
Root Arrangements of Hyperbolic
Polynomial-like Functions

Vladimir Petrov KOSTOV

Université de Nice
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ABSTRACT

A real polynomial P of degree n in one real variable is hyperbolic if its roots are
all real. A real-valued function P is called a hyperbolic polynomial-like function
(HPLF) of degree n if it has n real zeros and P (n) vanishes nowhere. Denote

by x
(i)
k the roots of P (i), k = 1, . . . , n− i, i = 0, . . . , n− 1. Then in the absence

of any equality of the form

x
(j)
i = x

(l)
k (1)

one has

∀i < j x
(i)
k < x

(j)
k < x

(i)
k+j−i (2)

(the Rolle theorem). For n ≥ 4 (resp. for n ≥ 5) not all arrangements without

equalities (1) of n(n + 1)/2 real numbers x
(i)
k and compatible with (2) are real-

izable by the roots of hyperbolic polynomials (resp. of HPLFs) of degree n and

of their derivatives. For n = 5 and when x
(1)
1 < x

(1)
2 < x

(3)
1 < x

(3)
2 < x

(1)
3 < x

(1)
4

we show that from the 40 arrangements without equalities (1) and compatible
with (2) only 16 are realizable by HPLFs (from which 6 by perturbations of
hyperbolic polynomials and none by hyperbolic polynomials).

Key words: hyperbolic polynomial, polynomial-like function, root arrangement, con-
figuration vector.
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1. Introduction

1.1. Hyperbolic polynomials, polynomial-like functions, and their root ar-
rangements

Consider the family of polynomials P (x, a) = xn + a1x
n−1 + · · · + an, x, ai ∈ R. A

polynomial of this family is called (strictly) hyperbolic if all its roots are real (real and
distinct). It is clear that if P is (strictly) hyperbolic, then such are P (1), . . . , P (n−1)

as well. Hyperbolic are the polynomials of all known orthogonal families (e.g., the
Legendre, Laguerre, Hermite, Tchebyshev polynomials).

A problem of interest in (real) algebraic geometry is the dependence of the roots
of the first, second, etc. derivatives of a polynomial on the roots of the polynomial
itself. For complex polynomials one has the Gauß-Lucas theorem which says that the
roots of the derivative belong to the convex hull of the roots of the polynomial. But
in the case of hyperbolic polynomials there are also some properties specific to this
class. For instance, one has the following property.

Property 1.1 (see [1] or [6]). If one of the roots of a hyperbolic polynomial moves
to the right (resp. to the left) while the other roots remain fixed, then every root of
every derivative of the polynomial moves to the right (resp. to the left) or remains
fixed.

The roots of the first (resp. of the second) derivative have a geometric interpreta-
tion because they define the critical (resp. the inflection) points. If one is interested
in these points in the graph of the first (resp. of the second) derivative, then one has
to study the third (resp. the fourth) derivative, thus one is led in a natural way to
the study of the arrangements of the roots of a hyperbolic polynomial and of all its
derivatives.

Notation 1.2. Denote by x1 ≤ · · · ≤ xn the roots of P and by x(k)
1 ≤ · · · ≤ x

(k)
n−k the

ones of P (k). We set x(0)
j = xj . In the examples we never go beyond degree 5 and to

avoid double indices we use also the notation fj , sj , tj , lj for the roots respectively
of P (1), P (2), P (3), P (4). The letters are chosen to match “first”, “second”, “third”
and “last”.

Definition 1.3. The arrangement (or configuration) defined by the roots of P , P (1),
. . . , P (n−1) is the complete system of strict inequalities and equalities that hold for
these roots. To explicit an arrangement one can write the roots in a chain in which
any two consecutive roots are connected with a sign < or =. An arrangement is
called non-degenerate if there are no equalities between any two of the roots, i.e., no
equalities of the form x

(j)
i = x

(r)
q for any indices i, j, q, r. A partial arrangement is

the arrangement of the roots of only part of the derivatives P (k), k = 0, 1, . . . , n− 1.

The classical Rolle theorem implies that the roots of P and of its derivatives satisfy
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the following inequalities:

∀ i < j, x
(i)
k ≤ x

(j)
k ≤ x

(i)
k+j−i (3)

One has also the self-evident condition:(
(x(i)

k = x
(i+1)
k ) or (x(i)

k+1 = x
(i+1)
k )

)
⇒ (x(i)

k = x
(i+1)
k = x

(i)
k+1) (4)

Remark 1.4. In what follows when speaking about root arrangements we always as-
sume that they satisfy conditions (3) and (4).

The Rolle theorem provides only necessary conditions, i.e., not all arrangements
are realizable by the roots of hyperbolic polynomials and of their derivatives. In
previous papers (see [2, 3, 7]) we ask the question:

Which of the arrangements of the n(n + 1)/2 real numbers x
(k)
j , k =

0, . . . , n − 1, j = 1, . . . , n − k, satisfying conditions (3) and (4), can be
realized by the roots of hyperbolic polynomials of degree n and of their
derivatives?

For n = 1, 2, 3 this is the case of all arrangements (degenerate or not). For
n ≥ 4 this is no longer like this. E.g., for n = 4 only 10 out of 12 non-degenerate
arrangements are realizable by hyperbolic polynomials (see [1] or [3]; this fact is
closely related to Property 1.1); for n = 5 these numbers equal respectively 116
and 286 (see [2]).
Remark 1.5. For any n the number N(n) of non-degenerate arrangements compatible
with (3) equals (see [9])

N(n) =
(
n+ 1

2

)
!

1! 2! · · · (n− 1)!
1! 3! · · · (2n− 1)!

An obvious reason why this proportion of realizability is to drop further when n
increases is the lack of dimension — a root arrangement of a hyperbolic polynomial
and its derivatives is defined by n−2 coefficients (By a shift of the origin of the x-axis
one can transform a1 into 0; if after this one has a2 6= 0, then a subsequent change
of the scope of the x-axis transforms a2 into −1.) while the total number of roots is
n(n+1)/2. (By similar transformations one can obtain the conditions x1 = 0, xn = 1,
i.e., one can again kill two parameters.)

However, the Rolle theorem is formulated not only for hyperbolic polynomials,
but for smooth functions. Therefore one can introduce the following generalization of
a hyperbolic polynomial in the tentative to realize all non-degenerate arrangements.

Definition 1.6. A polynomial-like function (PLF) of degree n is a C∞-smooth func-
tion whose n-th derivative vanishes nowhere. (Hence, a PLF has at most n real roots
counted with the multiplicities.) A PLF of degree n is called (strictly) hyperbolic if
it has exactly n real (and distinct) roots. In what follows all PLFs are presumed
hyperbolic.
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Example 1.7. Prove that the function f(x) := ex− x4

24 −
x3

4 −
x2

2 −x−1 is a hyperbolic
PLF of degree 5. Indeed, one has f (5) = ex which vanishes nowhere, hence, f is a
PLF of degree 5. Moreover, one has f(0) = f (1)(0) = f (2)(0) = 0, f (3)(0) = − 1

2 ,
limx→±∞ f(x) = ±∞, i.e., f has a triple root at 0, a simple positive and a simple
negative root. Hence, f is hyperbolic. If ε > 0 is small enough, then the function
f + εx is a strictly hyperbolic PLF of degree 5. (The triple root at 0 splits into three
simple roots.)

In paper [4] we show that that for n = 4 PLFs realize all arrangements, and
that one can choose these PLFs to be either hyperbolic polynomials of degree 4
or non-hyperbolic polynomials of degree 6. In particular, the two non-degenerate
arrangements not realizable by hyperbolic polynomials are realizable by perturbations
of such; these perturbations are polynomials of degree 6.
Remark 1.8. Suppose that a strictly hyperbolic PLF f and its derivatives realize a
given non-degenerate arrangement. One can approximate f (n) by polynomials and
keep the same constants of integration thus obtaining polynomials realizing the same
arrangement. Therefore all non-degenerate arrangements realizable by PLFs are re-
alizable by polynomials as well (but not necessarily hyperbolic).

In paper [5] we show that for n = 5 there are non-degenerate arrangements which
are not realizable by PLFs. As PLFs belong to an infinite-dimensional space, di-
mension is not the only obstacle towards realizability of arrangements by hyperbolic
polynomials (or by PLFs).

In the present paper we continue the study of the question for n = 5 which
arrangements are realizable by PLFs. The partial arrangements of the roots of the first
and third derivatives of a PLF define four possible cases two of which are symmetric,
see Subsection 1.3. The present paper offers the thorough study of one of the other
two cases.

In paper [8] PLFs of degree 3 are considered (The authors call them pseudopoly-
nomials.) and necessary and sufficient conditions are given for the numbers x1 <
x2 < x3, y1 < y2, and z1 to be roots respectively of a PLF and of its first and second
derivatives. In the present paper we use some of the ideas from [8].

1.2. Configuration vectors

We use configuration vectors (CVs) to define arrangements. On a CV the positions
of the roots of P , P (1), P (2), P (3), P (4) are denoted by 0, f , s, t, l.

We use two ways to present a CV — on a line and by a partially filled matrix.
When the presentation is on a line, coinciding roots (if any) are put in square brackets.
E.g., for n = 5 the CV (compatible with (3) and (4))

([0f0], s, f, t, l, 0, s, f, t, s, [0f0])

indicates that one has

x1 = f1 = x2 < s1 < f2 < t1 < l1 < x3 < s2 < f3 < t2 < s3 < x4 = f4 = x5.

Revista Matemática Complutense
2006: vol. 19, num. 1, pags. 197–225

200



Vladimir Petrov Kostov Root arrangements of hyperbolic polynomial-like functions

We present by matrices only non-degenerate arrangements. To present several

arrangements at once we use the sign
... with the meaning that whenever two or three

roots are surrounded by such signs, then any permutation of the surrounded roots is
allowed. E.g., the matrix

... l
...

t
...

... t

s
... s

... s

f f
...

... f f

0 0
... 0

... 0 0

(5)

denotes each of the six CVs (0, f, 0, s, f, t,P, t, f, s, 0, f, 0) where P is any of the six
permutations of 0, s and l.

We use also partial CVs when we need to denote the partial arrangement (pre-
sumed non-degenerate) defined by the relative position of the roots of only two of the
derivatives. E.g., the notation (ffttff) means that one has f1 < f2 < t1 < t2 <
f3 < f4. By {(ffttff)} we denote the subset of all non-degenerate arrangements for
which the last chain of inequalities holds.

In what follows we identify for convenience arrangements with the CVs defining
them (represented on a line or by a matrix). The following lemma can be proved
by full analogy with Lemma 4.2 from [7]: (The latter is formulated for hyperbolic
polynomials, not for PLFs.)

Lemma 1.9. A root of multiplicity m of a PLF f of degree n, 0 ≤ m < i+ 1 ≤ n, is
at most a simple root of f (i).

Definition 1.10. A degenerate arrangement (V ) is adjacent to the arrangement (W )
if (W ) is obtained from (V ) by replacing one or several equalities between roots by
strict inequalities.

Example 1.11. For n = 4 the arrangement ([0f0], s, f, [t0], s, f, 0) is adjacent to and
only to the following five arrangements: (0, f, 0, s, f, [t0], s, f, 0), ([0f0], s, f, t, 0, s, f, 0),
([0f0], s, f, 0, t, s, f, 0), (0, f, 0, s, f, t, 0, s, f, 0), and (0, f, 0, s, f, 0, t, s, f, 0). Only the
last two of them are non-degenerate.

Proposition 1.12. If a degenerate arrangement (V ) is realizable by a PLF f of degree
n, then all arrangements to which (V ) is adjacent and with the same multiplicities of
the roots of the PLF are realizable by PLFs which are perturbations of f .

Proof. 1.o It suffices to prove the proposition for the arrangements obtained from (V )
by replacing just one equality between roots by an inequality < or >. Observe first
that by Lemma 1.9 there are cases in which this cannot be any equality. Indeed,
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if x(0)
i0

= · · · = x
(m−1)
im−1

is a root of f of multiplicity m > 2, and if in this chain of
equalities one wants to replace only one equality by an inequality, then this can be
only the last one.

2.o Suppose that the arrangement (V ) contains the following chain of equalities:
x

(j1)
i1

= · · · = x
(jq)
iq

. (The indices jν need not be consecutive integers.) Suppose

without loss of generality that x(j1)
i1

= 0 and that one wants to change the equality

x
(js)
is

= x
(js+1)
is+1

by the inequality x(js)
is

> x
(js+1)
is+1

or x(js)
is

< x
(js+1)
is+1

. The new arrange-
ment thus obtained is denoted by (W ).

3.o Denote by χ a germ of a C∞-function at 0 such that χ(r)(0) = 0 for r =
0, 1, . . . , js+1−1, js+1 +1, js+1 +2, . . . , n, χ(js+1)(0) = 1. Denote by ψ a C∞-function
with compact support such that ψ ≥ 0, ψ(x) ≡ 1 for |x| ≤ η

2 and ψ(x) ≡ 0 for |x| ≥ η

where η > 0. Then for η small enough the support of ψ contains no zeros of f , f (1),
. . . , f (n−1) other than 0.

Hence, the perturbation realizing the arrangement (W ) can be chosen of the form
f + εψχ where ε ∈ R is small enough and the choice of the sign of ε results in the
choice of the sign of the inequality (< or >).

1.3. Aim, scope and basic results of the present paper

In what follows we focus on non-degenerate arrangements. The following four partial
arrangements are possible between the roots of P (1) and P (3) where P is a PLF:

(ffttff), (ftftff), (fftftf), (ftfftf). (6)

The present paper is devoted to the first of these cases.
Remarks 1.13. (i) It would be hard to imagine an entire study of the case n ≥ 6

due to N(6) = 33592 (see Remark 1.5) unless some general rules and theorems
about realizability of arrangements are proved. On the other hand, the case
n = 4 is thoroughly studied and there are only 12 non-degenerate arrangements
there. Therefore the case n = 5 is the first truly interesting case to study. To
subdivide the study into several cases is reasonable because of the great number
(namely, 286) of arrangements, see Remark 1.5.

(ii) The cases (ftftff) and (fftftf) can be studied by analogy (the symmetry
between these two cases is defined by the change of variable x 7→ −x). This
change of variable allows one to study in the cases (ffttff) and (ftfftf) only
the non-degenerate arrangements with l1 < x3 or with x3 < l1. This is what
we often do in the paper. We say that two arrangements are symmetric (to one
another) if the symmetry is induced by the change x 7→ −x. Example: for n = 4
such are the arrangements (0, f, s, 0, t, f, 0, s, f, 0) and (0, f, s, 0, f, t, 0, s, f, 0).

(iii) For each of the four cases (see (6)) the number of all non-degenerate arrange-
ments and the number of the ones realizable by hyperbolic polynomials are given
in the following table (see [2, Observations 24, 25 and Lemmas 40–43]):
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A
B

D
C

F

a

b

O

ST

Figure 1: The hyperbolicity domain in degree 5.

Case All arrangements
Realizable by hyperbolic

polynomials

(ffttff) 40 0
(ftftff) or (fftftf) 72 25
(ftfftf) 102 66

(iv) Our interest in the first of the cases is motivated by the absence of non-degenerate
arrangements realizable by hyperbolic polynomials, see the table (so one ex-
pects to find many examples of non-degenerate arrangements not realizable
by PLFs of degree 5). Geometrically this can be explained by fig. 1. On
the figure we show the hyperbolicity domain Π of the family of polynomials
P = x5−x3 +ax2 +bx+c, i.e., the set of values of (a, b, c) for which the polyno-
mial is hyperbolic. (The reader will find more details about Π in [2].) The axis
Oc is vertical, i.e., perpendicular to the plane of the sheet. The hyperbolicity
domain is the curvilinear tetrahedron ABCD. (The concavity of the faces is
everywhere towards its interior.)

The set D(1, 3) of values of (a, b, c) for which the derivatives P (1) and P (3) have
a common root (we call such sets discriminant sets) is the union of two vertical
planes (i.e., parallel to Oc) represented on the figure by the lines BT and AS.
They intersect along a vertical line which has a single point in common with Π
— the point F . Such a situation might appear to be quite non-generic. This
impression is false. Indeed, discriminant sets are defined by algebraic equations
whose coefficients are relatively small integers, so it makes no sense to speak
about genericity.

The two planes from the set D(1, 3) divide the space into four sectors. These are
the four sets defined by the partial arrangements (6). The case (ffttff) is the
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sector above (which intersects with Π only at the point F ), the case (ftfftf)
is the sector below.

The basic result of the present paper is the following

Theorem 1.14. (i) In the case (ffttff) exactly 16 out of the 40 non-degenerate
arrangements are realizable by PLFs of degree 5. From them exactly 6 arrange-
ments (represented by matrix (5)) are realizable by perturbations of hyperbolic
polynomials. The other 10 are the 2, 1, 2 arrangements represented respectively
by matrices (7), (11), (12), and their symmetric ones.

(ii) The remaining 24 arrangements (which are not realizable by PLFs of degree 5)
are the 8, 2, and 2 arrangements represented respectively by matrices (15), (16),
and (17), and their symmetric ones.

2. Proof of Theorem 1.14

The proof of Theorem 1.14 occupies almost the whole of the rest of the paper. In
subsection 2.1 we prove the realizability by the roots of PLFs and their derivatives
of the 16 arrangements mentioned in part 1) of the theorem. Lemma 2.1 claims
that exactly 6 of them are realizable by perturbations of hyperbolic polynomials.
Lemmas 2.3, 2.6 and 2.8 claim the realizability respectively of 4, 2, and 4 of the
remaining 10 arrangements by PLFs (which, by Lemma 2.1, are not perturbations of
hyperbolic polynomials).

In subsection 2.2 we prove that the 24 arrangements from part (ii) of Theorem 1.14
are not realizable by the roots of PLFs and their derivatives. Matrices (15) and (16)
at the beginning of subsection 2.2 represent respectively 8 and 2 non-degenerate ar-
rangements. These 10 arrangements and their symmetric ones (hence, 20 arrange-
ments altogether) are not realizable by the roots of PLFs and their derivatives; this
follows from the results in [5]. The non-realizability of the remaining 4 arrangements
is claimed by Lemma 2.10. The proof of that lemma is long. Therefore it is subdivided
into several parts and is preceded by a plan.

2.1. Proof of the existence part

Lemma 2.1. (i) There are exactly 24 non-degenerate arrangements to which the
following arrangement is adjacent:

(A) : ([0f0], s, [ft], [0sl], [ft], s, [0f0]).

They are all realizable by perturbations of hyperbolic polynomials.

(ii) Exactly six out of these 24 non-degenerate arrangements belong to the set
{(ffttff)}. These six arrangements are defined by matrix (5).
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(iii) Out of the remaining 18 arrangements, exactly 8 are not realizable by hyperbolic
polynomials, see [2, Observation 33].

Proof. Part (ii) of the lemma is to be checked straightforwardly, and part (iii) needs
no proof. Prove part (i).

1.o The non-degenerate arrangements to which (A) is adjacent are obtained by
replacing each of the two groups [0f0] by 0, f, 0, of each of the two groups [ft] either by
f, t or by t, f , (This gives four possibilities.) and of [0sl] by one of the six permutations
of 0, s and l. This gives 24 non-degenerate arrangements.

2.o Consider the polynomial P∗ := x5−x3 + x
4 = x(x2− 1

2 )2. It realizes arrange-
ment (A) and defines the point F on fig. 1. For the roots of P∗ and its derivatives
one has

x1,2 = f1 =
1√
2
, x3 = s2 = l1 = 0, f2,3 = t1,2 = ± 1√

10

x4,5 = f4 = − 1√
2
, s1,3 = ±

√
3
10

It follows from Proposition 1.12 that all arrangements satisfying the following three
conditions are realizable:

(a) arrangement (A) is adjacent to them;

(b) the groups [ft] and [0sl] in arrangement (A) are replaced respectively by (f, t)
or (t, f) (independently for each of the two groups [ft]) and by any of the 6
permutations of 0, s, l;

(c) the groups [0f0] from arrangement (A) remain the same.

To prove the realizability of the 24 arrangements from the lemma one has after
this to make the double roots x1 = x2 and x4 = x5 bifurcate. This can be done by
adding an affine function −ε(x− x3), where ε > 0 is small enough.

Remark 2.2. In what follows we often draw the graphs of a function (in most cases
this is a PLF) and of its derivatives one upon the other. On the figures we use the
notation xj (and similarly fj , sj , tj) both in the sense “the roots of the function g”
and in the sense “the point with coordinate xj on the x-axis in the picture representing
the graph of g”. This might sometimes oblige the reader when looking at a figure
to search different roots, say, f3 and s2, on different x-axes — the ones of g(1) and
of g(2).
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t 1 t 2

2
s 31s s

1
f

2
f f 3 f 4

U

R

Q T

V

x
1

x 2 x
3 x 4

x 5

Figure 2: Construction of the PLF realizing arrangement (7).

Lemma 2.3. The following two non-degenerate arrangements and their symmetric
ones are realizable by PLFs of degree 5:

... l
...

t
...

... t

s
... s

... s

f f
...

... f f

0 0
...

... 0 0 0

(7)

Proof. 1.o To construct PLFs which realize the two arrangements from matrix (7)
we first construct an odd C3-smooth function g which realizes the arrangement
(0, f, [0s], [ft], [0sl], [ft], [0s], f, 0). Properly speaking, the presence of the letter l is
not justified here given that the function is only C3-smooth. We set l1 = 0, the sense
of this equality will become at least partially clear in 2.o and completely clear in 6.o.
The graphs of g, g(1), g(2), and g(3) are drawn one above the other on fig. 2. The
x-axis for each of the four graphs are the solid lines.

2.o One has g(4)(x) ≡ − 1
2 for x < 0 and g(4)(x) ≡ 1

2 for x > 0, (This explains
why we set l1 = 0.) and one can think of g(5) as of δ(x) (the delta-function). The
graph of g(3) is piecewise-linear and symmetric w.r.t. the line s2R, the one of g(2)
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consists of parts of two parabolas. The axes of symmetry of the entire parabolas are
the lines t1Uf2 and t2V f3, the point s2 is the center of symmetry of the graph of g(2).

The graph of g(1) consists of the graphs of two cubic functions defined respectively
for x ≤ 0 and x ≥ 0. When these two functions are defined on R, then their graphs
have respectively the points f2 and f3 as centers of symmetry. The graph of g(1) has
the line s2Rx3 as axis of symmetry.

3.o One can think of g as of the result of a five-fold integration of δ(x) with
suitable constants c1, . . . , c5 of integration. Decrease c5 so that the graph of g still
cut the x-axis in five distinct points. (The graphs of g(4), g(3), g(2), and g(1) do not
change.) The new position of the x-axis is the lowest dash-dotted line on fig. 2. After
this change of constant one has

s1 > x2, x3 > s2, s3 > x4 (8)

and s2 = l1 = 0.
4.o After this increase c4 (without changing c5). This increasing must be much

smaller than the decreasing of c5 because it changes the graph of g; if it is small
enough, then conditions (8) are preserved and one has

f2 < t1, t2 < f3. (9)

5.o After this increase (resp. decrease) c3 without changing c4 and c5. If this
change of c3 is small enough, then conditions (8) and (9) are preserved and one has

l1 < s2 < x3 (resp. s2 < l1 < x3 ). (10)

6.o Change g(5) from δ(x) to an even C∞-smooth function h with compact sup-
port [−η, η] where η is so small that no root of g, g(1), g(2), g(3) belongs to [−η, η], and
one has h > 0 for x ∈ (−η, η),

∫ η

−η
h(x)dx = 1. If η is small enough, then conditions

(8), (9), and (10) still hold and g is a C∞-smooth function. Moreover, l1 = 0 is the
only zero of g(4).

The function g is still not a PLF because g(5) vanishes outside (−η, η). To make it
a PLF one has to change g(5) from h to h+ b where b > 0 is so small that conditions
(8), (9), and (10) still hold. This means that the function g thus constructed is a PLF
and realizes one of the arrangements from matrix (7); which one exactly depends
on whether one increases or decreases c3 in 5.o. Their symmetric arrangements are
realized by the function g(−x).

Remark 2.4. If one decreases c4 in 40 instead of increasing it, then in the same way
one can construct a PLF realizing one of the arrangements

(0, f, 0, s, t, f, l, s, 0, f, t, 0, s, f, 0) and (0, f, 0, s, t, f, s, l, 0, f, t, 0, s, f, 0)

and their symmetric ones; these four arrangements belong not to {(ffttff))}, but
to {(ftfftf)}.
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t 1 t 2

s 31s

1
f

2
f f 3 f 4
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Figure 3: Construction of the PLF realizing arrangement (11).

Notation 2.5. We use the notation S(·) for the area of a curvilinear figure and S̄(·)
for the area of a (rectilinear) polygon. We use different notation for the same thing
in order to distinguish rectilinear from curvilinear polygons. We denote the figures
whose area is expressed by closed contours. Example: S(ABCA) denotes the area of
the curvilinear triangle ABC.

Lemma 2.6. The non-degenerate arrangement represented by the following matrix
and its symmetric one are realizable by PLFs of degree 5:

l
t t

s s s
f f f f

0 0 0 0 0

(11)

Proof. 1.o The proof follows the same ideas as the ones of Lemma 2.3, this is why
fig. 3 which illustrates the construction is so much like fig. 2. Not completely, though.

We start by defining the function g and the constants cj in the same way as in
1.o–3.o of the proof of Lemma 2.3. So the initial graphs of the functions g, g(1), g(2),
g(3) are given on fig. 2.

2.o Decrease the constant c3. The change is presumed to be small. The new
position of the x-axis is the dash-dotted line on fig. 3. The point D (and not the
root s2) is the center of symmetry of the graph of g(2).
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3.o Choose the new value of the constant c4 such that f3 = t2. This means that
it is close to the old one. Hence, the graph of the new function g(1) looks like on fig. 3.

Notice that one has indeed f2 < t1. This is so because when a point follows the
graph of g(1) moving to the left or right, its initial position being the point H, then
it descends to 0 which is due to the integration of g(2). When moving to the right,
the point descends to 0 at f3, so one has ‖HG‖ = S(s2DV LBs2). One has also
S(s2DV LBs2) > S(s2UKs2) (remember that the point D is the center of symmetry
of the graph of g(2)). Hence, when the point is moving to the left, it will go beyond
the vertical line t1UKPNY before descending to 0.

4.o Choose the new constant c5 such that x3 = 0. Hence, when c3 is changed
little enough, the new constant c5 is close to the old one and the graph of g looks like
on fig. 3.

Notice that one has x4 < s3 and x2 < s1. The first of these inequalities follows
from S(VMs3LV ) > S(V DBLV ) (remember that the line t2LV f3 is the axis of
symmetry of the parabola MVD; hence, f3 is the center of symmetry of the curve
Af3J); this in turn implies S(f3JIf3) > S(f3AWf3).

Hence, the area S(f3AWf3) =
∣∣∫ x3

f3
g(1)(x) dx

∣∣ is sufficient to make the point E
from the graph of g go down to 0 at x3 when moving to the left, and the area
S(f3JIf3) =

∣∣∫ s3

f3
g(1)(x) dx

∣∣ makes this point descend below 0 when moving to the
right.

The inequality x2 < s1 follows from S(s1KUs1) = S(s2KUs2) (remember that
the line t1UK is the axis of symmetry of the parabola DUs1), hence, S(f2SCf2) <
S(NWAPN) and the point Y from the graph of g will go faster to 0 when moving to
the right than when moving to the left. In fact, when moving to the left it will first
descend (till f2) and only then go up.

5.o After this increase the constant c5 so that x3 become < 0. The increasing can
be chosen so small that all strict inequalities between roots of g and its derivatives
be preserved. Then increase c4 so that f3 become greater than t2 and all strict
inequalities between roots of g and its derivatives be preserved.

Finally, repeat the reasoning from 6.o of the proof of Lemma 2.3 (i.e., change g(5)

from δ(x) to h(x) and then to h(x) + b). The function g(x) thus obtained is a PLF
and realizes the arrangement from matrix (11). Its symmetric arrangement is realized
by the function g(−x).

Remark 2.7. If in 50 of the proof one decreases c5 instead of increasing it, and if after
this one decreases c4, then one similarly realizes the arrangement

(0, f, 0, s, f, t, s, l, 0, f, t, 0, s, f, 0) ∈ {(fftftf)}

by a PLF g(x), and by g(−x) its symmetric one.

Lemma 2.8. (i) The two non-degenerate arrangements defined by matrix (12)
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(hence, their symmetric ones as well) are realizable by PLFs of degree 5:

l
t t

s s
... s

...

f f f
...

... f

0 0 0
... 0

... 0

(12)

(ii) The two arrangements from matrix (12) differ from the two arrangements from
matrix (17) (not realizable by PLFs) only by the sign of the inequality between
l1 and s2 which is an inequality between roots of derivatives of highest possible
orders.

Proof. 1.o Part (ii) of the lemma is self-evident, so we prove only part (i) of it.
For each of the arrangements ([0f0], s, [ft], l, s, [t0], f,P, f, 0) where P = (0, s) or
P = (s, 0), we construct C3-smooth functions g which realize them. (In principle, one
should not put the letter l in the CV given that the functions are only C3-smooth;
however, in the subsequent approximation of g by a PLF the root l1 will be in the
same place as indicated in the CV.)

The function g(4) is piecewise-constant, it equals −24 on some interval (−∞, τ)
and 24a, a > 0 on (τ,∞). (In the PLF approximating g the root l1 will be close
to τ). On (−∞, τ) one has g(x) = P (x) := −x4 +x2− 1

4 . Notice that the polynomial
P (x) realizes the arrangement ([0f0], s, [ft], s, [0f0]). We choose τ to be bigger than
s2 = 1√

6
. On (τ,∞) one has

g(x) = a(x− τ)4 +
P (3)(τ)

6
(x− τ)3 +

P (2)(τ)
2

(x− τ)2 + P (1)(τ)(x− τ) + P (τ) (13)

Observe first that the function g possesses the following properties:

(a) If one sets τ = 1
2 and g(x) = P1(x) := 3x4−8x3 +7x2−2x for x ≥ τ , then such

a function g realizes the arrangement ([0f0], s, [ft], s, [0t], f, s, [0f0]). This can
be checked directly — the roots of P1 (resp. P (3)

1 ) equal 0, 2
3 , 1, 1 (resp. 2

3 ); one
has P (i)( 1

2 ) = P
(i)
1 ( 1

2 ), i = 0, 1, 2, 3.

(b) The functions g which we construct below are obtained by increasing τ
(τ ∈ ( 1

2 ,
2
3 )) and by keeping the same root t2 = 2

3 . The restriction of g to
(τ,∞) is a polynomial Pk, k = 2 or 3, of degree 4, whose roots we denote by x2,
x3, x4, x5 (and not by x1, x2, x3, x4) in order to have the same notation for
the roots of g or of Pk; we make a similar shift by 1 of the indices of the roots
of the derivatives of Pk. We list all the roots of Pk and its derivatives, but the
ones smaller than τ are of no importance for the arrangement realized by the
roots of g and its derivatives because for x ≤ τ one has g(x) = P (x).

Revista Matemática Complutense
2006: vol. 19, num. 1, pags. 197–225

210



Vladimir Petrov Kostov Root arrangements of hyperbolic polynomial-like functions

(c) The condition t2 = 2
3 implies that one has

a = − P (3)(τ)
24( 2

3 − τ)
=

τ
2
3 − τ

(14)

When τ is close to 1
2 one has s3 < x4 (see the polynomial P2), when it becomes

big enough, then one has s3 > x4 (see the polynomial P3).

2.o For τ =
51
100

and for x ≥ 51
100

one has a =
153
47

and

g(x) = P2(x) :=
153
47

(
x− 51

100

)4

− 51
25

(
x− 51

100

)3

− 2803
5000

(
x− 51

100

)2

+
122349
250000

(
x− 51

100

)
− 5755201

10000000

=
153
47

x4 − 408
47

x3 +
8978
1175

x2 − 132651
58750

x+
890201

23500000
.

The roots of P2 equal

x2 = 0.01783147674, x3 = 0.6691445423,
x4 = 0.9224950606, x5 = 1.057195587,

the ones of P (2)
2 equal s2 = 0.4359153127, s3 = 0.8974180206 (and one has t2 = 2

3 <
x3). Thus the function g defined for τ = 51

100 realizes the arrangement

([0f0], s, [ft], s, l, t, 0, f, s, 0, f, 0).

3.o For τ = 6
10 and for x ≥ 6

10 one has a = 9 and

g(x) = P3(x) := 9
(
x− 6

10

)4

− 12
5

(
x− 6

10

)3

− 29
25

(
x− 6

10

)2

+
42
125

(
x− 6

10

)
− 49

2500

= 9x4 − 24x3 +
113
5
x2 − 216

25
x+

523
500

.

The roots of P3 equal

x2 = 0.2225775312, x3 = 0.6891187808,
x4 = 0.7667987632, x5 = 0.9881715914,

the ones of P (2)
3 equal s2 = 0.5056513695, s3 = 0.8276819638. One has again t2 =

2
3 < x3. The function g defined for τ = 6

10 realizes the arrangement

([0f0], s, [ft], s, l, t, 0, f, 0, s, f, 0).
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4.o Add small positive constants to the functions g constructed for τ = 51
100 and

τ = 6
10 so that the double root x1 = x2 split into two simple roots while preserving

all strict inequalities between roots. After this add to the thus modified functions g
affine functions ε(x− f2) where ε > 0 is small enough (to preserve all existing strict
inequalities between roots). After this last modification the function g (denoted from
now on by g̃) with τ = 51

100 (resp. τ = 6
10 ) realizes the arrangement

(Ω) : (0, f, 0, s, f, t, s, l, t, 0, f, s, 0, f, 0)
(resp. (Ξ) : (0, f, 0, s, f, t, s, l, t, 0, f, 0, s, f, 0)).

5.o One can smoothen the functions g̃(3) in a neighborhood of τ to make them
C∞-smooth and so that g̃(4) be increasing. The new functions are denoted by g∗.
The smoothening can make the functions g∗ as close to the functions g̃ as to preserve
all strict inequalities between roots. Hence, the functions g∗ realize the same arrange-
ments as the functions g̃ and the root l1 of g∗(4) appears in the CV indeed between
s2 and t2.

There remains to change g∗ into a PLF by adding a small positive constant to g∗(5).
(Remember that g∗(5) is with compact support; it is greater than 0 because g∗(4) is
increasing.) When this constant is small enough the functions g∗ are PLFs and realize
arrangements (Ω) and (Ξ).

2.2. Proof of the non-existence part

It follows from the results in [5] that all non-degenerate arrangements with s1 < x2,
f2 < t1, s2 < x3, or with x4 < s3, t2 < f3, x3 < s2, are not realizable by PLFs of
degree 5. This makes 46 arrangements. Out of them exactly 20 belong to the case
(ffttff) (the reader will easily check this oneself). Up to the symmetry induced by
the change x 7→ −x (see Remarks 1.13) these are the arrangements defined by the
following two matrices:

... l
...

t
...

...
... t

...

s
... s

...
...

...
... s

...

f f
...

...
...

... f
...

... f

0 0
...

...
... 0

...
... 0

... 0

(15)

This matrix defines eight arrangements (there are three couples where one can
choose each of the two permutations). The following matrix defines two more ar-
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rangements:

l
t t

... s
... s s

f
...

... f f f

0
... 0

... 0 0 0

(16)

Remark 2.9. Matrix (15) implies the non-realizability of the following partial arrange-
ments of the roots of a PLF of degree 5 and its first three (and not four) derivatives:

(0, f, s, 0, f, t, s, t, 0, f,P, f, 0) where P = (s, 0) or (0, s).

Indeed, in the absence of equalities between roots these partial arrangements allow
only two possibilities for l1: s2 < l1 < t2 and t1 < l1 < s2. For each of them the
corresponding (complete) arrangements are defined by matrix (15), hence, are not
realizable by PLFs.

On the other hand, all non-degenerate partial arrangements of the roots of a PLF
(even better — of a hyperbolic polynomial) and its first two derivatives are realizable.
This follows from [7, Theorem 2] — it suffices to realize the partial arrangement of the
roots of the polynomial and its second derivative which defines the relative positions
of the roots of its first derivative.

Lemma 2.10. The two non-degenerate arrangements represented by matrix (17) and
their symmetric ones are not realizable by PLFs of degree 5.

l
t t

s s
... s

...

f f f
...

... f

0 0 0
... 0

... 0

(17)

Proof. I) Plan of the proof

Definition 2.11. We define the setW as the one consisting of the two non-degenerate
arrangements defined by matrix (17) and of the degenerate arrangement obtained from
anyone of them by replacing the inequality s3 < x4 or s3 > x4 by s3 = x4.

We first change a PLF g supposed to realize an arrangement from the set W to
another function g2 with simpler graph of g(3)

2 which also realizes such an arrangement,
see II). The function g2 is not a PLF but can be approximated by PLFs which also
realize arrangements from the set W . (In fact, one can perturb them so that they
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realize non-degenerate arrangements from W .) After this in III) we prove that it is
impossible to realize an arrangement from W by the function g2.

The change of g into g2 is done in two steps, see IIA), IIB). At these steps we
modify the graph of g respectively on (−∞, t1] and [t2,∞). The functions thus ob-
tained are denoted by g1 and g2. We include them into a homotopy gτ , τ ∈ [0, 2]; we
set g0 = g. (When gj and gj−1 are defined, one sets gτ = (τ − j + 1)gj + (j − τ)gj−1

for τ ∈ [j − 1, j].)

II) Replacing the PLF realizing a given arrangement by another func-
tion

IIA) Modification of the graph on (−∞, t1]

1.o Suppose that at least one of the arrangements of the set W is realizable by a
PLF g. The graphs of g, g(1), g(2) and g(3) are shown on fig. 4, one above the other.

Definition 2.12. An almost PLF (APLF) of degree n is a function g : R → R for
which g(n) ≥ 0 and g(n) is piecewise-smooth, with a finite number of discontinuities
at which there exist the left and right limits. If an APLF g has n real zeros (counted
with the multiplicities), then it is called hyperbolic. In what follows all APLFs are
presumed hyperbolic.

Remark 2.13. It is clear that if a non-degenerate arrangement is realizable by an
APLF, then it is realizable by a PLF as well (one has to approximate the n-th deriva-
tive by a smooth positive-valued function; if the approximation is good enough, then
all strict inequalities between roots are preserved). We use APLFs in situations when
they yield easier estimations.

2.o Consider a PLF g realizing an arrangement from the set W as a five-fold
integral of g(5). Integration is performed from a fixed point from the interval (t1, t2).

Replace g by an APLF g1 (with the same constants of integration) for which
g
(5)
1 ≡ g(5) for x ≥ t1 and g

(5)
1 ≡ 0 for x < t1. This means that g(4)

1 is constant for
x < t1; to obtain the graph of g(3)

1 for x < t1 one has to replace the one of g(3) by the
tangent to this graph at (t1, 0), see fig. 4.

Statement 2.14. The APLF g1 and the PLF g realize the same arrangement.

Proof of Statement 2.14. Consider the homotopy gτ := (1 − τ)g + τg1 defined after
(1 − τ)g(5) + τg

(5)
1 with the same constants of integration for all τ ∈ [0, 1]. For each

τ this is an APLF (and a PLF for τ = 0). For all τ ∈ [0, 1] the function g
(2)
τ has

exactly one zero in (−∞, t1) because one is integrating the positive-valued function
g
(3)
τ from t1 to x, x < t1, and g(2)

τ (t1) > 0 is fixed.
When τ increases from 0 to 1, then the root s1 moves to the left, and for each

a ∈ (−∞, t1) fixed the value of g(2)
τ increases with τ . Hence, the root f2 moves to
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Figure 4: The graphs of g, g(1), g(2), and g(3).
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the right (without reaching t1 because g(1)
τ (t1) > 0 does not depend on τ). For each

a ∈ (−∞, t1) fixed the value of g(1)
τ (a) decreases. For each τ fixed one has g(1)

τ (x) →∞
when x → −∞. Hence, g(1)

τ has a root f1 < f2, and it is clear that it can have no
roots other than f1, f2, f3, f4.

In the same way one shows that the root x2 of gτ moves to the right when τ
increases (without reaching t1 because gτ (t1) < 0 is fixed). As gτ (x) → −∞ when
x→ −∞, the function gτ has a root x1 < x2. Hence, it is a hyperbolic APLF.

The arrangement realized by gτ may change only if for some τ one has x2 = s1
(because t1 and all roots to the right of t1 do not change their positions). The following
statement implies that this doesn’t happen.

Statement 2.15. For each τ ∈ [0, 1] one has∣∣∣∣∫ f2

s1

g(1)
τ (x) dx

∣∣∣∣ = S(f2ABf2) < S(f2MNf2) =
∣∣∣∣∫ s2

f2

g(1)
τ (x) dx

∣∣∣∣ (18)

and
‖AB‖ < ‖MN‖ (19)

The statement implies that one cannot have gτ (s1) > gτ (t2) because∣∣∣∣∫ f2

s1

g(1)
τ (x) dx

∣∣∣∣ < ∣∣∣∣∫ s2

f2

g(1)
τ (x) dx

∣∣∣∣ < ∣∣∣∣∫ t2

f2

g(1)
τ (x) dx

∣∣∣∣,
hence, gτ (s1) < gτ (s2) < gτ (t2) (20)

However, if one has x2 = s1 for some τ , then one must have gτ (s1) = 0 and gτ (t2) < 0
— a contradiction with (20). Hence, the arrangement realized by gτ does not change
throughout the homotopy.

Proof of Statement 2.15. Consider two points I, Z such that I ∈ (s1,K), Z ∈ (K, s2),
‖IK‖ = ‖KZ‖ (see the graph of g(2) on fig. 4). One has ‖IJ‖ < ‖ZX‖. Indeed,
consider g(2) as a primitive of g(3). The graph of g(3) is convex and lies above its
tangent at (t1, 0). Hence, if a point follows the graph of g(2) starting at L, then it
descends faster when it is moving to the left than to the right because one has

‖KL‖ − ‖IJ‖ =
∣∣∣∣∫ t1

I′
g(3)(x) dx

∣∣∣∣ = S(t1J ′I ′t1) > S(t1X ′Z ′t1)

=
∣∣∣∣∫ X′

t1

g(3)(x) dx
∣∣∣∣ = ‖KL‖ − ‖ZX‖.

This implies that ‖s1K‖ < ‖Ks2‖. In the same way one shows that when a point
follows the graph of g(1) starting at f2, then it climbs faster to the right than it
descends to the left. Moreover, one has ‖f2N‖ > ‖f2A‖. This proves condition (18)
and (having in mind that ‖s1f2‖ < ‖s1t1‖ = ‖s1K‖ < ‖Ks2‖ = ‖t1s2‖ < ‖f2s2‖)
also condition (19).
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Remark 2.16. One can prove in a similar way (using the concavity of g(2) on (−∞, t1])
that one has s1 − f1 < f2 − s1, and, hence, s1 − f1 < t1 − s1 < s2 − t1.

IIB) Modification of the graph on [t2,∞)

3.o Replace the APLF g1 by another APLF g2 this time modifying the graph of
g1 to the right of t2. Namely, we set g(5)

2 (x) = 0 for x > t2, g
(5)
2 (x) = g

(5)
1 (x) for

x ≤ t2, and we keep the same constants of integration when defining g(j)
2 , j = 0, . . . , 4.

Hence, g(4)
2 is constant for x ≥ t2 and to obtain the graph of g(3)

2 from the one of g(3)
1

one has to replace this graph to the right of t2 by the tangent line at (t2, 0) to the
graph of g(3)

1 , see fig. 4.

Statement 2.17. The function g2 is a hyperbolic APLF.

Proof of Statement 2.17. We follow the same ideas as in the proof of Statement 2.14.
First of all, include g2 in the homotopy gτ (see I)), i.e., set gτ = (2− τ)g1 +(τ −1)g2,
τ ∈ [1, 2]. For τ close to 1 the APLFs g1 and gτ define the same arrangement.

The following property is evident:

Property 2.18. When τ increases from 1 to 2, then for each a > t2 fixed, the values
of g(j)

τ (a) (j = 0, . . . , 4) decrease.

Hence, the roots s3, f4, and x3 move to the right while the root f3 moves to the left
(without attaining t2 because g(1)

τ (t2) > 0 remains fixed). For x > t2, g
(2)
τ (resp. g(1)

τ )
is a polynomial of x of degree 2 (resp. 3) with positive leading coefficient, and one
has g(3)

τ (x) > 0 for x > t2. This implies that g(2)
τ has exactly one root (namely, s3)

for x > t2, and g(1)
τ has exactly two roots (namely, f3 and f4) there.

To prove that g2 is a hyperbolic APLF it suffices to prove the following

Statement 2.19. For no τ ∈ [1, 2] does one have gτ (f3) ≤ gτ (f1).

Indeed, it follows from Property 2.18 that gτ (f3) decreases when τ increases — to
obtain gτ (f3) one integrates the function g(1)

τ (x) (positive-valued on (t2, f3) and whose
value as a function of τ is decreasing for each x > t2 fixed) along an interval whose
length decreases with τ . On the other hand, the difference gτ (f3) − gτ (f4) increases
with τ due to Property 2.18. Therefore one also has gτ (f4) < 0 which means that gτ

has a root x4 ∈ (f3, f4). As gτ has at least four roots x1, . . . , x4, then it has also a
fifth one x5 > f4, (For x → ∞ it behaves like bx4, b > 0.) hence, gτ is a hyperbolic
APLF.

Remarks 2.20. (i) In Statement 2.17 we do not claim that the APLFs g2 and g1
(hence, the PLF g as well) realize the same arrangement. This is so because
we do not take into account the relative position of s3 and x4. However, if this
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position changes (from x4 < s3 to x4 > s3 or vice versa), then the arrangement
changes to another arrangement from the set W .

(ii) One need not consider separately the particular situation when x4 = s3 (all other
strict inequalities between roots being preserved) because one can approximate
the APLF g2 by a PLF so that this equality changes to x4 < s3 or to x4 > s3.

(iii) To prove that g2 realizes one of the arrangements from the set W it is sufficient
to show that g2 is a hyperbolic APLF because the relative position of t2 and of
the roots to the left of t2 are the same for g1 and g2.

Proof of Statement 2.19. One has

gτ (f1)− gτ (f3) = (gτ (f1)− gτ (f2))− (gτ (f3)− gτ (f2))

=
∣∣∣∣∫ f2

f1

g(1)
τ (x) dx

∣∣∣∣− ∣∣∣∣∫ f3

f2

g(1)
τ (x) dx

∣∣∣∣
= S(f1Bf2Af1)− S(f2NPf3QMf2).

We show that S(f1Bf2Af1) < S(f2NPf3QMf2) which implies the statement. The
last inequality follows from inequality (18) and from

S(f1BAf1)− S(NPf3QMN) =
∣∣∣∣∫ s1

f1

g(1)
τ (x) dx

∣∣∣∣− ∣∣∣∣∫ f3

s2

g(1)
τ (x) dx

∣∣∣∣ < 0 (21)

which we prove now.
One has

|g(3)
τ (s2)| = ‖N ′M ′‖ ≤ ‖B′A′‖ = |g(3)

τ (s1)| (22)

because

S̄(A′B′t1A′) =
‖B′A′‖ ‖s1K‖

2
≥ S(t1N ′M ′t1) ≥

‖N ′M ′‖ ‖Ks2‖
2

and ‖s1K‖ ≤ ‖Ks2‖ (see Remark 2.16). The absolute value of g(3)
τ grows to the left

of s1 not slowlier than to the right of s2 on (s2, t2). (This follows from the convexity
of the graph of g(3)

τ .) Therefore the same statement holds for the absolute value of
g
(2)
τ . This in turn means that when a point is following the graph of g(1)

τ , then it
climbs faster on (s1f1) than it descends on (s2, f3). As one has also (19), this implies
inequality (21).

III) End of the proof

4.o Denote by s1V the tangent line at (s1, 0) to the graph of g(2)
2 and by s2S the

one at (s2, 0) (in dash-dotted lines on fig. 4). Denote by BR and MQ′P ′ the graphs
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of g(1)
2 when its derivative g(2)

2 is replaced by the affine function whose graph is one of
these tangent lines. We keep the constant of integration the same; integration starts
at s1 or s2.
Remark 2.21. We use the fact that l1 ≤ s2 as follows: the curve s2U , see fig. 4, lies
above the tangent line s2S for x ∈ (s2, t2]. (For l1 > s2 this is not true.) This implies
that the curve MQ′P ′ (which is a parabola) lies below the curve MQf3.

Statement 2.22. If there exists an APLF g2 realizing an arrangement from the set
W , then there exists an APLF realizing an arrangement obtained from one of the set
W in which the inequalities f2 < t1, t2 < x3, x4 < x5 are replaced by the corresponding
equalities.

Proof of Statement 2.22. Consider the one-parameter deformation g2(x) + s(x− t1),
s ≤ 0. By abuse of notation we denote it again by g2. It defines (for all s ≤ 0
such that f2 ≤ t1) an APLF. Indeed, g2(f1) increases and g2(f3) decreases when s
decreases. (The positions of f1 and f3 also change.) Hence, g2 has two real roots
which are ≤ t1. (It behaves like −bx4, b > 0, for x → −∞.) For all s ≤ 0 one has
g2(f3) > g2(f1) > 0. (This can be proved by analogy with Statement 2.19.) As g2(f4)
decreases, g2 must have three real roots which are ≥ t2. As for x → ∞ g2 behaves
like bx4, b > 0, g2 has exactly five real roots. As g(5)

2 does not depend on s, g2 is an
APLF for all s ≤ 0 until one has f2 = t1. So assume that f2 = t1.

Case 1). Suppose that one has g2(t2) ≥ g2(f4).

Set g2(x) 7→ g2(x) − g2(t2). Hence, the new function g2(x) is also an APLF and
one has g2(t2) = 0, t2 = x3.

If one has x4 = x5, then there is nothing to do. If x4 < x5, then observe first that
one has t2− t1 < t1− f1. Indeed, define r ∈ R by the condition r− t1 = t1− s1. One
proves by analogy with Statement 2.15 that one has∣∣∣∣∫ r

t1

g
(1)
2 (x) dx

∣∣∣∣ ≥ ∣∣∣∣∫ t1

s1

g
(1)
2 (x) dx

∣∣∣∣ and |g(1)
2 (r)| ≥ |g(1)

2 (s1)| = ‖AB‖. (23)

The value of the function |g(1)
2 (x)| decreases faster when x decreases from s1 to f1

than when x grows from r to t2. (In fact, |g(1)
2 (x)| increases for x ∈ [r, s2], and

then decreases for x ∈ [s2, t2].) This can be proved by analogy with the proof of
Statement 2.15. Hence, if one has t2 − t1 ≥ t1 − f1, then one must have

g2(t2)− g2(t1) =
∣∣∣∣∫ t2

t1

g
(1)
2 (x) dx

∣∣∣∣ > ∣∣∣∣∫ t1

f1

g
(1)
2 (x) dx

∣∣∣∣ = g2(f1)− g2(t1),

i.e., g2(t2) > g2(f1) which is impossible; the inequality in the middle follows from (23)
and from the lines above.

Thus one has t2− t1 < t1−f1. Set g2(x) 7→ g2(x)+u((x− t1)2− (t2− t1)2), u ≥ 0.
Hence, g2(t1) decreases when u increases, g2(t2) does not change while g2(f1), g2(f3),
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and g2(f4) increase. This means that there exists u > 0 for which one has x4 = x5

(and one has already f2 = t1, x3 = t2).

Case 2). Suppose that one has g2(t2) < g2(f4).

Set g2(x) 7→ g2(x) − vq(x), q(x) := (x − t1)2 − (f3 − t1)2, v ≥ 0. Notice that
q(1)(t1) = 0. When v increases, then f3 and g2(f3) remain the same, x3 and x4

decrease, x5, g(t2), and −g2(f4) increase.
Prove that g2(f1) increases. One has s2 − t1 > t1 − s1 (see Remark 2.16) and

f3 − s2 > ‖P ′N‖ > ‖AR‖ ≥ ‖Af1‖ = s1 − f1. (This follows from the fact that
the parabolas MP ′ and BR have horizontal tangents at M and B, from (19) and
from (22).) Hence,

f3 − t1 = (f3 − s2) + (s2 − t1) > (s1 − f1) + (t1 − s1) = t1 − f1

which means that q(f1) < 0 and that g2(f1) increases with v.
When increasing v, if one has g2(t2) < g2(f4) < 0, then one cannot have x2 = t1

for any v > 0. Indeed, as one has g(1)
2 (t1) = 0 for all v, the equality x2 = t1 would

imply that x2 is at least a double root of g2 which together with x1, x3, x4 and x5

makes at least 6 real roots (counted with the multiplicities) — a contradiction.
Hence, one can choose v such that g2(t2) = g2(f4). After this set g2(x) 7→ g2(x)−

g2(t2). Thus one has all three equalities x4 = x5, f2 = t1, x3 = t2.

Assumption 2.23. We assume till the end of the proof of Lemma 2.10 that the
APLF g2 realizes an arrangement satisfying the conclusion of Statement 2.22.

Statement 2.24. One has

S(BRf1AB) =
4
3

√
2
3
S(f1BAf1)

Proof of Statement 2.24. Recall that the graph of g(2)
2 restricted to (−∞, s1] is an arc

of a parabola. To ease the computation assume (after a change of the scopes of the
axes) that its equation is y = 1− x2.

Hence, t1 = 0, s1 = −1 and f1 = −
√

3. The last equality follows from the con-
dition

∣∣∫ s1

f1
g
(2)
2 (x) dx

∣∣ =
∣∣∫ f2

s1
g
(2)
2 (x) dx

∣∣. After this one finds that S(f2ABf2) = 5
12 ,

S(f1BAf1) = 1
3 . The equation of the tangent line s1V is y = 2x + 2, the one of the

parabola RB is y = x2 + 2x + 1
3 , the x-coordinate of the point R equals −1 −

√
2
3 ,

and one finds that S(BRf1AB) = 4
9

√
2
3 which implies the equality from the state-

ment.

Notation 2.25. On fig. 5 we show parts of the graphs of g(3)
2 , g(2)

2 , g(1)
2 , and g2 under

Assumption 2.23. The curve UU ′ is the continuation of the arc of parabola s3U . As
the arc N ′′t2 lies above the tangent line to the graph of g(3)

2 at (t2, 0), the arc UU ′ lies
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Figure 5: A detail of the graphs of g(3)
2 , g(2)

2 , g(1)
2 , and g2.
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above the arc Us2; these two arcs are (horizontally) tangent at U . Denote by S′U ′′ a
tangent line to the arc of parabola UU ′.

Statement 2.26. One has S̄(S′U ′′FS′) ≥ 2√
3
S(UU ′FU).

Proof of Statement 2.26. By changing the scopes of the axes one can assume that
the equations of the parabola U ′Us3 and of its tangent line S′U ′′ are respectively
y = x2 − 1 and y = 2x0x− x2

0 − 1 where (x0, x
2
0 − 1) is the point of tangency, x0 < 0.

Hence, ‖S′F‖ = x2
0 + 1, ‖U ′′F‖ = (x2

0 + 1)/2|x0|, and S̄(S′U ′′FS′) = φ(s) := (s2+1)2

4s ,
s = −x0. When s > 0, the function φ attains its minimum for s = 1√

3
and this

minimum equals 4
3
√

3
. One has S(UU ′FU) =

∫ 0

−1
(x2 − 1) dx = 2

3 from where the
statement follows.

5.o Consider g(1)
2 as a primitive of g(2)

2 when integration starts at t2. Construct
the arc QM ′ when one defines the graph of g(2)

2 to be not the arc s2U but the arc U ′U .
Hence, the arc QM ′ lies below the arc QM and is tangent to it at Q.

One has ‖QQ′′‖ ≥ ‖QM ′′‖ = ‖Q0Q‖. The last equality follows from the fact that
the arc (of parabola) U ′Us3 is symmetric w.r.t. the vertical line FU (which implies
that the arc M ′QT is symmetric w.r.t. the point Q).

Suppose that t2 = 0 and that the equation of the parabola U ′Us3 is y = x2 − 1.
Hence, the one of the arc M ′QT is of the form y = x3

3 − x+ a, a ∈ R.

Statement 2.27. One has S(QPf3Q) = S(f3Tf4f3), a = g
(1)
2 (0) = ‖PQ‖ =

√
2

3 and
‖PQ0‖ = 2−

√
2

3 .

Proof of Statement 2.27. One has

S(QPf3Q) =
∫ f3

0

g
(1)
2 (x) dx =

∣∣∣∣∫ f4

f3

g
(1)
2 (x) dx

∣∣∣∣ = S(f3Tf4f3),

and if g2 = x4

12 −
x2

2 + ax+ b, b ∈ R, then one has the following system of equalities:

(f3)3

3
− f3 + a =

(f4)3

3
− f4 + a = 0,

g2(f3)− g2(0) = g2(f3)− g2(f4),

i.e.,

(f4)4

12
− (f4)2

2
+ af4 = 0

with unknown variables f3, f4 and a. The last equation combined with the second
of the first two yields f4 =

√
2. Hence, a =

√
2

3 and f3 =
√

6−
√

2
2 . One has ‖PQ0‖ =

−g(1)
2 (s3) = −g(1)

2 (1) = 2−
√

2
3 .
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Remark 2.28. One has ‖Q′′Q′‖ ≥ 4
3
√

3
. Indeed, suppose that on fig. 5 the tangent

line U ′′S′ to the parabola U ′Us3 is parallel to the tangent line s2S to the curve s2U
at s2. Then one has

‖Q′′Q′‖ =
∣∣∣∣∫ 0

s2

g
(2)
2 (x) dx

∣∣∣∣ = S̄(s2SFs2) ≥ S̄(S′U ′′FS′) ≥ 2√
3
S(UU ′FU) =

4
3
√

3
.

The last inequality follows from Statement 2.26.

Statement 2.29. One has S(MNPQM) > S(f1BAf1).

The statement and condition (18) together imply that one has

g2(t2)− g2(t1) = S(f2NPQMf2) > S(f2Bf1Af2) = g2(f1)− g2(t1)

i.e.,

g2(t2) > g2(f1)

which is a contradiction. This contradiction proves the lemma.

Proof of Statement 2.29. One has S(MNPQM) ≥ S(MNPQ′M) and we show that
S(MNPQ′M) ≥ S(f1BAf1) which implies the statement.

One has S(MNP ′Q′M) ≥ S(BRf1AB); this follows from BR and MP ′ being
parabolas with horizontal tangents at B and M , and from conditions (19) and (22).

On the other hand, one has

τ :=
S(MNPQ′M)
S(MNP ′Q′M)

= 0.9370807865 >
3
4

√
3
2

=
S(f1BAf1)
S(RBAR)

.

Indeed, the last equality follows from Statement 2.24. The inequality is to be checked
directly. So there remains to prove only the second equality.

One has

‖PQ′‖
‖PQ′′‖

=
‖PQ′‖

‖PQ′‖+ ‖Q′′Q′‖
<

‖PQ‖
‖PQ‖+ ‖Q′′Q′‖

≤ σ :=

√
2

3√
2

3 + 4
3
√

3

,

see Statement 2.27 and Remark 2.28. Hence,

τ =
∫ b

0

(1− x2) dx
/∫ 1

0

(1− x2) dx =
3b− b3

2
where 1− b2 = σ.

A numeric computation yields

σ = 0.3797958970, b = 0.7875303823, τ = 0.9370807865.
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3. Conclusions

The present paper gives the answer to the question which non-degenerate arrange-
ments are realizable by the roots of a PLF of degree 5 and of its derivatives in the
case (ffttff). The author intends to publish two more papers (one treating the cases
(ftftff) and (fftftf), and one treating the case (ftfftf)), after which the answer
to this question will be known for all non-degenerate arrangements of degree 5.

Computations made by the author up to now show that in the other three cases
(not covered by the present paper) there appear no non-realizable non-degenerate
arrangements different from the ones mentioned in [5]. In particular, in the case
(ftfftf) all non-degenerate arrangements are realizable. This means that in the case
of degree 5 exactly 50 out of 286 non-degenerate arrangements are not realizable by
the roots of PLFs and of their derivatives. Out of these 50 arrangements, 46 are the
ones described in paper [5] and 4 are the ones described by Lemma 2.10 of the present
paper.

The author does not intend to consider the case of degree 6, at least not in detail,
because of the enormous number of non-degenerate arrangements (namely, 33592; see
Remark 1.5). The non-realizability of some of them follows from the results of [5] and
of the present paper. For instance, if a non-degenerate arrangement (U) of degree 6 is
such that the partial arrangement defined by the roots of the first five derivatives of the
PLF is non-realizable (say, by the results of the present paper), then arrangement (U)
is also non-realizable.

Instead of considering the case of degree 6 in detail it would be more interesting
to see whether the ratio “non-degenerate arrangements of degree n realizable by the
roots of PLFs and of their derivatives”/N(n) (see Remark 1.5 for N(n)) tends to a
finite limit or not when n → ∞, and whether this limit is 0 or not. This has been
suggested to the author by V. I. Arnold.
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Singularités Franco-Japonaises, Séminaires et Congrés, vol. 10, 2005, pp. 139–153, available at
arXiv:math.AG/0208219.

[7] V. P. Kostov and B. Z. Shapiro, On arrangements of roots for a real hyperbolic polynomial and
its derivatives, Bull. Sci. Math. 126 (January 2002), no. 1, 45–60.

[8] B. Z. Shapiro and M. Shapiro, This strange and mysterious Rolle theorem, College Math. J.,
to appear under the title “A few riddles behind Rolle’s theorem.”, available at arXiv:math.CA/

0302215.

[9] R. M. Thrall, A combinatorial problem, Michigan Math. J. 1 (1952), 81–88.

225 Revista Matemática Complutense
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