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ABSTRACT

In this paper nondegenerate multidimensional matrices of boundary format in
Vo®- - -®V,, are investigated by their link with Steiner vector bundles on product
of projective spaces. For any nondegenerate matrix A the stabilizer for the
SL(Vp) X -+ x SL(V,)-action, Stab(A), is completely described. In particular
we prove that there exists an explicit action of SL(2) on Vo ® - -- ® V}, such that
Stab(A)° C SL(2) and the equality holds if and only if A belongs to a unique
SL(Vp) x - -+ x SL(V},)-orbit containing the identity matrices, according to [1].
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1. Introduction

Let V; be a complex vector space of dimension k; + 1 for j = 0,...,p with kg =
max;{k;}. Gelfand, Kapranov and Zelevinsky in [5] proved that the dual variety of
the Segre product P(Vy) x --- x P(V,) is a hypersurface in (Pko+1)(kp+1)=1) i
and only if kg < Zle k;. The defining equation of this hypersurface is called the
hyperdeterminant of format (ko+1)x---x(k,+1) and is denoted by Det. Moreover the
hyperdeterminant is a homogeneous polynomial function on V' ®- - - ® V;jv so that the
condition Det A # 0 is meaningful for a (p+1)-dimensional matrix A € P(V,®---®V,)
of format (ko+1) x- - - x (kp+1). The hyperdeterminant is an invariant for the natural
action of SL(Vp) x --- x SL(V,) on P(Vy ® - -- ® V}), and, in particular, if Det A # 0
then A is semistable for this action.
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We denote by Stab(A) C SL(Vp) x --- x SL(V,) the stabilizer subgroup of A
and by Stab(A)O its connected component containing the identity. The stabilizer are
well known for p < 1 (in this case there is always a dense orbit and the orbits are
determined by the rank), so that in this paper we assume p > 2.

It easy to check (see [12], [3]) that the degenerate matrices fill an irreducible variety
of codimension ko —Y%_, k;+1 and if kg < >_%_, k; then all matrices are degenerate.
We will assume from now on that A is of boundary format i.e., that ko = > 0_ k;.
(A self-contained approach to hyperdeterminant of boundary format matrices can be
found in [3].)

For multidimensional boundary format matrices the classical definitions of trian-
gulable, diagonalizable and identity matrices can be easily reformulate in the natural
way as follows

Definition 1.1. A (p+ 1)-dimensional matrix of boundary format A € Vo ®---QV,,
is called

i) triangulable if Vj there exists a basis e(j), cee e(j,) of V; such that
0 k; J

p
A= Za“” (0) e ® 61(»:) where a;,,... 5, = 0 for ig > Zit;

Zp 10

(ii) diagonalizable if there exists a basis e(]) .. (]) of Vj; such that
A= Zazo, Lip€ 10 "®6§f) where a;,,... 5, = 0 for ig #Zzt,
t=1
(iii) an identity if there exists a basis eéj), ceey eg) of Vj; such that

A= il @ @c)

where
. p -
w“ 0 for dg# Y 4y,
To, P - . _ ¥4 .
1 for dig=D>, i

Ancona and Ottaviani in [1], considering the natural action of SL(Vp) x- - - x SL(V},)
on P(Vo ® --- ® V}), analyze these properties from the point of view of Mumford’s
Geometric Invariant Theory.

In the same aim, the main result of this paper is the following:

Theorem 1.2. Let Ac P(Vo®---®V,) be a boundary format matriz with Det A #
0.Then there exists a 2-dimensional vector space U such that SL(U) acts over V; ~
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SkU and according to this action on Vo @ -+ ® V,, we have Stab(A)° C SL(U).
Moreover the following cases are possible

0

C

(C*

SL(2) (this case occurs if and only if A is an identity)

Stab(A)°? ~

Remark 1.3. We emphasize that SL(Vp) x --- x SL(V},) is a “big” group, so it is quite
surprising that the stabilizer found lies always in the 3-dimensional group SL(U)
without any dependence on p and on dim V;.

The maximal stabilizer is obtained by the ”most symmetric” class of matrices
corresponding to the identity matrices. Under the identifications V; = S¥U the
identity is given by the natural map

ShU .- @ SkU — ShoU

which is defined under the assumption kg = > k;. This explains again why the
condition of boundary format is so important.

Ancona and Ottaviani in [1] prove Theorem 1.2 for p = 2. We generalize their
proof by using the correspondence between nondegenerate boundary format matrices
and vector bundles on a product of projective spaces.

Indeed, for any fixed j # 0, a (p + 1)-dimensional matrix A € V@ --- @V,
of format (ko + 1) x --- x (kp + 1) defines a sheaf morphism f49 on the product

—

X =Pk x ... x Pki x -+ x Pkr

3)
Ox @V 15 0x(1,... D)@ V; (1)

and it is easy to prove the following

Proposition 1.4 ([1], [2]). If a matriz A is of boundary format, then Det A # 0 if
and only if for all j # 0 the morphism fA(j) is surjective (so SX(J) = Ker fA(j) s a

vector bundle of rank ko — k; ).

In the particular case p = 2 the (dual) vector bundle S4 (or 54®) lives on the
projective space P, n = kg (or n = k1) and it is a Steiner bundle as defined in [4]
(this case has been investigate in [1]). We shall refer to SE{) with the name Steiner
also for p > 3.

The main new technique introduced in this paper is the use of jumping hyperplanes
for bundles on the product of (p — 1) projective spaces. For p > 2 there are two
natural ways to introduce them; by the above correspondence, they translate into
two different conditions on the associated matrix and that we call weak and strong
(see definition 2.1 and 2.6). They coincide when p = 2.
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Moreover, the loci of weak and strong jumping hyperplanes are invariant for the
action of SL(V)) x --- x SL(V},) on matrices. By investigating these invariants we
derive the proof of Theorem 1.2 and also we obtain a characterization of a particular
class of bundles called Schwarzenberger bundles (see [10] for the original definition
in the case p = 2). Schwarzenberger bundles correspond exactly to such matrices A
which verify the equality Stab(A)? = SL(2) in Theorem 1.2, called identity matrices.

I would like to thank G. Ottaviani for his invaluable guidance and the referee for
useful suggestions to improve this note.

2. Jumping hyperplanes and stabilizers

Let p = 2 and S := S! be the Steiner bundle on P(V5) defined by a matrix A €
Vo®V1®V3 of boundary format, an hyperplane h € P(V,’) is an unstable hyperplane of
S if h%(S),) # 0 (see [1]). By abuse of notations we identify an hyperplane i € P(Vy")
with any vector A’ € V5 such that (h') = h.

In particular, H°(SV(¢)) identifies to the space of (kg + 1) x 1-column vectors v
with entries in S*V5 such that Av = 0, and a hyperplane h is unstable for S if and
only if there are nonzero vectors vy of size (kg+1) x 1 and v; of size (k; +1) x 1 both
with constant coefficients such that

Avg = v1h; (2)

the tensor H = vy ®w; is called an unstable (or jumping) hyperplane for the matrix A.
For p > 3 there are at least two ways to define a jumping hyperplane. We will call
them weak and strong jumping hyperplanes.

Definition 2.1. H =v®v; ®h € V@V ®@ V7 (where VI = V1®---®f/;®~"®vp)
is a (j)-weak jumping hyperplane for A if 3 vo,wy, ..., wy, basis of Vj such that

ko
A=v@u®h+ > w®-- (3)

i=1

where h € V7 generate an hyperplane for PF1 x ... x @; X xPtr cPV @ ®
V; ®---®Vp,) (that, by abuse of notations, we call also h).

Remark 2.2. The expression (3) means, as in the case p = 2, that H°(Ker fAl(i)) #0
(i.e., by definition, h is a jumping hyperplane for the bundle S AV )).

If H =vo®v, is a (j)-weak jumping hyperplane for A then the map:

Vo@-- @V = (Vo/(w) @@ (Vi/ () ® - @ Vp
AI—>A/]'

gives an elementary transformation [8].
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Remark 2.3. A’; is again of boundary format. In particular, after a basis has been
chosen, A’; is obtained by deleting two directions in A.

Proposition 2.4. If A’} is defined as above
Det A # 0= Det A'; #0

Proof. If X := P* x ... x Pk x --- x P*» and h is the hyperplane defined in 2.1
associated to H, the map S 29 Op, induced by a non zero section of S40) s
surjective (the same proof of [14, prop. 2.1] works).

Since codim i = 1, then its kernel S’ is locally free sheaf [11] of rank ko — k; — 1
on X and it is the Steiner bundle associated to the matrix AU) as the snake-lemma
applied to the following exact diagram shows

0 —— Ox(-1,...,-1)eV;¥ 122 0xoVy — 549 —— 0
0 ——  Ox(-1,....,-1) —— Ox —— 0, ——0
0 0 0
ie., 59 = SA; @) and by Proposition 1.4 the result follows. O

Remark 2.5. If W(Sg)) is the set of jumping hyperplanes of the bundle Sg) , then
the exact sequence (dual to the last column of the above diagram)

Y, Y
O—>Sl(4]) —>S£4J,_) —0x(1,...,1) =0

shows that W(Si,j)) C W(ng,_)) U {h}

Definition 2.6. H = vg @ v1 ® --- ® vy, is a strong jumping hyperplane for A if
3 vo, w1, ..., wk, basis of Vy such that

ko
A:UU®U1®"'®Up+Zwi®'“
i=1
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Remark 2.7. If H is a strong jumping hyperplane then H defines a (j)-weak jumping
hyperplane for all j = 1,...,p; in particular for a strong jumping hyperplane there
are many elementary transformations.

Remark 2.8. For p = 2 the notations of strong jumping hyperplane and of weak
jumping hyperplane coincide with each other (see [1]).

Ezample 2.9 (the identity). Fixed a basis eé]), .. .,e,(jv) in V; for all j, the identity
matrix is represented by !

1= Y Ve we?.

0
do=i1 -+ +ip
0<i;<k;

Let ¢, ..., tr, be any distinct complex numbers. Let w be the (kg + 1) x (kg + 1)
(i-1)

J

ko
=Y 0
s=0

Vandermonde matrix whose (4, j) entry is ¢ , so acting with w over Vj, we have:

Then substituting
= Y dedle- ol

)
Go=11++ip
s=0,...ko

ko k1 kp
= Zég ® (Z ez('i)t?) Q- ® (Z egf)t?)
s=0 0 0

1=

lp=

Thus, since t; have no restrictions, I has infinitely many strong jumping hyper-
plane.

We call Schwarzenberger bundle the vector bundle associated to I (in fact in the
case p = 2 it is exactly the same introduced by Schwarzenberger in [10], see also [1]).

Proposition 2.10. Let A be a boundary format matriz with Det A # 0. If A has
N > ko + 3 strong jumping hyperplanes then it is an identity.

Proof. In the case p = 2 the statement is proved in [1, Theorem 5.13] or in [14,
Theorem 3.1]. Chosen Vj and other two vector spaces among Vi, ..., V), (say Vi and
V2), one may perform several elementary transformations with V; and all the others
so that we get A’ € V'y ® Vi ® V5 boundary format matrix with Det A’ # 0 and
N’ > k'q + 3 strong jumping hyperplanes, then A’ is an identity.

As in the above example, one can change the hyperplane giving the elementary
transformation, so that for all N strong jumping hyperplanes we get ¢4, ..., ty distinct
complex numbers and corresponding suitable basis of V7 and V5:

(1 _(1
SR
=(2)

(2)

€y 51 Chy
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such that the hyperplanes are given by
k‘l k'2
St and Yo ePtl forj=1,...N
i=0 i=0

Now, changing Vi and V5 with the pairs V1,V; (j =1,...p) we get

ko k1 kp
A=>"&de (Z ef.l”tf;) ® - ® (Z egf)tfg)
5=0 i1=0 ip=0
showing that A is an identity. O

Proposition 2.11. Two nondegenerate boundary format matrices having in common
ko + 2 distinct strong jumping hyperplanes determine isomorphic Steiner bundles for
every j.

Proof. In the case p = 2 the statement is proved in [1, Theorem 5.3]. Chosen Vj
and other two vector spaces among Vi,...,V, (say Vi and V), one may perform
several elementary transformations with V, and all the others so that we get A’ €
Vo ® V1 ® Vo boundary format matrix with Det A’ # 0 and N’ = k'q + 2 strong
jumping hyperplanes, then SX, is uniquely determined for every j. Now, changing
Vi and V5 with the pairs Vi and V; (j = 2,...,p) we detect all the 3-dimensional
submatrices of A which give bundles uniquely determined, so also SX) is uniquely
determined for every j. O

Remark 2.12. In the case p = 2 we know that ko + 2 jumping hyperplanes give an
existence condition for the bundles 51(4]) (they are logarithmic bundles, see [1]) but in
the case p > 3 there is not an analog existence result.(The previous proposition gives
only the uniqueness.)

The following is a classical result (see for instance [7, prop. 9.4, page 102], or
[4, Theorem 6.8]).

Proposition 2.13. All nondegenerate matrices of type 2 X k x (k+ 1) are GL(2) x
GL(k) x GL(k + 1) equivalent, or equivalently every surjective morphism of vector
bundles on P!

O{;j‘l — O]pl(l)k

is represented by an identity matriz.
We recall now the following

Proposition 2.14 ([1]). Let Ac Vo ®---QV, A be a (p+ 1)-dimensional matriz of
boundary format the following conditions are equivalent:

(i) A is an identity;
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(ii) there ewist a vector space U of dimension 2 and isomorphisms V; ~ SkiU
such that A belongs to the unique one dimensional SL(U)-invariant subspace
of SPU @ -+ @ SkeU.

The equivalence between (i) and (ii) follows easily from the following remark:
the matrix A satisfies the condition (ii) if and only if it corresponds to the natural
multiplication map S U ®---® Sk U — SkoU (after a suitable isomorphism U ~ U
has been fixed). We notice that by the Clebsch-Gordan decomposition of the tensor
product there is a unique SL(U)-invariant map as above.

Remark 2.15. If A is not an identity, an element g € Stab(A) preserves a (j)-weak
jumping hyperplane h and it induces g € SL(Vo/ (g(vy))) X SL(V1) X - XSL(V} / (4(;)) ) ¥
--+ x SL(V,) such that g - A projects to g - A’; and the elementary transformation
behaves well with respect to the action of g.

For every integer j, let D;girong(A) be the locus of (j)-strong directions of A
defined as

{{v) € P(Vjv) |Vi # j 3 v; € V; such that
vy ® -+ - @ vy is a strong jumping hyperplane for A }.

We recall that (see for details [1]) for boundary format matrices the following
conditions are equivalent

(i) Aec Vo ®---®V, is diagonal,
(ii) C* C Stab(A),

(iii) there exist a vector space U of dimension 2, a subgroup C* C SL(U) and
isomorphisms V; ~ SkiU such that A is a fixed point of the induced action

of C*.

Then, the same proofs of Corollaries 6.9-6.10 and Lemmas 6.12-6.13 of [1] work also
in the (p+1)-dimensional case, by replacing V by V; and W(S) by D, strong(A4). More
precisely we have:

Corollary 2.16. Let A be a boundary format nondegenerate matriz. If C* C Stab(A)
then for every j the C*-action on V; has exactly k; +1 fized points whose weights are
proportional to —kj;, —k; +2,...,k; — 2, k;.

Remark 2.17. More in general, the C*-action on V' (where V is a n + 1-dimensional
vector space) has exactly n 4+ 1 fixed points whose weights are proportional to —n,
—n+2,...,n—2,n if and only if there exist a vector space U of dimension 2 such
that C* C SL(U) and V ~ S™U.

Corollary 2.18. Let A be a boundary format nondegenerate matrixz such that C* C
Stab(A). Then either A is an identity or Dj sirong(A) has only two closed points,
namely the two fized points of the dual C*-action on IP’(VJ»V) having minimum and
mazimum weights.
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Lemma 2.19. Let U be a 2-dimensional vector space, and Vj C; ~P(U) — P(S*U)
be the SL(U)-equivariant embedding (whose image is a rational normal curve). Let
C* C SL(U) act on P(S*U). We label the k; + 1 fived points P;, i = —k; + 2n,
n=0,...,k;, of the C*-action with an index proportional to its weight. Then P_y_,
Py, lie on Cj and P_y, yon, = T" Py, ﬂTkj_"ij , where T™ denotes the n-dimensional
osculating space to C}.

Lemma 2.20. Let A be a boundary format nondegenerate matriz. If there are two
different one-parameter subgroups A1, Ao : C* — Stab(A) then A is an identity.

Proof of Theorem 1.2. We proceed by induction on k.

If kg = 2 the theorem is true by Proposition 2.13.

When Stab(A)? contains only the identity the result is trivial hence we may sup-
pose that dim Stab(A4)° > 1 then, according to [1, Theorem 2.4], the matrix A is
triangulable and there exists at least one strong jumping hyperplane H = vy ®- - - Q.

We may also suppose that the number of strong jumping hyperplanes is finite
otherwise A is an identity (Proposition 2.10), hence H is Stab(A)’-invariant. Let
A be the image of A by the elementary transformation associated to the (1)-weak
jumping hyperplane defined by H (we choose j = 1 to have simpler notations). The
matrix A} belongs to Vj @ V{ @ V2 ® - -- ® V,, where Vj = V;/(vo) and V{ = V3 /(v1),
it is nondegenerate and of boundary format then, by induction, there exists a 2-
dimensional vector space U such that

Vg~ S~ L), V/~SMmL(U) and V;=S*(U) forall i>2

and Stab(A})? C SL(U) (by using essentially the same argument we could work in
GL(Vp) x -+ - x GL(V},)).

Since A} is obtained from the matrix A after the choice of two directions, any
element which stabilizes A also stabilizes A}, so Stab(A4)? C Stab(A;)°. Hence
Stab(A)® C SL(U) and SL(U) acts on V; according to V; ~ S*U for i > 2, by
the inductive hypothesis.

Now, we claim that the action of SL(U) can be lifted to the whole V) ® --- ® V,.

Indeed, the above considered elementary transformation gives the decomposition
Vo=V{@®Cand V; = V] @ C.

If ¢ : C* — GL(V/) is the natural action of C* C SL(U) on V/ = S*~1U (for
it = 0,1) with k; fixed points having weights —k; + 1,—k; + 3,...,k; — 1, we can
construct an action 1 : C* — GL(V/ @ C) on V; defined by

t7lot) 0
t— ( 825( ) t’%‘)
having k; + 1 fixed points with weights —k;, —k; + 2, ..., k;. hence, by remark 2.17,
the statement follows.

In the case Stab(A)? = SL(2), the action of SL(U) satisfies definition 2.14, proving
that A is an identity.
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Now, as in [1], consider the Levi decomposition Stab(A)? = M - R where R is the
radical and M is maximal semisimple. If A is not an identity (i.e., Stab’(A) # SL(2))
then M = 0 and Stab(A)? is solvable hence by the Lie Theorem it is contained (after
a convenient basis has been chosen) in the subgroup of upper triangular matrices

r={( )

If there is a subgroup C* properly contained in Stab(A4)° then there is a conjugate of
C* different from itself and this is a contradiction by the Lemma 2.20. If Stab(A)°
does not contain proper subgroups C* then it is isomorphic to

ex{(1 ) pech ;

Remark 2.21. Throughout this paper we work only on nondegenerate matrices. In-
deed, in the proofs we apply the induction strategy (hence the results of [1]) and the
correspondence between matrices and vector bundles described in Proposition 1.4.

The characterization of the stabilizer of degenerate matrices is still an open prob-
lem. Another interesting problem is the study of the stabilizer of general multidimen-
sional matrices (and not necessarily of boundary format).

aG(C*,bG(C}.
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