫
BR(m̂)

g dµ̄N .

To be well-defined the domain of integration BR(m̂)∩Mo
N should be of strictly pos-

itive µ̄N -measure (i.e., µo
N -measure). This condition is fulfilled in the case presented

now. Namely, we define the simultaneous extension E on functions f ∈ Lip(Mo
N , X)

by

(Ef)(m̂) :=

{
f(m̂) if m̂ ∈ Mo

N ,

Ave(f ;m,R(m̂)) if m̂ /∈ Mo
N

(16)

where we set
R(m̂) := 8dN (m̂,Mo

N ).

The required estimate of ‖E‖ is presented below. To formulate the result we set

KN (l) := ANDN (l)(4l + 1) (17)

where the first of two factors are defined by (14) and (5).

Proposition 2.3. The following inequality,

‖E‖ ≤ 20AN + max
( 4l + 1

2(l − 1)
,KN (l)

)
,

is true provided l := 1 + 1/N .
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Before we begin the proof let us derive from here the desired result. Namely,
choose

N := [3 log2 D] + 6

and use Lemma 2.1 and (14) to estimate DN (1 + 1/N) and AN . Then we get

‖E‖ ≤ C(log2 D + 2)

with some numerical constant C. This clearly gives (2).

Proof. We have to show that for every m̂1, m̂2 ∈ MN

‖(Ef)(m̂1)− (Ef)(m̂2)‖X ≤ K‖f‖Lip(MN ,X)dN (m̂1, m̂2) (18)

where K is the constant in the inequality of the proposition.
It suffices to consider only two cases:

(i) m̂1 ∈ Mo
N and m̂2 6∈ Mo

N ,

(ii) m̂1, m̂2 6∈ Mo
N .

We assume without loss of generality that

‖f‖Lip(Mo
N ,X) = 1

and simplify the computations by introducing the following notations:

Ri := dN (m̂i,M
o
N ), Bij := B8Rj

(m̂i), vij := µ̄N (Bij), 1 ≤ i, j ≤ 2. (19)

We assume also for definiteness that

0 < R1 ≤ R2.

By the triangle inequality we then have

0 ≤ R2 −R1 ≤ dN (m̂1, m̂2). (20)

Further, by Lemma 2.2 the quantities introduced satisfy the following inequality:

vi2 − vi1 ≤
ANvi2

R2
(R2 −R1). (21)

Let now m̂∗ be such that dN (m̂1, m̂
∗) < 2R1. Set

f̂(m̂) := f(m̂)− f(m̂∗). (22)

From the triangle inequality we then obtain

max{ ‖f̂(m̂)‖X : m̂ ∈ Bi2 ∩Mo
N } ≤ 10R2 + (i− 1)dN (m̂1, m̂2). (23)
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(Here i = 1, 2.)
We now prove (18) for m̂1 ∈ Mo

N and m̂2 6∈ Mo
N . We begin with the evident

inequality

‖(Ef)(m̂2)− (Ef)(m̂1)‖X =
1

v22

∥∥∥∥∫
B22

f̂(m̂) dµ̄N

∥∥∥∥
X

≤ max
B22∩Mo

N

‖f̂‖X ,

see (19) and (22). Applying (23) with i = 2 we then bound this maximum by
10R2 + dN (m̂1, m̂2). But m̂1 ∈ Mo

N and so

R2 = dN (m̂2,M
o
N ) ≤ dN (m̂1, m̂2);

therefore (18) holds in this case with K = 11.
The remaining case m̂1, m̂2 6∈ Mo

N requires some additional auxiliary results. For
their formulations we first write

(Ef)(m̂1)− (Ef)(m̂2) := D1 + D2 (24)

where

D1 := Ave(f̂ ; m̂1, 8R1)−Ave(f̂ ; m̂1, 8R2),

D2 := Ave(f̂ ; m̂1, 8R2)−Ave(f̂ ; m̂2, 8R2),
(25)

see (16) and (22).

Lemma 2.4. We have
‖D1‖X ≤ 20ANdN (m̂1, m̂2).

Recall that AN is the constant defined by (14).

Proof. By (25), (22), and (19),

D1 =
1

v11

∫
B11

f̂ dµ̄N − 1
v12

∫
B12

f̂ dµ̄N

=
( 1

v11
− 1

v12

) ∫
B11

f̂ dµ̄N − 1
v12

∫
B12\B11

f̂ dµ̄N .

This immediately implies that

‖D1‖X ≤ 2 · v12 − v11

v12
· max

B12∩Mo
N

‖f̂‖X .

Applying now (21) and (20), and then (23) with i = 1 we get the desired estimate.

To obtain a similar estimate for D2 we will use the following two facts.
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Lemma 2.5. Assume that for a given l > 1

dN (m̂1, m̂2) ≤ 8(l − 1)R2. (26)

Let for definiteness
v22 ≤ v12. (27)

Then we have
µ̄N (B12∆B22) ≤ ANDN (l)

v12

4R2
dN (m̂1, m̂2). (28)

(Here ∆ denotes symmetric difference of sets.)

Proof. Set
R := 8R2 + dN (m̂1, m̂2).

Then B12 ∪B22 ⊂ BR(m̂1) ∩BR(m̂2), and

µ̄N (B12∆B22) ≤ (µ̄N (BR(m̂1))− µ̄N (B8R2(m̂1)))
+ (µ̄N (BR(m̂2))− µ̄N (B8R2(m̂2))).

Estimating the terms on the right-hand side by Lemma 2.2 we bound them by

AN
µ̄N (BR(m̂1))

R
(R− 8R2) + AN

µ̄N (BR(m̂2))
R

(R− 8R2).

Moreover, 8R2 ≤ R ≤ 8lR2 and R−8R2 := dN (m̂1, m̂2), see (26); taking into account
(5), (19), and (27) we therefore have

µ̄N (B12∆B22) ≤ ANDN (l)
v12

4R2
dN (m̂1, m̂2).

Lemma 2.6. Under the assumptions of the previous lemma we have

v12 − v22 ≤ ANDN (l)
v12

4R2
dN (m̂1, m̂2). (29)

Proof. By (19) the left-hand side is bounded by µ̄N (B12∆B22).

We now estimate D2 from (25) beginning with

Lemma 2.7. Under the conditions of Lemma 2.5 we have

‖D2‖X ≤ KN (l)dN (m̂1, m̂2)

where KN (l) := ANDN (l)(4l + 1).
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Proof. By the definition of D2 and our notation, see (25), (22), and (19),

‖D2‖X :=
∥∥∥∥ 1

v12

∫
B12

f̂ dµ̄N − 1
v22

∫
B22

f̂ dµ̄N

∥∥∥∥
X

≤ 1
v12

∫
B12∆B22

‖f̂‖X dµ̄N +
∣∣∣ 1
v12

− 1
v22

∣∣∣ ∫
B22

‖f̂‖X dµ̄N := J1 + J2 .

By (28), (26), and (23)

J1 ≤
1

v12
µ̄N (B12∆B22) sup

(B12∆B22)∩Mo
N

‖f̂‖X

≤ ANDN (l)
4R2

dN (m̂1, m̂2)(dN (m̂1, m̂2) + 10R2)

≤ ANDN (l)(2l + 1/2)dN (m̂1, m̂2).

Also, (29), (23), and (26) yield

J2 ≤ ANDN (l)(2l + 1/2)dN (m̂1, m̂2).

Combining these we get the required estimate.

It remains to consider the case of m̂1, m̂2 /∈ MN satisfying the inequality

dN (m̂1, m̂2) > 8(l − 1)R2

converse to (26). Now the definition (25) of D2 and (23) imply that

‖D2‖X ≤ 2 sup
(B12∪B22)∩Mo

N

‖f̂‖X ≤ 2(10R2 + dN (m̂1, m̂2)) ≤
4l + 1

2(l − 1)
dN (m̂1, m̂2).

Combining this with the inequalities of Lemmas 2.4 and 2.7 and equality (24) we
obtain the required estimate of the Lipschitz norm of the extension operator E:

‖E‖ ≤ 20AN + max
(

4l + 1
2(l − 1)

,KN (l)
)

where KN (l) is the constant in (17).
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