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ABSTRACT

Quite recently, Alexeev and Nakamura proved that if Y is a stable semi-Abelic
variety (SSAV) of dimension g equipped with the ample line bundle OY (1),
which deforms to a principally polarized Abelian variety, then OY (n) is very
ample as soon as n ≥ 2g + 1, that is n ≥ 5 in the case of surfaces. Here it
is proved, via elementary methods of projective geometry, that in the case of
surfaces this bound can be improved to n ≥ 3.
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1. Introduction

In the past, there have been many attempts to construct suitable compactifications of
the (coarse) moduli space of Abelian varieties, both in the principally polarized and in
the non-principally polarized cases (see [7] for a detailed review). Let us restrict our
attention to the principally polarized case. In this case, the first solution was given
by Satake (see [9]) who constructed a projective normal variety Āg, which is highly
singular along the boundary (the boundary ∂Āg of Ag is not a divisor in this case and
it is set-theoretically the union of the moduli Ai for i ≤ g−1). Subsequently, by blow-
ing up along the boundary, Igusa constructed a partial desingularization of Satake’s
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compactification: in his compactification the boundary has codimension 1 (see [8]).
These ideas were the starting point for Mumford’s theory of toroidal compactifica-
tions of quotients of bounded symmetric domains (see [3] for a detailed description
of this theory). Namikawa proved that Igusa’s compactification is a toroidal com-
pactification in Mumford’ s sense. Unfortunately, toroidal compactifications are not
unique, since they depend on the choice of cone decompositions. Ideally, one would
like to construct a compactification which is meaningful for moduli, so as to obtain
a space whose boundary points can be described in terms of Abelian varieties and
well-understood degenerations.

Of course, the model is the Deligne-Mumford compactification of Mg. The fact
that toroidal compactifications are not unique has made very difficult to select the
right compactification (if there is one). In spite of this, quite recently, Alexeev and
Nakamura (see [1, 2]), building up on previous works of Nakamura and Namikawa,
have shown that the toroidal compactification AVor

g , associated to the second Voronoi
decomposition has a nice interpretation in terms of degenerations. This means that
AVor

g can be considered as the canonical compactification of the moduli space Ag

of principally polarized Abelian varieties, as the Deligne-Mumford compactification
represents the canonical compactification for the moduli space of curves (this point
is investigated in [1]).

More specifically, AVor
g parameterizes stable semi-Abelic varieties (SSAV) together

with a divisor. Let us recall that a semi-Abelian variety G is just an extension 1 →
T → G → A → 1, where A is an Abelian variety and T is an algebraic torus T = (C∗)r,
for some r. Then, in Alexeev’s construction a SSAV Y is a good degeneration of an
Abelian variety (corresponding to a boundary point in AVor

g ) and on it there is an
action of a semi-Abelian variety G in such a way that there are finitely many orbits.
We will not recall the whole construction (see [2]), we want just to remark that
any SSAV Y is a projective, semi-normal variety (i.e. Y is isomorphic to its semi-
normalization Y ′ in Y nor: Y nor → Y ′ π→ Y and Y ′ is maximal such that for each
x ∈ Y there is a unique x′ ∈ Y ′ with π(x′) = x and C(x) ∼= C(x′)), equipped with an
ample line bundle OY (1).

In this paper, we study very ampleness of line bundles coming from multiples
of principal polarization on degenerate Abelian surface (over C), corresponding to
boundary components of AVor

2 , that is on SSAV’s. A well-known theorem of Lefschetz
states that if A is a smooth Abelian variety of dimension g and OA(1) is a principal
polarization, then OA(3) is very ample, (in fact, the theorem of Lefschetz is true for
all polarizations, not just for principal polarizations). We want to understand how far
is this statement if we replace A, with a SSAV Y (restricting to the case of surfaces).
Indeed, in [2] it is proved that for a SSAV Y of genus g, OY (n) is very ample as soon
as n ≥ 2g + 1, that is, in the case of surfaces, as soon as n ≥ 5. We improve this
bound, showing that already OY (3) is very ample (that is Lefschetz’s theorem still
holds for a SSAV of dimension 2, which deforms to a principally polarized Abelian
variety). The proof of this result is elementary in spirit and it is based on proving
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2005, 18; Núm. 1, 119–141

120



Alessandro Arsie Very ampleness of multiples of principal polarization. . .

the analogous statement for each degeneration type, providing a careful description
of OY (3) and of its sections. Indeed, in the principally polarized case, there are
only three types of degenerations for surfaces. Two degenerations where there is no
remaining Abelian part (which in the following sections are called degenerations of
second and third type), corresponding to the two standard Delaunay decompositions
of Z2 (lattice of rank 2) and one degeneration (of the first type) where there is still
an Abelian part surviving (an elliptic curve) and which corresponds to the unique
Delaunay decomposition of a lattice of rank one.

The case of the P1-bundle over an elliptic curve (degeneration of the first type)
is the most general, since it depends on two moduli, i.e. the moduli of the elliptic
curve and the glueing parameter. The second degeneration type depends on one
moduli, namely the glueing parameter, while the third degeneration type depends on
no moduli at all.

2. Very ampleness on the first type of degeneration

The first type of degeneration for smooth principally polarized Abelian surfaces can
be constructed from a P1-bundle X, with two sections, over an elliptic curve E,
π : X → E. In this case, in the degenerate surface, there is still an Abelian part
surviving and the smooth model is X := P(OE ⊕OE(e − o)) (e is a point on E and
o is the zero of the group law on E); it has two sections C0 and C1, corresponding
to the fact that the ruled surface X comes from a split rank two vector bundle
on E. We can identify the two sections by saying what is their normal bundle, so we
define C0 so that NC0/X = OC0(C0) = OE(e − o), and correspondingly C1 so that
NC1/X = OC1(C1) = OE(o− e).

It is well known that Pic(X) = π∗ Pic(E) ⊕ ZC0, while the Néron-Severi group
of X is NS(X) = ZF ⊕ ZC0, where F is any fiber of X over E and the intersection
pairing is C2

i = 0, F 2 = 0 and Ci · F = 1 (see for instance [6]).
The degenerate Abelian surface Y is obtained by identifying each point x ∈ C0

with the point x + p0 ∈ C1 for some parameter p0 ∈ E.
Let ν be the desingularization map of Y : ν : X → Y . Let L ∈ Pic(Y ) and L′ :=

ν∗L. Then L′ is numerically equivalent to aC0 + bF , for some a and b. We want L to
represent a principal polarization: since on an Abelian surface a principal polarization
has self-intersection 2, and the self-intersection does not change in a flat family, we
require L2 = 2, which pulling back to the normalization, implies L′2 = 2. Thus we
get (aC0 + bF )2 = 2, which implies a = b = 1. This means that L′ = OX(C0 + F ),
for some F = π−1(p), p ∈ E, or equivalently L′ = OX(C0) ⊗ π∗M, M ∈ Pic1(E),
M = OE(p). Now we ask under which conditions on the glueing process, such a line
bundle L′ descends to Y , or equivalently, when there exists L ∈ Pic(Y ) such that
ν∗L = L′. The answer is given by the following:

Lemma 2.1. Let L′, X = P(OE⊕OE(e−o)) and Y as above; then L′ descends to Y
if and only if e + p0 ∼ o (where ∼ stands for linear equivalence and p0 is the glueing
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parameter described above).

Proof. Let ϕ : C0
≈→ C1 be the isomorphism between the two sections, given by

x 7→ x + p0. Then it is clear that L′ descends to Y iff

ϕ∗L′|C1
= L′|C0

. (1)

L′|C0
= OX(C0 + F ) ⊗OC0 and this is equal to NC0/X(p), where p = C0 ∩ F . Since

C0
∼= E ∼= C1, and NC0/X = OC0(C0) = OE(e−o), we get that L′|C0

= OE(e−o+p),
where we identify C0 with E and the point p = C0 ∩ F with its projection to E.
Analogously, L′|C1

= OX(C0+F )⊗OC1 which is equal to OC1(p
′) for p′ = C1∩F since

OC1(C0) = OC1 (due to the fact that C1 ∩C0 = ∅). Then OC1(p
′) ∼= OE(p), (since if

π is the projection to E, then π(p) = π(p′)) so that we can translate condition (1) as
a relation on line bundles on E: OE(p− p0) = OE(e− o + p), which is equivalent to
e + p0 ∼ 0.

Fixed e, that is fixed X, from now on we assume that the parameter p0 has been
chosen in order to satisfy the condition e+p0 ∼ o. Under this assumption, not only L′,
but also all line bundles of the formOX(nC0+nF ) descend to Y . Let us callOY (1) the
line bundle L on Y such that ν∗L = OX(C0 +F ) so that ν∗OY (n) = OX(nC0 +nF ).
Then, by the results of Alexeev and Nakamura ([2, Theorem 4.7]), it turns out that
the map on Y associated to the line bundle OY (5) gives an embedding. We have:

Proposition 2.2. Let Y and OY (n) as above. If n ≥ 0 and k ≥ 0, then we have that
h0(X,OX(nF + kC0)) = (k + 1)n and h0(Y,OY (n)) = n2.

Proof. This is just a particular case of Theorem 4.3 and Theorem 4.4, in [2].

Collecting the results of Alexeev and Nakamura ([2, Theorem 4.7]) and the previ-
ous proposition, we have that |OY (5)| gives an embedding of Y as a linearly normal
surface in P24.

Theorem 2.3. Let Y and OY (n) as above. Then the complete linear system |OY (3)|
is base-point free and the associate morphism φ|OY (3)| : Y ↪→ P8 is an embedding.

Proof. Assume e 6= o. Indeed, if e = 0, then Y = E × C and the proof is immediate
(see Remark 2.4, at the end of the proof).

First of all we prove that |OY (3)| has no fixed component. Assume the contrary,
and let K be an irreducible component of the 1-dimensional fixed locus. Now observe
that any curve on the smooth model which is not equal to C1, intersects C0. Then
K corresponds to a locus on the smooth model, which will intersect C0 or C1. Thus,
there exists always an x ∈ K ∩ C0 (or C1 which is identified to C0 on Y ).

Now the restriction morphism H0(Y,OY (3)) → H0(C0,OC0(3o)) is surjective.
Indeed, using the exact sequence

0 → ν∗OX(−C0 − C1) → OY → OC → 0,
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twisting by OY (3) and taking cohomology, it is sufficient to prove that the group
H1(Y, ν∗OX(−C0 − C1) ⊗ OY (3)) vanishes. By Leray spectral sequence, this coho-
mology group is equal to H1(X,OX(3C0 + 3Fo − C0 − C1)). Using the fact that
C1 ∼ C0 + (Fo − Fe) and KX ∼ −2C0 + Fe − Fo, where KX is the canonical class,
this cohomology group is equal to H1(X,OX(3C0 + 3Fo) ⊗ O(KX)), which is zero,
by Kawamata-Viehweg vanishing.

Thus that there exists a t ∈ H0(C0,OC0(3o)) such that t(x) 6= 0 (since the com-
plete linear system |OC0(3o)| embeds C0 in P2 and we can always find a hyperplane
section of this embedded curve which does not hit the point x); this implies that
there exists s ∈ H0(Y,OY (3)), such that s(x) 6= 0 so that x is not a point in the
fixed component: this is a contradiction. Thus |OY (3)| has no fixed component and
Bs|OY (3)| is at most a finite set of points.

Let s ∈ H0(Y,OY (1)) and consider D := (s)0, the zero scheme of s (clearly
Bs|OY (3)| ⊂ D). Since we assume e 6= o, D is irreducible and its pull-back to X
is numerically equivalent to C0 + F . Now s⊗3 ∈ H0(Y,OY (3)) and red[(s⊗3)0] = D
(where red is the reduced scheme structure on the zero scheme (s⊗3)0). Since |OY (3)|
has no fixed-component, we can always choose s′ ∈ H0(Y,OY (3)) such that s′|D 6= 0.

Let D′ = (s′)0, then the pull-back of D′ to X is numerically equivalent to 3C0+3F ,
so that D · D′ = (C0 + F ) · (3C0 + 3F ) = 6. By this computation we have that
Bs|OY (3)| ⊂ (s′)0 · (s⊗3)0, which consists of (at most) 6 distinct points, possibly
with multiplicities. On the other hand, let us consider the subgroup G(3) of 3-torsion
points in the semi-Abelian group variety G, where G ' X − (C0 ∪C1) and G is a C∗

extension of E:
1 → C∗ → G → E → 0.

There is a natural action of G(3) on the base locus and a natural action of its C∗-
extension on OY (3). In view of this action, it turns out that if |OY (3)| has one fixed
point (possibly with multiplicities), then it has to have at least 27 distinct base-points
(possibly with multiplicities) since |G(3)| = 27. On the other hand, by the previous
computation Bs|OY (3)| has at most 6 distinct points. Contradiction. Thus |OY (3)|
is base-point free and defines a morphism of Y to P8.

Now we have to prove that |OY (3)| separates points. We have to deal with different
cases.

First case: the inverse images P1 and P2 of the two distinct points x, y ∈ Y
on the smooth model X belong to distinct fibers and x, y /∈ Sing(Y ); then consider
the sections s ∈ H0(X,OX(3C0 + 3Fo)) such that s|C0 = s|C1 = 0, which certainly
descend onto Y . These sections are in one to one correspondence with the sections
of OX(3C0 + 3Fo − C0 − C1). Since we have C1 ∼ C0 + (Fo − Fe), we have that
OX(3C0 + 3Fo − C0 − C1) = OX(C0) ⊗ π∗OE(B), where B is a divisor of degree 3
on E. Since we can always find on E a divisor of degree 3, containing π(P1), but
not π(P2) (recall that P1 and P2 belong to different fibers), it is always possible to
find out a section of OX(3C0 + 3Fo − C0 − C1), which vanishes on P1, but not on
P2 and consequently a section of OX(3C0 + 3Fo), which descends to Y and which
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2005, 18; Núm. 1, 119–141



Alessandro Arsie Very ampleness of multiples of principal polarization. . .

separates x, y.
Second case: the two distinct points x, y ∈ Y are on the glued sections C0, C1. In

this case, since the restriction morphism H0(Y,OY (3)) → H0(C0,OC0(3)) is surjective
by construction, and the complete linear system |OC0(3)| gives an embedding of C0

into P2, we are done immediately.
Third case: the point x ∈ C0, y /∈ C0. In this case we can do as in the first case or

just observe that there are certainly sections which vanish on x (those sections which
on the smooth model vanish on C0 and C1), but not on y.

Fourth case: the inverse images P1 and P2 of the two distinct points x, y ∈ Y on
the smooth model X belong to the same fiber Fp and are outside the two sections
C0 and C1. In this case, consider the sections of OX(C0 + 2Fo + Fe), which are in
one to one correspondence with the sections of OX(3C0 + 3Fo) which vanish on C0

and C1, that is those sections which descend automatically onto Y . We have the
exact sequence

0 → OX(C0 + 2Fo + Fe − Fp) → OX(C0 + 2Fo + Fe) → OFp
(1) → 0 (2)

twisting the defining sequence of Fp, since (C0 + 2Fo + Fe) · Fp = 1 and Fp
∼= P1.

Now, H1(X,OX(C0 + 2Fo + Fe − Fp)) = H1(E, π∗(OX(C0 + 2Fo + Fe − Fp))) = 0,
so that taking the long exact cohomology sequence induced from (2), we get that
the restriction morphism H0(X,OX(C0 + 2Fo + Fe)) → H0(Fp,OFp

(1)) is surjective.
Then we can always find a section s of OFp

(1) which vanishes on P1, but not on
P2; we lift s to a section of OX(C0 + 2Fo + Fe), which corresponds to a section t of
OX(3C0 + 3Fo) vanishing on C0 and C1; this section descends to a section of OY (3)
and vanishes on x, but not on y. Thus, the linear system |OY (3)| separates points
also in this case. So we have proved that the map φ|OY (3)| : Y → P8 is injective, since
there are clearly no other cases for the relative position of the points x and y.

|OY (3)| separates tangent directions: to prove this we distinguish two different
cases: p ∈ Y is a smooth point (first case), or p ∈ Y belongs to the the image of C0

and so it is singular (second case).
First case: let v ∈ TpY ∼= A2. To prove that |OY (3)| separates tangent directions

it is sufficient to find out a curve C ′ ∈ |OY (3)|, passing through p and smooth at p
such that TpC

′ 6= v. If v 6= TpF , then we consider any smooth curve C ′′ on X, inside
the linear equivalence class of 2C0 −C1 + F1 + F2 + F3, where p ∈ F1, p /∈ F2, p /∈ F3

and such that the fibers F1, F2 and F3 are arranged so that 2C0−C1 +F1 +F2 +F3 ∼
2C0−C1+3Fo. In this case, |2C0−C1+F1+F2+F3| can be viewed as a subsystem of
|OX(3)|, corresponding to sections vanishing on C0 and C1. All these sections clearly
descend to Y and correspondingly any curve C ′′ ∈ |2C0 − C1 + F1 + F2 + F3|. Thus
it is sufficient to set C ′ := ν(C ′′), where ν : X → Y is the desingularization map.

If, instead, v = TpF , it is sufficient to prove that the morphism H0(Y,OY (3)) →
H0(F,OF (3)) is surjective, since the complete linear system |OF (3)| defines an em-
bedding of P1 as a twisted cubic. Assume that this is not the case; then, since we
already know that the map φ|OY (3)| is injective, it means that the image in P8 of F
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is a plane rational curve, having at most a cusp as a singularity. Since the image is a
plane curve, then there exists a unique plane V ∼= P2 containing it. Now consider all
hyperplanes of P8 containing this V : by a standard argument, they are parameterized
by a P5. Observe that the rational curve intersects the image Z of the singular locus
of Y (an elliptic curve) in two distinct points (because p0 6= o), which are obviously
contained in V .

Let x and y be these two points and fix another point z on the image of the
elliptic curve Z in P8 so that x + y + z is not linearly equivalent to a hyperplane
section of Z. Then, all hyperplanes containing V and z have also to contain Z; these
hyperplanes are parameterized by a P4, but their pull-back to X cut out a divisor D
such that 3C0+3F−D is numerically equivalent to C0+2F . Now, by Proposition 2.2,
h0(OX(C0 + 2F )) = 4, which implies that these hyperplanes should span a P3, not a
P4. Contradiction. This happens because we have assumed that the image of F is a
plane rational curve. Thus φ|OY (3)| separates tangent directions also in this case.

Second case: the point p belongs to the singular locus Sing(Y ) of Y and clearly
TpY ∼= A3. In this case, to prove that |OY (3)| separates tangent directions it is
sufficient to prove that the image of TpY in P8 is 3-dimensional. Assume that the
image is not 3-dimensional; then its image in P8 is at most a V ∼= P2. Then look at the
hyperplanes of P8 containing this V ; by a standard argument, they are parameterized
by a P5. The pull-back of any of these hyperplanes to the smooth model X determines
a divisor on X having multiplicity 2 at the point x0 and x1, where x0 ∈ C0 and x1 ∈ C1

(the two points x and y are just the preimages in X of the point p ∈ Sing(Y )). Then
choose an other point q on the image of the singular locus Z of Y (the image of
Sing(Y ) in P8 is just a plane elliptic curve, since H0(Y,OY (3)) → H0(C0,OC0(3))
is surjective). Choose q such that 2p + q is not linearly equivalent to a hyperplane
section of Z, the image of Sing(Y ) in P8.

Then we obtain a P4 of hyperplanes, containing V and q. Since we have chosen q
in this way, it turns out these hyperplanes have to contain Z, hence on the smooth
model they cut out a divisor containing C0 and C1 and the points x0 and x1 with
multiplicity 2. Finally, choose on the smooth model X two other points: y0 on the
fiber passing through x0 and y1 on that passing through x1. On the hyperplanes
of P8 satisfying the previous conditions, impose also to pass through the images of y0

and y1: in this way we get a P2 of these hyperplanes. The pull-back of any of these
hyperplanes to the smooth model X cut out C0, C1 and two fibers F1 and F2 and the
remaining divisor in 3C0+3F is numerically equivalent to C0+F . On the other hand,
by Proposition 2.2, h0(X,OX(C0 +F )) = 2 and this is true if replace C0 +F with any
other divisor numerically equivalent to it. This is a contradiction, because we have
a P2 of these hyperplanes, while |OX(C0 + F )| = P1. The contradiction arises from
the fact that we have assumed that the image of TpY in P8 is at most 2-dimensional.

Thus, we have proved that φ|OY (3)| : Y ↪→ P8 is an embedding.

Remark 2.4. In the proof of Theorem 2.3, we have assumed that e 6= o (and conse-
quently p0 6= o). Indeed, if e = o, by Lemma 2.1 we take p0 = o and in this case
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Y = E × C, where E is an elliptic curve and C is a nodal cubic curve. Then we get
E×C ↪→ P2×P2 ↪→ P8, where the last embedding is a Segre map. Since h0(Y,OY (3))
is independent of the parameter e (hence p0), it turns out that for generic e the map
φ|OY (3)| gives an embedding. However, to prove this for any e we have to do as above.

Remark 2.5. The image of Y in P8 is a linearly normal surface. Here, by linearly
normal surface we just mean that the linear system used to embed Y in P8 is complete:
so Y can not be obtained as a projection from a surface Z isomorphic to Y , sitting in
a higher dimensional space. In principle, however, Y can be obtained as a projection
from a less singular surface Z̃, which is no more isomorphic to Y .

Assume e 6= o, then its singular locus is a smooth plane elliptic curve Z and
through each point of this elliptic curve there are two twisted cubic curve, intersect-
ing transversally each other and also transversally with Z. The degree is 18, since
(3C0 + 3F )2 = 18.

3. Very ampleness on the second type of degeneration

The second type of degeneration of smooth principally polarized Abelian surfaces we
are going to consider is obtained by a smooth quadric X = P1×P1 (with homogeneous
coordinates [x0, x1]×[y0, y1]), identifying the points of coordinates [x0, x1]×[1, 0] with
those of coordinates [x0, x1T ]× [0, T ] and the points of coordinates [1, 0]× [y0, y1] with
those of coordinates [0, T ] × [y0, y1T ] for some parameter T ∈ C∗; in particular the
points corresponding to coordinates [1, 0] × [1, 0], [1, 0] × [0, T ], [0, T ] × [0, T ] and
[0, T ]× [1, 0] are all identified.

Observe that this type of degeneration depends on 1 moduli, namely the glueing
parameter T .

Let us call Y (strictly speaking YT , since it depends on the parameter T ) the
image of X under these identifications, π : X → Y . Y is one of the degeneration
type of smooth principally polarized Abelian surfaces represented by a point in the
boundary of AVor

2 .
Recall that Pic(X) = ZL1 ⊕ ZL2, where L1 and L2 generate the two rulings

on X, while the intersection pairing is L2
i = 0, L1 · L2 = 1. Recall also that the

self-intersection of a principal polarization on a smooth Abelian surface is 2 and that
self-intersection does not change in a flat family. Having recalled this, it is natural
to consider as a degenerate principal polarization on Y a line bundle L such that
π∗L = OP1×P1(1, 1) (simply because the corresponding divisor class is of the form
L1 + L2 and (L1 + L2)2 = 2). In this light, proving a sort of Lefschetz theorem for
this type of degeneration is equivalent to prove the following:

Theorem 3.1. Let L be a line bundle on Y such that π∗L = OP1×P1(3, 3). Then the
complete linear system |L| is base-point free and the corresponding map φ|L| : Y ↪→ P8

defines an embedding of the singular model Y .
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Proof. First of all, we have to exhibit a basis of H0(Y,L), that is we have to under-
stand which sections of OP1×P1(3, 3) descend to sections of L.

Since H0(X,OP1×P1(3, 3)) = H0(OP1(3)) ⊗H0(OP1(3)) any section σ of the line
bundle OP1×P1(3, 3) can be written as

σ = a1x
3
0y

3
0 + a2x

3
0y

2
0y1 + a3x

3
0y0y

2
1 + a4x

3
0y

3
1+

+ a5x
2
0x1y

3
0 + a6x

2
0x1y

2
0y1 + a7x

2
0x1y0y

2
1 + a8x

2
0x1y

3
1+

+ a9x0x
2
1y

3
0 + a10x0x

2
1y

2
0y1 + a11x0x

2
1y0y

2
1 + a12x0x

2
1y

3
1+

+ a13x
3
1y

3
0 + a14x

3
1y

2
0y1 + a15x

3
1y0y

2
1 + a16x

3
1y

3
1 .

The necessary and sufficient condition for a section to descend is that it satisfies
some compatibility conditions under the glueing process described above. In partic-
ular, it obvious that the sections represented by x2

0x1y
2
0y1, x2

0x1y0y
2
1 , x0x

2
1y

2
0y1 and

x0x
2
1y0y

2
1 always descend since they are identically zero on the points which are going

to be identified (hence h0(Y,L) ≥ 4).
The compatibility conditions for σ can be expressed as

σ|[1,0]×[y0,y1] = λσ|[0,1]×[y0,Ty1], (3)

and
σ|[x0,x1]×[1,0] = λ̃σ|[x0,Tx1]×[0,1], (4)

for some λ, λ̃ ∈ C∗. Since we have not fixed any λ, but we just say that there is some
λ such that (3) holds, the equation (3) is equivalent to the vanishing of three 2 × 2
minors of the matrix (

a1 a2 a3 a4

a13 Ta14 T 2a15 T 3a16

)
.

This imposes 3 conditions on the coefficients ai, while the equation (4) is equivalent
(always because we have not fixed any λ̃) to the vanishing of three 2 × 2 minors of
the matrix: (

a1 a5 a9 a13

a4 Ta8 T 2a12 T 3a16

)
,

and this imposes three other conditions on the coefficients ai, which are not all inde-
pendent of the previous ones; it is immediate to check that only 2 of these conditions
are independent of the previous ones, so that we get a total of 5 conditions. To these 5
conditions we have to add 2 other independent conditions determined by the glueing
parameters λ, λ̃, so that we get h0(Y,L) = h0(X,OP1×P1(3, 3))− (5+2) = 16−7 = 9.
Now we determine a basis for the 9-dimensional vector space H0(Y,L). From the
condition (3), exchanging λ−1 with λ, we have

λa1 = a13 λa2 = Ta14 λa3 = T 2a15 λa4 = T 3a16,
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while from condition (4), exchanging λ̃−1 with λ̃, we get

λ̃a1 = a4 λ̃a5 = Ta8 λ̃a9 = T 2a12 λ̃a13 = T 3a16,

so that we can choose (a1, a2, a3, a5, a6, a7, a9, a10, a11) as coordinates on H0(Y,L),
since, by the relations just described above, we have

a16 =
λλ̃

T 3
a1 a15 =

λ

T 2
a3 a14 =

λ

T
a2 a13 = λa1,

a12 =
λ̃

T 2
a9 a8 =

λ̃

T
a5 a4 = λ̃a1.

To write down an explicit basis of H0(Y,L) it is sufficient to substitute iteratively
(a1, a2, a3, a5, a6, a7, a9, a10, a11) equal to (1, 0, . . . , 0), (0, 1, . . . , 0),. . . , (0, . . . , 1) in
the expression of the general section σ, taking into account the relations which de-
fine a16, a15, a14, a13, a12, a8 and a4 in terms of the other ai’ s. Completing the
computation, we obtain as a basis of H0(Y,L):

x3
0y

3
0 + λ̃x3

0y
3
1 + λx3

1y
3
0 +

λλ̃

T 3
x3

1y
3
1 , (x3

0 +
λ

T
x3

1)y
2
0y1, (x3

0 +
λ

T 2
x3

1)y0y
2
1 ,

x2
0x1(y3

0 +
λ̃

T
y3
1), x2

0x1y
2
0y1, x2

0x1y0y
2
1 , x0x

2
1(y

3
0 +

λ̃

T 2
y3
1),

x0x
2
1y

2
0y1, x0x

2
1y0y

2
1 .

Different choices of λ and λ̃ do not lead to the same line bundle. Indeed, these
are the two parameters in Pic0(Y ) ∼= (C∗)2 and different choices leads to different
line bundles. On the other hand, if we map x to λx and y to λ̃y, this defines an
automorphism of the singular variety (recall that the torus T = (C∗)2 acts on Y
and this is exactly that action). Now pulling back via this automorphism, identifies
the line bundle given by λ, λ̃, with that given by (1, 1). Thus, by acting with this
automorphism, we may indeed assume λ = λ̃ = 1. So from now on, we fix λ = λ̃ = 1.

Hence we get a rational map φ|L| : Y 99K P8; now we prove that |L| is base-point
free. To this aim, suppose that we have a point P of Y such that its image under
the complete linear system |L| corresponds to the origin (0, . . . , 0) of H0(Y,L) (which
is not a point of the corresponding projective space). In particular this implies that
x2

0x1y
2
0y1 = 0, that is at least one of the coordinates is zero. For instance, let us

assume that y0 = 0; then substituting in the fixed basis for H0(Y,L), we obtain:
x2

0x1y
3
1 = 0, x0x

2
1y

3
1 = 0 and x3

0y
3
1 + 1

T 3 x3
1y

3
1 = 0. From the first two equalities, we get

that either y1 = 0 (but this is not possible, since [y0, y1] = [0, 0] is not a point of the
projective line), or x0 = 0 or x1 = 0. If x0 = 0, from the last equality we have x1 = 0
(but this again impossible since [x0, x1] = [0, 0] is not a point of the projective line),
while if x1 = 0, then x0 = 0 or y1 = 0, and we conclude as before. Hence we have a
morphism φ|L| : Y → P8.
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To conclude we have to prove that φ|L| separates points and tangent lines. On the
singular model Y we can distinguish three types of points: smooth points of Y and
which have coordinates of the form [1, α] × [1, β] for α, β 6= 0 (first type) (these are
the points which are not glued); those for which only one of the coordinates [x0, x1]×
[y0, y1] is zero (second type); and finally those points for which two of the coordinates
[x0, x1] × [y0, y1] are zero (third type), (actually, on Y there is just one point of the
third type, which comes from the identification of 4 points on the smooth model). Let
us consider the image under φ|L| of a point P of the first type of the form [1, α]×[1, β].
The sections x2

0x1y
2
0y1 and x0x

2
1y

2
0y1 are never vanishing on the points of this form;

moreover, from their ratio one gets immediately the homogeneous coordinates [x0, x1];
a completely analogous reasoning, using now the sections x2

0x1y0y
2
1 and x2

0x1y
2
0y1 gives

the homogeneous coordinates [y0, y1]. This means that φ−1
|L|(φ|L|(P )) = P , for a point

of the first type.
Consider now a point P of the second type, for instance of the form [1, α]× [1, 0].

Its image under φ|L| is given by [1 + α3, 0, 0, α, 0, 0, α2, 0, 0] = Q ∈ P8 and we have to
prove that φ−1

|L|(Q) consists of two points on the smooth model X which are on the
edges and which are going to be identified to a unique point on the singular model Y .
Since α 6= 0, from the expression of the coordinates of Q we get that either y0 = 0
or y1 = 0. If y0 = 0, from the expression x2

0x1
1
T y3

1 = α, x0x
2
1

1
T 2 y3

1 = α2, taking
their ratios we have x1

x0
= αT , so that we obtain the point P2 = [1, αT ] × [0, 1]. If

instead y1 = 0, from the relations x2
0x1y

3
0 = α, x0x

2
1y

3
0 = α2 we are led to the point

P1 = P = [1, α]× [1, 0]. Now the points P1 and P2 are distinct on the model X, but
they are identified under the glueing process, so that φ−1

|L|(φ|L|(P )) = P , also for a
point P of the second type.

Finally, as for the points of third type, we can consider P = P1 = [1, 0]× [1, 0] and
its image Q = [1, 0, . . . , 0] under φ|L|. Now, φ−1

|L|(Q) can be computed immediately,
since from the expression of the coordinates of Q we obtain the following four possi-
bilities (y0 = 0, x0 = 0), (y0 = 0, x1 = 0), (y1 = 0, x0 = 0), and (y1 = 0, x1 = 0):
again these four points are distinct on X, but are identified to a unique point on Y .
This proves that φ|L| separates points on Y .

Now we prove that φ|L| separates tangent directions. First of all we prove that
dφ|L|P : TP Y → TP P8 is injective for any point P of the first type. So P = [1, α] ×
[1, β]; since the question about the injectivity of dφ|L| is local, we can substitute
x0 = 1, y0 = 1 in the expression of the sections we have fixed as a basis of H0(Y,L)
(this is equivalent to consider x1, y1 al local affine coordinates such that (x1, y1)(P ) =
(α, β)). The fifth basis vector has then the form x1y1 and is never vanishing for a
point of the first type since α, β 6= 0. Thus we can divide all the other sections by
x1y1 obtaining a map to A8: ρ := φ|L||U : U → A8 (where U is an open neighborhood
of P ), given by

(x1, y1) 7→
(

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

x1y1
,

1
x1

(
1 +

1
T

x3
1

)
,

y1

x1

(
1 +

1
T 2

x3
1

)
,

1
y1

(
1 +

1
T

y3
1

)
, y1,

x1

y1

(
1 +

1
T 2

y3
1

)
, x1, x1y1

)
.
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To check the injectivity of dφ|L| at the points of the first type, it is sufficient to
compute the Jacobian matrix of the map ρ (with respect to x1 and y1) and evaluate
it at (α, β) proving that it has rank 2. To prove that it has rank 2, just look at the
form of the Jacobian matrix 

− −
− −
− −
− −
0 1
− −
1 0
− −


.

The first column compute the derivative with respect to x1 of the map ρ, the second
column compute the derivative with respect to y1, and the sign − means that we have
skipped the computation; however, it is clear that the rank of dφ|L| is 2, so that φ|L|
separates tangent directions for the points of the first type.

To check the injectivity of the differential for points of the second and third
type, we have to understand the singularities of Y on these kinds of points. From
the toric description of Y and the corresponding Delaunay decomposition, we have
that TP Y ∼= A3 if P is a point of second type, while TP Y ∼= A4 if P is of the
third type. Indeed, the Delaunay decomposition from which Y arises can be rep-
resented as four squares S1, . . . , S4 in A2 with vertices [(0, 0), (1, 0), (1, 1), (0, 1)] for
S1, [(0, 0), (0, 1), (−1, 1), (−1, 0)] for S2, [(0, 0), (−1, 0), (−1,−1), (0,−1)] for S3, and
[(0, 0), (0,−1), (1,−1), (1, 0)] for S4. They all meet in (0, 0) (the singular point of
the third type) and their edges are pairwise identified according to the rule used to
construct Y , starting from P1 × P1.

Let us study for example the singularity of P , the point of third type. Consider
the lattice points u1, u2, u3 and u4 each of which belongs to a different square. Since
the lattice points u1, u2, u3 and u4 are not cell-mates, from the associated toric
construction it turns out that we have in C[u1, u2, u3, u4] the relations u1u2 = 0,
u3u4 = 0; these correspond to four 2-planes meeting in one point (the point P ).
These four 2-planes are π1 = {(u1 = 0, u3 = 0)}, π2 = {(u1 = 0, u4 = 0)}, π3 =
{(u2 = 0, u3 = 0} and π4 = {(u2 = 0, u4 = 0)}. Clearly the intersection of all these
four planes is just the origin (the point P ) and there are pairs of these planes which
intersect along a line, as π1 and π2. Moreover, TP Y can be spanned just by a pair of
planes, which intersect each other just in P , such as (π1, π4). These two planes can
be represented in the Delaunay decomposition as two opposite squares, meeting just
in the origin. This indeed proves that TP Y ∼= A4. A completely analogous reasoning
proves that TP Y ∼= A3 for a point P of the second type.

To prove injectivity of dφ|L| for a point P of the second type, we prove that the
vector space spanned by the image of the differential at the two points P1 and P2

(these two points are on the edges of the square and are identified to the unique
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point P on Y ) is at least 3-dimensional.
Let us consider as P1 = [1, α] × [1, 0] and P2 = [1, Tα] × [0, T ] which correspond

to the unique (singular) point P on Y . As before, on the sections forming a basis of
H0(Y,L), we substitute x0 = 1, y0 = 1, and we divide by the fourth basis section,
which is not vanishing on P . In this way we get a map ρ̃ to A8 (centered at (α, 0))
given by

(x1, y1) 7→
(

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

x1(1 + 1
T y3

1)
,

(1 + 1
T x3

1)y1

x1(1 + 1
T y3

1)
,

(1 + 1
T 2 x3

1)y
2
1

x1(1 + 1
T y3

1)
,

y1

1 + 1
T y3

1

,
y2
1

1 + 1
T y3

1

,
x1(1 + 1

T 2 y3
1)

1 + 1
T y3

1

,
x1y1

1 + 1
T y3

1

,
x1y

2
1

1 + 1
T y3

1

)
.

Computing the Jacobian matrix of the map ρ̃ and evaluating at (α, 0) we have

− 0
0 −
0 0
0 1
0 0
1 0
0 −
0 0


.

Now consider the point P2 = [1, αT ] × [0, T ] and substitute x1 = αT and y1 = T in
the expression of the sections forming a basis of H0(Y,L). We then divide all sections
again by the fourth section (which is not vanishing on P2) and we obtain a map to
A8 (this time centered at (1, 0)) given by

(x0, y0) 7→
(

x3
0y

3
0 + T 3x3

0 + α3T 3y3
0 + α3T 3

x2
0αT (y3

0 + T 2)
,
y2
0T (x3

0 + α3T 2)
x2

0αT (y3
0 + T 2)

,
y0T

2(x3
0 + α3T )

x2
0αT (y3

0 + T 2)
,

y2
0T

y3
0 + T 2

,
y0αT 3

αT (y3
0 + T 2)

,
α2T 2(y3

0 + T )
x0αT (y3

0 + T 2)
,

y2
0αT 2

x0(y3
0 + T 2)

,
y0αT 3

x0(y3
0 + T 2)

)
.

Now we just take the partials of this map with respect to y0 and evaluate at (1, 0)
obtaining 

−
−
−
−
1
−
−
−


.
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Comparing with the image of the differential at P1, we see that the rank of dφ|L| at
the point of the second type is at least 3, and this is sufficient to conclude that φ|L|
separates tangent directions for the points of second type.

As for the point of the third type, we have to check that the rank of dφ|L| is 4.
From the toric description of the singularity around P it turns out that this can be
seen as the intersection of four 2-planes, meeting in one point (the point P ) and along
some other lines (which corresponds to the points of the second type). In particular
there are two 2-planes just meeting in P which span TP Y ∼= A4. So it is sufficient to
check that the image of these two planes under dφ|L| spans again an A4. To this aim,
we compute dφ|L| at [1, 0]× [1, 0] and at [0, T ]× [0, T ].

As before, for the point P1 = [1, 0] × [1, 0], we substitute x0 = 1, y0 = 1 in the
sections forming a basis of H0(Y,L), and we divide by the first basis section, which
is not vanishing on P1. In this way, we get a map (centered in (0, 0)) to A8, given by

(x1, y1) 7→
(

y1(1 + 1
T x3

1)
1 + y3

1 + x3
1 + 1

T 3 x3
1y

3
1

,
y2
1(1 + 1

T 2 x3
1)

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

,
x1(1 + 1

T y3
1)

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

,

x1y1

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

,
x1y

2
1

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

,
x2

1(1 + 1
T 2 y3

1)
1 + y3

1 + x3
1 + 1

T 3 x3
1y

3
1

,

x2
1y1

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

,
x2

1y
2
1

1 + y3
1 + x3

1 + 1
T 3 x3

1y
3
1

)
.

Taking the Jacobian matrix of this map and evaluating at (0, 0) we have



0 1
0 0
1 0
0 0
0 0
0 0
0 0
0 0


.

Finally, to construct the corresponding map to A8 centered at P2 = [0, T ] × [0, T ],
we substitute x1 = T and y1 = T in the sections forming a basis of H0(Y,L) and we
divide again by the first basis section (as we have done above), which is not vanishing

Revista Matemática Complutense
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on P2. By so doing we get the map

(x0, y0) 7→
(

y2
0T (x3

0 + T 2)
x3

0y
3
0 + x3

0T
3 + y3

0T 3 + T 3
,

y0T
2(x3

0 + T )
x3

0y
3
0 + x3

0T
3 + y3

0T 3 + T 3
,

x2
0T (y3

0 + T 2)
x3

0y
3
0 + x3

0T
3 + y3

0T 3 + T 3
,

x2
0y

2
0T 2

x3
0y

3
0 + x3

0T
3 + y3

0T 3 + T 3
,

x2
0y0T

3

x3
0y

3
0 + x3

0T
3 + y3

0T 3 + T 3
,

x0T
2(y3

0 + T )
x3

0y
3
0 + x3

0T
3 + y3

0T 3 + T 3
,

x0y
2
0T 3

x3
0y

3
0 + x3

0T
3 + y3

0T 3 + T 3
,

x0y0T
4

x3
0y

3
0 + x3

0T
3 + y3

0T 3 + T 3

)
.

Again, taking the Jacobian matrix and evaluating at (0, 0) we get

0 0
0 1
0 0
0 0
0 0
1 0
0 0
0 0


Thus, we see that the two 2-planes spanned by the image of dφ|L| at P1 and P2 are
independent (in A8), so that the rank of dφ|L| at the point P of the third type on Y
is 4. Then φ|L| separates tangent directions.

We thus have an embedding φ|L| : Y ↪→ P8.

Remark 3.2. For the value T = 1 , the singular model Y is just the product of two
nodal curves C and C ′; each of these curves is embedded into P2 and then via a
Segre map into P8: C × C ′ ↪→ P2 × P2 ↪→ P8. Since the dimension of H0(YT ,L) is
independent of T , this automatically implies that for generic T , φ|L| is an embedding;
however to show this for any T ∈ C∗ we have to give a proof as above.

4. Very ampleness on the third degeneration type and conclu-
sion

The third degeneration type Y for smooth principally polarized Abelian surfaces is
constructed via a glueing of two disjoint copies of P2. It does not depend on any
moduli, i.e. it is rigid.

Indeed, from the toric construction associated to the corresponding Delaunay de-
composition, it turns out that Y is obtained by glueing two disjoint P2’ s along the
following pairs of lines ([x0, x1, x2] denote homogeneous coordinates on the first P2,
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[y0, y1, y2] on the second): {x0 = 0} and {y0 = 0}, {x1 = 0} and {y1 = 0}, {x2 = 0}
and {y2 = 0} and identifying moreover the fundamental points to a unique point.

The desingularization of Y clearly consists of X := P2 q P2, π : X → Y . A line
bundle on X is just the union of two line bundles, one on each copy of P2. Obviously,
the divisor class group of X is generated by L1 and L2 (each of which is a line in
P2, such that L1 · L2 = 0). Since the self-intersection of a principal polarization on
a smooth Abelian surface is 2, and this does not change in a flat family, it turns out
that we can consider as a degenerate principal polarization on the smooth model X
the line bundle given by OP2(1) on each P2. For simplicity, let us call this bundle
OX(1; 1), and observe that h0(X,OX(1; 1)) = 6. If L is a line bundle on Y such that
π∗L = OX(n;n), then we denote L as OY (n).

By the results of Alexeev and Nakamura, it turns out that the complete linear
system |OY (5)|, gives an embedding of Y into some PN . This is concretely realized
embedding each disjoint copy of P2, via |OP2(5)|, in such a way that they are glued
along the prescribed lines and points. Indeed, the embedding of Y can be described
by determining which sections of OX(5; 5) descend to Y :

P2 q P2

π
##GGGGGGGGG

//// PN

Y

|OY (5)|

>>||||||||

Also in this case, to prove an analogue of Lefschetz theorem is equivalent to prove
the following:

Theorem 4.1. With the notations as above, the complete linear system |OY (3)| is
base-point free and the map φ|OY (3)| : Y ↪→ P8 is an embedding.

Proof. As previously noticed, the map φ|OY (3)| is induced by the sections of the line
bundles OP2(3) on each P2, imposing the glueing conditions. Let us call x0, x1, x2

the homogeneous coordinates on the first P2 and y0, y1, y2 those on the second. Then
the general section σx ∈ H0(OP2(3)) can be written as

σx = a0x
3
0 + a1x

3
1 + a2x

3
2 + a3x

2
0x1 + a4x

2
0x2

+ a5x
2
1x0 + a6x

2
1x2 + a7x

2
2x0 + a8x

2
2x1 + a9x0x1x2, (5)

and analogously for

σy = b0y
3
0 + b1y

3
1 + b2y

3
2 + b3y

2
0y1b4y

2
0y2 + b5y

2
1y0 + b6y

2
1y2 + b7y

2
2y0 + b8y

2
2y1 + b9y0y1y2.

In order to determine which sections descend onto Y , we express the glueing conditions
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as

σx|{x0=0} = λσy|{y0=0}, (6)

σx|{x1=0} = λ̃σy|{y1=0}, (7)

σx|{x2=0} = λ̂σy|{y2=0}, (8)
σx|[1,0,0] = µσx|[0,1,0], (9)
σx|[1,0,0] = νσx|[0,0,1], (10)

for some (not fixed!) parameters λ, λ̃, λ̂, µ, ν ∈ C∗. The equations (6), (7), and (8),
express the glueing conditions for the coordinate lines, while the remaining equations
express the fact that the coordinate points have to be identified to a unique point.

From the first three equations we get σx|[1,0,0] = λ̃σy|[1,0,0] = λ̂σy|[1,0,0] and
σx|[0,1,0] = λσy|[0,1,0] = λ̂σy|[0,1,0]; from these relations we get λ = λ̃ = λ̂ and
b0 = λa0, b1 = λa1 and b2 = λa2. On the other hand, from (9) and (10), we obtain
a2 = ν−1a0 and a1 = µ−1a0. Combining these relations, we see that all coordinates
a2, a3, b0, b1, b2 are multiples of a0. Now notice that the equations (6), (7), and (8)
are determinantal and can be written as (just assuming that there are some, not fixed
parameters λ, λ̃, λ̂):

rk

(
a1 a2 a6 a8

b1 b2 b6 b8

)
≤ 1, (11)

rk

(
a0 a2 a4 a7

b0 b2 b4 b7

)
≤ 1, (12)

rk

(
a0 a1 a3 a5

b0 b1 b3 b5

)
≤ 1. (13)

From these and from the previous relations, we find immediately all the compatibility
conditions:

b0 = λa0, b1 = λµ−1a0, b2 = λν−1a0, a2 = ν−1a0, a1 = µ−1a0,

b3 = λa3, b4 = λa4, b5 = λa5, b6 = λa6, b7 = λa7, b8 = λa8.

Then we can choose as coordinates for determining a basis for the sections of OY (3),
the coefficients (a0, a3, a4, a5, a6, a7, a8, b9). Now observe that changing the parameter
λ, does not change the line bundle, since the two planes are different and one can
make a corresponding choice of coordinates on one of the planes, so as to cancel
out the effect of changing λ. Thus we can set λ = 1. On the other hand, different
choices of µ and ν lead to different line bundles; indeed, Pic0(Y ) ∼= (C∗)2 and the
parameters µ and ν are coordinates on Pic0(Y ). But again modulo the action of the
torus T = (C∗)2, all line bundles are the same, so one can choose one of them, e.g.
by setting µ = ν = 1. Thus, from now on, we set λ = µ = ν = 1.
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In the light of this analysis, the map φ|OY (3)| can be precisely described via a pair
of maps (φx, φy) : P2 q P2 →→ P8, which is explicitly given by[

(x3
0 + x3

1 + x3
2; y

3
0 + y3

1 + y3
2), (x2

0x1; y2
0y1), (x2

1x0; y2
1y0), (x2

0x2; y2
0y2),

(x2
1x2; y2

1y2), (x2
2x0; y2

2y0), (x2
2x1; y2

2y1), (x0x1x2; 0), (0; y0y1y2)
]
.

If [z0, z1, . . . , z8] denotes homogeneous coordinates in P8, then the image of the first
P2 is contained in the hyperplane {z8 = 0}, while that of the second is contained
in {z7 = 0}. Now we prove that φ|OY (3)| is an embedding, checking the suitable
properties on the pair of maps (φx, φy).

First of all, we check that |OY (3)| has no base points: just take into account one
of the maps of the pair, for instance φx. If there is a point on Y such that all sections
of OY (3) vanish, then for the corresponding point(s) in X, we have x0x1x2 = 0,
x2

1x0 = 0, x2
0x2 = 0, and x2

1x2 = 0. Then at least two of the xi’s are zero, but since
also x3

0 + x3
1 + x3

2 = 0, then all xi’ s are zero. This is clearly impossible since this is
not a point of P2. Thus φ|OY (3)| : Y → P8 is a morphism.

Let us distinguish, also for this type of degeneration, three kinds of points: smooth
points (first type), singular points obtained by glueing pairs of points on the edges of
the triangles, which are not vertices (second type), and the unique point which comes
from the glueing of the vertices (third type).

Now we prove that φ|OY (3)| separates points. For the points of the first type,
let us consider a point in the first copy of P2, of homogeneous coordinates [1, α, β],
where α, β ∈ C∗. Then the image of this point under φx is given by: [1 + α3 +
β3, α, α2, β, α2β, β2, β2α, αβ, 0]. From this expression, since αβ 6= 0, then this point
in P8 is never the image of a point of the second P2, and it is clear that one can
recover the homogeneous coordinates [1, α, β], just taking ratios, so that the map
φ|OY (3)| separates points of the first type.

Now consider a point of the second type, which can be represented on the smooth
model X, by a pair of points of the form (for example) [α, β, 0], [α̃, β̃, 0] such that
α, α̃, β, β̃ ∈ C∗ and β/α = β̃/α̃. Rescaling the homogeneous coordinates, one can
represent these as [1, γ, 0], [1, γ, 0]. These two points have the same image under the
two maps (φx, φy): [1 + γ3, γ, γ2, 0, 0, 0, 0, 0, 0]. Again taking ratios one sees that
this point corresponds exactly to the pair of points, which are going to be identified
on Y to a point of the second type (indeed, looking at the zero entries, the point
[1 + γ3, γ, γ2, 0, 0, 0, 0, 0, 0] can not be the image of a smooth point or of a point on a
different singular line).

Finally, the unique point of the third type is represented by three pairs of points
on X. Any of these pairs has image in P8: [1, 0, 0, 0, 0, 0, 0, 0, 0] = P . Then it is
clear that (φx, φy)−1(P ) consists exactly of these three pairs, which correspond to the
unique point of the third type on Y . Thus φ|OY (3)| is injective on Y .

To conclude the proof it remains to show that this map separates tangent direc-
tions. If Q is a point of the first type on Y , then it corresponds to a unique point

Revista Matemática Complutense
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on one of the two copies of P2. It is not restrictive to assume that the homogeneous
coordinates of this point belong to the first P2 and are of the form [1, α, β] (α, β ∈ C∗).
Since TQY ∼= A2 for this type of points, it is sufficient to prove that the rank of dφx

is 2 in a neighborhood of π−1(Q) = [1, α, β]. Substituting x0 = 1 and dividing by
x0x1x2 the entries of the map φx we obtain a map from a neighborhood U of π−1(Q)
to A8: φ̃x : U → A8, centered at (α, β), which is explicitly given by(

1 + x3
1 + x3

2

x1x2
,

1
x2

,
x1

x2
,

1
x1

, x1,
x2

x1
, x2, 0

)
.

It is immediate to check that the differential of this map computed at (α, β) has
rank 2.

If Q is a point of the second type on Y , then since it is obtained by glueing two
P2’s along lines, it is clear that TQY ∼= A3. Moreover, π−1(Q) = (P1, P2) where
each Pi belongs to a P2. Without loosing generality, we can assume that P1 = [1, α, 0]
(x-coordinates) and P2 = [1, α, 0] (y-coordinates). Then it is sufficient to prove that
dφx|TP1P2 and dφy|TP2P2 span a vector space of dimension at least 3. To compute
dφx we substitute x0 = 1 and divide all entries by x2

0x1, obtaining an explicit map
φ̃x to A8 of the form(

1 + x3
1 + x3

2

x1
, x1,

x2

x1
, x2x1,

x2
2

x1
, x2

2, x2, 0
)

.

An analogous reasoning for the y-coordinates, gives an explicit map φ̃y to A8 given
by (

1 + y3
1 + y3

2

y1
, y1,

y2

y1
, y2y1,

y2
2

y1
, y2

2 , 0, y2

)
.

Computing the Jacobian of the two maps at the point (α, 0) (i.e. (x1, x2) = (α, 0) for
the x-coordinates and (y1, y2) = (α, 0) for the y-coordinates) we get the two matrices:

− −
1 0
− −
− −
− −
− −
0 1
0 0





− −
1 0
− −
− −
− −
− −
0 0
0 1


,

which span together at least a 3-dimensional vector space in A8.
Finally, we have to prove that φ|OY (3)| separates tangent directions for the unique

point Q of the third type. This point corresponds to the vertices of the triangles,
which are all identified.
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A neighborhood of Q can be represented from the toric description as six triangles,
having all a common vertex in Q and either a common edge or nothing else in common,
besides Q.

They can be constructed like this: consider four squares S1, . . . , S4 in A2 with
vertices [(0, 0), (1, 0), (1, 1), (0, 1)] for the first square, [(0, 0), (0, 1), (−1, 1), (−1, 0)] for
the second square, [(0, 0), (−1, 0), (−1,−1), (0,−1)] for the third square, and finally
[(0, 0), (0,−1), (1,−1), (1, 0)] for the fourth.

They all meet in (0, 0), which represents the point Q. If we subdivide these four
squares drawing the antidiagonal lines, we get the six triangles meeting in (0, 0),
describing the local geometry around Q. Then a neighborhood of Q can be described
as six copies of A2 (the six triangles), meeting along lines according to the above
pattern. We call this copies of A2 as V1, V2, V3, V4, V5, V6. Now V1 ∩ V2 is a line so
that they span together a 3-dimensional vector space W1. Then W1 ∩ V3 is again a
line, so that the span of W1 and V3 is 4-dimensional vector space W2. Again W2 ∩ V4

is a line and they together span W3 which is 5-dimensional and finally W3 ∩ V5 is a
line and they span W4 which is 6-dimensional. Then observe that V6 ⊂ W4 since they
have in common 2 lines. This implies that TQY = A6, showing that Q is an extremely
nasty singularity.

We can give a cleaner proof of the fact that the dimension of the tangent space
is actually equal to six, via toric geometry. Indeed, consider lattice points u1, u2,
u3, u4, u5, u6, each of which belongs to one of the six triangles; since they are not
cell-mates, we get in C[u1, . . . , u6], the following exhaustive set of relations: u1u3 = 0,
u1u4 = 0, u1u5 = 0, u2u4 = 0, u2u5 = 0, u2u6 = 0, u3u6 = 0, u3u5 = 0, u4u6 = 0.
The ideal generated by these relations in C[u1, . . . , u6], corresponds to six 2-planes:
π1 = {u1 = u2 = u3 = u4 = 0}, π2 = {u1 = u2 = u3 = u6 = 0}, π3 = {u3 = u4 =
u5 = u6 = 0}, π4 = {u2 = u3 = u4 = u5 = 0}, π5 = {u1 = u2 = u5 = u6 = 0}
and π6 = {u1 = u4 = u5 = u6 = 0}. All these six planes intersect just in the origin
and the span of three of them, such as π1, π3 and π5 is A6. This just proves that
TQY ∼= A6.

Then, to conclude it is enough to show that the images of dφx at the three coor-
dinate points span altogether a 6-dimensional vector space. Indeed, to span TQY it
is sufficient to take three copies of A2 around O, which meet only in O, and having
no edge in common (they correspond to the 2-planes π1, π3 and π5). These copies
correspond to the three vertices of just one copy of P2, let us say the x-copy. Then we
have just to compute dφx at the points P1 = [1, 0, 0], P2 = [0, 1, 0] and P3 = [0, 0, 1].
To compute dφx at P1 we set x0 = 1 and divide by the entry x3

0 + x3
1 + x3

2 all other
entries, getting the map φx,P1 as follows:(

x1

1 + x3
1 + x3

2

,
x2

1

1 + x3
1 + x3

2

,
x2

1 + x3
1 + x3

2

,
x2

1x2

1 + x3
1 + x3

2

,

x2
2

1 + x3
1 + x3

2

,
x2

2x1

1 + x3
1 + x3

2

,
x1x2

1 + x3
1 + x3

2

, 0
)

.
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Computing the differential of φx,P1 at (0, 0) we get



1 0
0 0
0 1
0 0
0 0
0 0
0 0
0 0


.

Repeating the procedure with the point P2 (this time setting x1 = 1 but always
dividing by x3

0 + x3
1 + x3

2) we obtain the map φx,P2 :

(
x2

0

1 + x3
0 + x3

2

,
x0

1 + x3
0 + x3

2

,
x2

0x2

1 + x3
0 + x3

2

,
x2

1 + x3
0 + x3

2

,

x
2

2x0

1 + x3
0 + x3

2

,
x2

2

1 + x3
0 + x3

2

,
x0x2

1 + x3
0 + x3

2

, 0
)

,

and also we get the differential at (0, 0):



0 0
1 0
0 0
0 1
0 0
0 0
0 0
0 0


.

Finally, considering the point P3, we have the map φx,P3 :

(
x2

0x1

1 + x3
0 + x3

1

,
x2

1x0

1 + x3
0 + x3

1

,
x2

0

1 + x3
0 + x3

1

,
x2

1

1 + x3
0 + x3

1

,

x0

1 + x3
0 + x3

1

,
x1

1 + x3
0 + x3

1

,
x0x1

1 + x3
0 + x3

1

, 0
)

,
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the differential of which at (0, 0) is given by

0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0


.

This implies that dφ|OY (3)| is always injective on Y , also for the point of third type,
since the rank of dφx is 6. Thus φ|OY (3)| : Y ↪→ P8 is an embedding.

Recalling all the results of the previous sections, we get immediately the following
main result:

Theorem 4.2. Let Y be a SSAV of dimension 2, which is a degeneration of a princi-
pally polarized Abelian surface and let OY (1) the associated ample line bundle. Then
OY (3) is already very ample.

Proof. Immediate in the light of the previous results, since any SSAV Y of dimen-
sion 2, coming from a principally polarized Abelian surface belongs to one of the three
degeneration types studied in the previous sections.

Remark 4.3. In [5] it is proved that if C is an irreducible curve, having only nodes
as singularities, then on the compactified Jacobian (considered as the moduli scheme
parameterizing torsion-free, rank 1 sheaves of Euler characteristic 0 on C), there is
a line bundle L representing a principal polarization, such that L⊗3 is already very
ample. This theorem covers partially our result, but the proof given there is less
elementary. Our proof is based on a concrete study of the projective map induced by
a principal polarization and is completely based on projective geometry.
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