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ABSTRACT

In this paper we investigate the solvability of the Neumann problems (1), (12),
(16), (32) and (43) involving the critical Sobolev and Hardy exponents. It is
assumed that the coefficient Q is a positive and smooth function on Q, y and A
are real parameters. We examine the common effect of the mean curvature of the
boundary 0f2, the shape of the graph of the coefficient ) and the singular Hardy
potential on the existence and the nonexistence of solutions of these problems.
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1. Introduction

In this paper we investigate the nonlinear elliptic problem involving the Neumann

conditions —Au—|—#u — Q@)ulr "2u  inQ, O
%u(m) =0 on0Q,

where the coefficient @) is continuous and positive on Q, p is a real parameter, v is

an outward normal to the boundary 92 and 2* = %, N > 3, is a critical Sobolev

exponent. We assume that 0 € ©Q and that Q is a bounded domain in RY with a
smooth boundary. We also study a more general problem (12) (see Section 3) with
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an additional term Au. In Section 4 we extend this to problem (16), obtained from

(12) by replacing p with —pu, g > 0. In Sections 7 and 8 the term ﬁu is replaced by

2(N—a)
N—2

u|?>~2u, where 2%, = , 0 < a < 2 is the critical Hardy-Sobolev exponent.

lez*

In recent years the nonlinear Neumann problem involving critical Sobolev expo-
nent has been widely studied in [3], [4], [5], [7], [8], [9]. In these papers the existence
of least energy solutions has been established for problem (1), with the singular term
,u# replaced by Au, A > 0 and with Q(z) = 1 on Q. Further extensions of these
results to the problem with Q(x) # constant can be found in [13], [14], [15]. The
novelty here is that we consider the Neumann problem involving the singular poten-
tial ﬁ and the critical Sobolev exponent. Equation (1) with the Dirichlet boundary

conditions, has been studied in [1], [16], [23] and [20]. The singular potential B ‘2 is

related to the Hardy inequality. We recall the classical Hardy inequality (known also

as the Uncertainty Principle): if u € Hg(€), then 7 € L*(Q) and

/—dx<cN/ |Vul|? de, (2)

where cy = ﬁ and this constant is optimal. It is also known that the constant

% is not achieved. Therefore one can expect an error term on the left side of this
inequality. Some estimates of this error term can be found in the papers [2], [12]
and [24]. Problem (1) has a variational structure and the underlying Sobolev space
for (1) is H(Q). Since this space contains constant functions, it is clear that this
inequality is no longer true in H'(£). In Section 2 we give a suitable modification of
(2) which will be used in this paper. In Sections 3 and 4 we investigate the existence
of the least energy solutions. Section 6 is devoted to the case where a parameter A in
interferes with the spectra of —A + # and —A — # Our approach is based on a
min-max principle involving the topological linking [36]. Sections 7 and 8 are devoted
to nonlinear Neumann problems involving the critical Hardy-Sobolev exponent. We
establish the existence of solutions through the mountain-pass principle.

We recall that a C! functional ¢ : X — R on a Banach space X satisfies the Palais-
Smale condition at level ¢ ((PS). condition for short), if each sequence {z,} C X such
that (%) ¢(z,) — c and (xx) ¢'(x,) — 0 in X* is relatively compact in X. Finally,
any sequence {x, } satisfying (%) and (xx) is called a Palais-Smale sequence at level ¢
(a (PS). sequence for short).

Throughout this paper we denote strong convergence by “—” and weak conver-
gence by “—7. The norms in the Lebesgue spaces LP(f2) are denoted by || - ||. B
H'(Q) we denote a standard Sobolev space on 2 equipped with norm

ul? :/Q(|Vu|2—|—u2) da.
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2. Palais-Smale condition in the case u > 0

Throughout this and the next section, we assume that 4 > 0. We commence by
extending the Hardy inequality to the space H!(2).

Lemma 2.1. For every § > 0 there exists a constant C = C(4,|82]) > 0 such that

2
/ Y de < (CNM)/ \Vu|2dx+C(5,|Q|)/u2dx
Q Q Q

[]2
for every u € H* ().

Proof. Let p > 0 be such that B(0,2p) C . We define a C'-function ¢ such that
¢(x) =1 on B(0,p), 0 < p(x) <1on Qand ¢p(z) =0 on Q— B(0,p). It then follows
from (2) that

e - e [0
cN/Q|V(¢u)|2dx—|—/Qu2(|1w|_j)2)dx.

Applying the Young inequality, we get

IA

u? 2 2 24 1-¢
/7dx< (en +9) / |Vul>¢ der/ (CN|V¢‘ +—|V¢| |22 )d:c
Q

||
and the result follows. O

One can define the best Hardy constant in H*(Q2) by

Vul|? d
Sp— i dolVel+ut)dr
weH () fQ ik dx

The constant S;, depends on || and tends to 0 as || — 0. Since Q is a bounded
domain, it follows from Lemma 2.1 that

2
Jul? = [ (19l + 5 da

defines an equivalent norm on H'().

We set
Qm =max Q(z) and Qp = maxQ(z).
€N e
Let g s
Seo = mln( N-2° N-2 )7
2% Q™ QMN
197 Revista Matemdtica Complutense
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where S is the best Sobolev constant defined by

S = inf{/ |Vul|? dz; u € DV2(RY), /
RN

Jul> dx}.
RN

Here D2(RY) denotes the Sobolev space obtained as the completion of C°(RY)
with respect to the norm

- / Vul? de.
RN

To find a solution of (1) we consider the constrained variational problem

mf{/ (|Vul® + —u %) dz; u € H'(Q), / Q(z)|ul* dz =1} (3)
Q
By Lemma 2.1 and the Sobolev inequality, we see that 0 < .S, < oo for every p > 0.
1

If w is a minimizer for S,, then S; ~*w is a solution of (1).

Proposition 2.2. If S, < So for some > 0, then S, has a minimizer.

Proof. The proof is standard and relies on P. L. Lions’ concentration-compactness

principle [25]. Let {u,,} be a minimizing sequence for S,,. Since {u,,} is bounded in

H'(Q), we may assume that u,, — u in H*(Q) and L?" (Q) and u,, — u in LP(Q) for
2 < p < 2*. By the concentration-compactness principle, we may assume that

[ |2 5 u)? +ZV3 z; and |V, |? = \VuPJrZu] x5
JjeJ JjeJ

in the sense of measure, where v; > 0, u; > 0 are constants and the set J is at most
countable. Moreover, we have

l
if z; € Q, then SV2 < uj

and

w
*\w

if z; < e
2
The only possible concentration point for {ﬁﬁ} is 0. However, if this occurs, then

{|Vu.,|?} also concentrates at 0. Hence it is sufficient to show that p; = v; = 0 for
all j € J. We write

1—/Q Yl dm+ZQ z)V;. (4)

jeJ
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We also have

S, = /(\Vu\z—i-—zu dﬂH‘ZMj
0 r 2
> Sy (/Q N> dx) +ZSV2*+ Z —V%
;€0 x; ESQ
& . ®)
> 5 [ Q@i )+ 3 S5 ()
Q zj EQ M
+ 3 o (1Q)) 7
;€00 C?WLTZW
Since S, < So, we deduce from (5) that v; = 0 for every j € J. O

To estimate S,,, we test the functional

Jo (IVul?* + ﬁ?ﬁ) dx

(6)

n(u) =

2
(fQ )|ul>” da:) ’
with instantons. We recall that the instanton U(z) = diNM, where dy > 0is a
(A+|z]?)

normalizing constant, satisfies the equation
—Au=|u* %u in RV,

Furthermore, we have [,y U dz = [, |[VU|?dz = S%. We set

d 6¥
Uey(x) = N ~5 yeRY, e>0.
(2 + |z —yl?)
‘We now observe that
2 .
/ |x|2 )2dx =0(?) ify#0 (7)
and )
1 < / —QUeyo(x)2 dx < ¢y (8)
o |7l

for all € > 0, where ¢, cy > 0 are constants. We always have
S < S

This follows by testing the functional £, g with U., centered at a point y where
either Q,,, or Qs is achieved. However, if Q); is is achieved only at 0 we cannot
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use directly Ue o since by (8 fQ e U, dx is bounded away from 0 for small € > 0.

In this case we choose a sequence y, — 0. Testing £, g with U ,, we obtain the

estimate S, < — S5 . Letting yx — 0 the desired estimate follows. By testing

Qyr) N
the functional F, o with v =1 we get

©g ﬁ dx
(fQ Q(z)dzx) >

(fQ Q(z dw)

Sp <

Therefore by Proposition 2.2 problem (1) for u < has a least energy

solution.
3. Existence and nonexistence of least energy solutions for (1)
We distinguish two cases: (i) Qar < PR Qm and (il) Qpr > N2 Q.. We denote by

H(y) the mean curvature of 0Q at y € 0Q. If Q =1 we set £, = E,, ;. It is known
that

EAL(U@ZJ) S
g ANH(y)elog 2 — anpe + O(e) + o(pe), N=3
< — — S ANH(y)e —anpe?log 2 + O(?log 1) + o(pe’logl), N =4 (9)
2% ANH(y)e — anpe® + O(e?) + o(ue?), N > 5,

where ay > 0 is a constant depending on N. The asymptotic estimation (9) has been

2

established in [3] and [31] for E, with the singular term % replaced by u?. Since

y € 00 and 0 € Q, the proof of (9) is the same as in the nonsingular case.

Theorem 3.1. Let Qp < QﬁQm. Suppose that

1Q(x) = Qy)| = o(|z — yl) (10)

for x near y with Q(y) = Qm and H(y) > 0. Then for every u > 0 problem (1) has
a least energy solution.

Proof. Under our assumptions Sy, = % Using (9) and (10) we get
2N QN

S
BuqUey) < ——5==
28 Q™

for € > 0 sufficiently small. The result follows from Proposition 2.2. O
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We now consider the case Qp; > QﬁQm. We recall the existence result from
[15] for the Neumann problem without the singular term

11
Lu(x) =0 on 9. (11)

{—Au—l— M = Q(x)|ul? "2u in Q,
Theorem 3.2. Suppose that Qn > QﬁQm. Then there exists a constant A > 0
such that for 0 < A\ < A problem (11) has a least energy solution and no least energy
solution for A > A and moreover

2 2
S it Jo (IVul +)\u)dl:r

Q]\% ueH(Q)—{0} (fQ Q(a:)|u 2% dx)"’

for A > A.

Theorem 3.3. Suppose that Qp; > QﬁQm. Then there exists a constant Ay > 0
such that for 0 < p < Ay problem (1) has a least energy solution and no least energy

solution for > Ay and moreover S,, = —5— for u > A;.
QJ\IN

Proof. Let r =inf,cq_(0) ﬁ > 0. Then for every u € H(2) we have

/Q(|Vu\2 + pru®) do < /Q(|Vu|2 + #uz) dx.

Hence
inf{/ (|Vul® + pru?) do; w € H'(Q); / Q(z)|u)* dz =1} < S,
Q Q

and the result follows from Theorem 3.2. O

Theorems 3.1 and 3.3 remain true for the problem

{—Au +rut = Q(@)|ul* %u in a2)

%u(z) =0 on 09,
where p > 0 and A > 0. We set
S = inf{/ (1Vul + - 4 x2) das u € H(), / Qa)ful”” d = 1}.
o Q

|z[?

Theorem 3.4. Let Qp < 9n=2 Q. and suppose that (10) holds. Then problem (12)
has a least energy solution for every pu > 0 and A > 0.

201 Revista Matemdtica Complutense
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Theorem 3.5. Let Qp > 253 . Then there exists A > 0 such that for X +pur < A
problem (12) has a least energy solution and no least energy solution for A+ ur > A.
Moreover, S, = —&=5 for A+ ur > A.

QMN

If Qu < QﬁQm and @Q,, is achieved only at points of 92 with the negative
mean curvature then least energy solutions do not exist for large p > 0. This follow
from the following result [14]:

Theorem 3.6. Let N > 5 and Qu < 9v2 Q- Suppose that (10) holds and more-
over

{xred; H(z) <0} #0 and {x€d; Q(x)=Qn} C {x e dQ; H(x) <0}.

Then there exists A > 0 such that for 0 < X < A problem (11) has a least energy
solution and no least energy solution for A > X and

s Jo (IVul? + Mu?) dz

inf 5

2% Qut O ([, Q@)luf dw)

for A > A.

Theorem 3.7. Suppose that the assumptions of Theorem 3.6 hold. Then there exists
a constant A > 0 such that for 0 < u < A problem (1) has a least energy solution and

no least energy solution for > A and moreover S, = ﬁ for u > A.

We now examine S,  as a function of A for a fixed p > 0. It is clear that S,  is
continuous and non decreasing. It is also bounded from above by S.. Testing S, x
with u = 1 on €, we see that

MfQ ﬁc% + >‘|Q|
A S .
(fQ Q(z)dx) ™

Hence limy_,_o S,,» = —oo. We show, below in Proposition 3.8, that S, » admits
a minimizer for every A € R with S, » < 0. However, these minimizers do not
satisfy (12).

Proposition 3.8. (i) If S,\ < 0 for some p > 0 and A € R, then there ezists a

manimizer u for Sy x which after rescaling |S, \|7 -2 u satisfies

—Au + #u + X = —-Qx)|u* 2u in Q, (13)
Zu(z) =0 on 0.
Revista Matemdtica Complutense 202
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(ii) There exists a unique Ao < —ur such that Sy, x, = 0, where r = min,cq_ 1oy ﬁ
Moreover, — )\, is an eigenvalue of the following problem

{—Au + #u =ou 1, (14)

%u(x) =0 on 0N0.

Proof. Suppose that S,y < 0 for some A € R. Let {u,,} be a minimizing sequence
for S, , that is,

/ (V| + #ufn + ) dr — S, and / Q)| um|? dz = 1. (15)
Q Q

Since {u,} is bounded in H'(Q) we may assume that w, — wu in H'(Q) and
L¥(Q) and w,, — u in L?(Q). Tt follows from (15) that u # 0. We claim that
Ja Q(x)ul>" dz = 1. In the contrary case there exists ¢ > 1 such that

t2*/ Qx)|ul* dz =1.
Q

Then by the lower semicontinuity of a norm with respect to a weak convergence, we
have
Su < t2/ (IVul® + Lu? + xi?) dx < £25,,5.
Q

||

Since Sy,x < 0, we must have t2 < 1, which is impossible. Thus [, Qx)|u)* dx =1
and v is a minimizer. Letting v = |SN,>\|ﬁu7 we verify that v is a solution of
problem (13). If S, », = 0 for some Ao = Ao(1) < 0, then the limit u of a minimizing
sequence {u,,} must be nonzero. Indeed, if v = 0 on €, then (15) yields u,, — 0
in H*(Q) which is impossible. If [, Q(z)|u|?” dz < 1, then a suitable multiple tu for
some ¢t > 1 is a minimizer. By the continuity of S, » we can find § > 0 such that
Sy < S for every A < Ao + 0. Since S, 5 is attained for each A < Ay 4+ 6, Sy » is
strictly increasing on this interval. Therefore S,  vanishes only at A,. On the other
hand considering the Rayleigh quotient for the first eigenvalue we get

. Jo (IVul* + #uQ) dx o
weH(Q)—{0} Jo u?dx = Hr

Hence Ao < —pr. O

4. Problem (12) with p < 0

It is convenient to write problem (12) with p < 0 in the following way

{Au —dutdu = Q@)|ul* u in 16)

Zu(z) =0 on 09,

203 Revista Matemdtica Complutense
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where pr > 0 and A € R. To find solutions of (16) we consider the constrained
minimization problem

Jo(IVul?* = zu? + M?) d

S_a= inf
ueH(Q)—{0} (fQ |u|2 dx) 2*

s

First we consider the case where S_,, x > 0. To examine the concentration phenomena
of minimizing sequences we need the following quantity

f]RN (\Vu|2 Luz) dz

S—ll = 11 2
DL2(RN)—{0} (IRN |u|2 dm)?‘

(N— 2)

It is known [18] that if 0 < p < i = = %, then

inf JoIVul? = pit) da
2
ueHL(Q)—{0} (fQ |u|2* dx) 2F

S_, = (17)

which means that the inf over H!(f2) is independent of Q. If Q = RY the constant
S_, is attained by a family of functions (see [29])
kyeVh—H
H(p) —
Ue (Z‘) - N . Vi’ €> 07
(7 )

L’
x| VE 4 |x| VE

where ky > 0 is a normalizing constant and v = /i ++/It — g and 7' = \/Li— /I — p.
We also have

)2 dx — 7(U€“(:z:))2 T = x“2* T = H
[owvr@pie—p [ S de= [ (@) ae = 55,

We obviously have S_, < S for p < fi and lim,,_.oS—, = 5. On the other hand the
constant in (17) is not attained if Q is a bounded star-shaped domain containing the
origin (see [21]).

Let S_, » > 0. Suppose that {u,,} is a minimizing sequence for S_, . Since
{t,,} is bounded in H*(Q), we may assume that u,, — u in H'(Q), L? (Q) and
Um — u in L2(Q). Tt follows from the concentration-compactness principle that

lun | 2 |uf? + Zyjég;j + Vol

jeJ
and )
Uu
|Vt |? — uﬁ A Vul? - | |2 + Zuﬁz] + Holo,
jeJ
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where p1;, o, v; and v, are positive constant and J is at most countable set. The

sequence {‘Z—‘";} can only concentrate at 0. Hence pod, is a joint effect of the concen-

tration of {|Vu,|*} and {llfl’Q} at 0. Moreover, we have

2
¥

Sv? <pu; ifz; #0 and z; € Q,

and

Proposition 4.1. Suppose that
0<S_x<Sx
for some 0 < < i and X\ € R. Then problem (16) has a least energy solution.

The proof is similar to that of Proposition 2.2 and is omitted.

To apply Proposition 4.1 we must ensure the existence of A and p € (0, 1) such
that 0 < S_, ) < Se. It follows from Lemma 2.1 that for every § > 0 there exists a
constant C'(d) > 0 such that

(1—(en +0)p) /Q |Vul?>dz + (A — C(6)p) /Qu2 dx <

< / (|Vul® - LQu2 + Au?)dz (18)

for every u € H(€). Choosing § > 0 so that (1— (cy +6)u) > 0 and then taking A >
C(0) we can guarantee S_,  to be positive. Testing S_,  with constant functions
we deduce that limy_,_ o, S_, » = —oo for each p € (0, %) We are now in a position
to formulate the existence results for problem (16).

Theorem 4.2. (i) Suppose that So, = — S . If (10) holds, then for every

2 N—2
28 Qm™Y

0 < pu < fi, there exists A = A(u) > 0 such that for every 0 < p < fi and A < A
problem (16) has a least energy solution.

(ii) Suppose that See = —5=5. Then there exists A > 0 such that for every 0 <
Q]\/IN

Ao < A there exists 0 < po < [ such that for 0 < p < po and Ao < A < A
problem (16) has a least energy solution.

205 Revista Matemdtica Complutense
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(iii) Suppose that S = % Then there exists \* > 0 such that for every

Q)
0 < A < X* there exists 0 < po < i such that for every A\, < A < \* and

0 < p < po problem (16) has a least energy solution.

Proof. (i) The estimate (18) shows that for every 0 < pu < fi there exists A(y1) such
that S_, » > 0 for A > A\. We now apply the asymptotic estimate (9) to verify that

S
Sopa < , N-2
2N QY
for A > \.
(ii) First, we observe that
S,‘u’)\ < S()’)\ (19)

for every 0 < p < p and A € R. According to Theorem 3.2 there exists A > 0 such
that Sp, < —s— for every 0 < A < A and Sy, = —5— for A > A. Let A, < A
Q™ Qu™
be given. Then using (18) we may choose 0 < po < fi such that S_, 5 > 0 for every
0 < p < poand Ao < A < A. The result follows from Proposition 4.1.
(i) In this case using (19) and the fact that limy_.¢ Sp,» = 0 we can find A* > 0
such that
S_ux < S
A < x5
Q0)"~
for every A < A*. Tt then follows from (18) that given A\, < A* we can choose
0 < po < fisothat 0 < S_, 5 for 0 < pp < po and A < A < A" and the result
follows. O

We now establish a result for problem (16) which analogous to Proposition 3.8.

Proposition 4.3. (i) Let S_,\» < 0 for some A € R. Then there exists a mini-

mizer w and |S_, A|> 2w is a solution of problem

{—Au - #u +du = —-Q(x)|ul* "2u in Q, (20)

%u(x) =0 on 0N0.
(ii) There exists a Ao > pr such that S_, x, = 0 and —X, is an eigenvalue of the
problem

{—Au - ﬁu =ou 1, (21)

%u(x) =0 on 0N0.

Proof. (i) Let {u,,} be a minimizing sequence for S_,, x < 0, that is,

/ (Ve ® #zﬂ 4 x,) dz = S_,x + o(1) and / Q@) um|? do = 1
Q Q

Revista Matemdtica Complutense 206
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for every m. We may assume that u,, — u in H'(Q), L? () and u,, — u on L*(Q).
By Lemma 2.1 for every § > 0, with p(cny + 9) < 1, there exists C'(§) > 0 such that

(I—(en+ 5),u)/Q |Vt |? da + (A — C(é)u)/ u?, dr < S_,x+o(1).

Q
This ylelds u # 0. We now show that [, Q( z)|u|?>" dz = 1. In the contrary case we
have [, Q(z)[tu|>’ dz = 1 for some ¢ > 1. On the other hand by the Lieb-Brézis

lemma [10], lettlng U, = Uy, — U, WE get

2 2
/|Vu|2dx+/|va|2d:c7u/u—2dmfu/ Udeac

Q Q o || o ||

+)\/Qu2d:c+)\/gv72ndx:S_u7>\+0(1).

Let 0 < § and (eny 4+ ) < 1. Applying Lemma 2.1 we get

(1—(cN+5)u)/Q|va|2dx+/Q|Vu|2d:c— / |2d
+ 0= n0(o) |

v?ndx—l—)\/ w?dr < S_, 5+ o(1).
Q Q

Since v, — 0 in L?(£2), we deduce from the above inequality that

/ (|Vul® - MW + ) dz < S_
From this we derive that
S_ux < t2/ (\Vu|2 — NW + Au ) z < S,u)\t?

Since S_,, » < 0, we see that ¢* < 1 which is impossible. Therefore u is a minimizer.

(ii) In asimilar manner we show that if S_,, », = 0 for some A, then there exists
a minimizer v satisfying (21). By the continuity of S_,, x there exists 0 > 0 such that
S_ux < S for A € (=00, Ao +9). Since for every A € (—00, Ao +0) S_,,x is achieved,
S_,.» is strictly increasing and A, is unique. O

5. Eigenvalue problems

We consider two eigenvalue problems (14) and (21). We begin by proving the existence
of the first eigenvalues denoted by A} and A]", respectively.

Proposition 5.1. (i) For every p > 0 there exists the first (smallest) eigenvalue
Ay of problem (14) which satisfies N > pr.
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ii) For every 0 < u < - there exists the first (smallest) eigenvalue \{* of problem
H< 5 1
(21) which satisfies A\{ " < —pr.
Proof. (ii)) We define A\;* by

Jo (IVul?> = “\Z;) dx

A= inf
! ueHll(Isl))f{o} Jo u?dx

Using Lemma 2.1 we verify that A" > —oo. It is clear that A\{" < —pur. Let {u,,}
be a minimizing sequence for A\;*. Then

L9l = iy o =ai o) and [ junPar=1. (22

With the aid of Lemma 2.1 we show that {u,,} is bounded in H!(2). We may assume
that u,, — u in H(Q) and u,, — v in L?(Q). Letting v,, = u,, — u we have

/|Vum|2dgc:/ |va|2dx+/ Vul? dz + o(1),
Q Q Q

u? /v2 w2
M dx M dx +/ dr +
/Q 22 Joalr @ f e oW

/ u? dr =1+ o(1).
Q

Substituting these relations into (22) we get

and

02 2
/Q\va|2dm+/ﬂ|Vu|2dx— " e — u—dx:)\l_“—ko(l). (23)

o lzf? o lzf?

We fix § > 0 so that y+ 4§ < % Then /\1_(“+5) > —o0. Since

2
)\1—(u+6) /Qvfn dx < /Q |Vom|* de — (u+0) |UTQ dz,

we get from (23) that

2
A (“”)/u d:c+5/ U dx+/IVUIde—u/%d$SAT”+O(1>'

From this we deduce that 4 [, ﬁ% dx = o(1), so [, % de — [, % dx. Therefore
by (23) we have

u?
/(|Vu|2—u |2)d:r§)\fu.

Since fQ u?dxr = 1, u is a minimizer for A\, *.
The proof of (i) is similar and is omitted. O
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The proof of (ii) strongly relies on the fact that 0 < p < % We were unable to
show whether A\| " with p = % is attained or not. It is known that the constant A; "
defined on H!(Q) — {0} is not attained for yu = % (see [6], [30]). Also, in the case of

H (), A\T" is positive. Since H'(2) contains constant functions, \;* in our case is
negative.

By Lemma 2.1 —A — W% + C with the Neumann boundary conditions, 0 < p < %
and C' > 0 sufficiently large is a positive definite and self-adjoint operator. Therefore
its spectrum o_, is discrete and consists of an increasing sequence of eigenvalues
" ’C} converging to infinity as j — oo. Eigenvalues {A\;"} of the operator —A—#
are given by A;* = A7 'Y _ C. Eigenfunctions of —A — # can be characterized by
usual Rayleigh quotients. In particular, if ¢ is an eigenfunction corresponding to the
smallest eigenvalue A\]*, then |¢| is also an eigenfunction of A;*. Consequently we
may assume that ¢ > 0 on Q. Applying Theorem 8.19 (the strong maximum principle
for weak solutions) in [22] we can choose ¢ > 0 a. e. on 2. It is easy to show that the
eigenvalue A\] " is simple.

Similarly, the spectrum o, of —A + # is also discrete, each eigenvalue \; and
has a finite multiplicity. The smallest eigenvalue X} is simple. Moreover X — oo
as k — oo.

6. Topological linking

A min-max principle based on a topological linking will be used to investigate the
existence of solutions of problems (1) and (16) in the cases where a parameter A
interferes with the spectrum o, and o_,,. We rewrite both problems in the following
way

{—Au +pu = Aut Q(z)|u* ~2u in Q, (24)
%u(z) =0 on ON.
and )
{8Au - #u =+ Q(2)|ul* 2u in Q, (25)
Sou(r) =0 on 09,

where p > 0 for problem (24) and 0 < u < % = p for problem (25). The range for a
parameter A will be given later. Solutions of problems (24) and (25) will be obtained
as critical points of the variational functionals

1 u? 1 "
Ioa(u) = 2/(|Vu|2+u|2)\u dacf?/QQ(:c)\uF dz

and

1 2
I_H7,\(u)=§/ﬂ(|Vu|2— W—)\u dx——/Q Yul?> d.
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Lemma 6.1. For every ¢ € R, (PS). sequences for both functionals I_, x and I, x
are bounded in H* ().

Proof. First, we consider the functional I_, y. We assume that 0 < p < ci Let
{um} be a (PS) sequence. Arguing by contradiction assume that |u.,|| — co. We

set vy = 2. Since {um} is bounded in H'(Q) we may assume that v,, — v in
H(Q) and v, — v in LP(Q) for every 2 < p < 2*. Then
1 V@

L /Q(wmw ~ U~ M) dr = /QQ(a:nva“%mgz) dz + o(1).

| tm

We deduce from this that
[ Q@ 2upds —o
Q

for every ¢ € H(2). This yields v = 0 a.e. on . Since {u,,} is a (PS). sequence,
we get

1 1 . .
[ (90 = 85— ) = Ll [ @lenl? dz 0
2 || 2 Q

and

2
L 090 = 785 = M) do = 2 [ Q@) do =0

as m — oo. Since v, — 0 in L?(£), these two relations yield that

2
lim <|va2— ||2)dx (26)

m—0oQ [9)

and

lim ||um||2*—2/ Q) |vm|* dz = 0.
m— 00 Q
We now apply Lemma 2.1 with § > 0 chosen so that p(cy +6) < 1. Thus
2
/(|va|2— Um 2)dx>( u(cN—|—5))/ |va|2dx—0(6)u/ 2 dz  (27)
for some constant C(§) > 0. Since v, — 0 in L*(Q), we deduce from (26) and (27)
that lim, oo [, |V, |? dz = 0, which is a contradiction.

We now consider the functional I, y with p > 0. If {u,,} is a (PS). sequence of
this functional, then

3 [ Q@ do = Lurlun) = GTlrltn). ) = e+ ol ) + o(0).
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Hence

/@MMFWSQ+@MM
Q

and

/ u%z dz < Cy + Cao|um]]
Q

for some constants C1,Cy > 0 and all m. These two estimates combined with the
inequality

1/(\Vu 1+ prul,) de < 1/ [Vu |2+,u% dx
2 )" " " -2/ " |z[?

A 1 .
= c+ 7/ u? dx + —/ Q(2)|um|? dz + o(1)
2 Jo 2* Jq
imply that the sequence {u,,} is bounded in H* (). a
To proceed further we set

N N N

z 1 _ S2
Soo,h = min< 5 5 5 3 ) and S p = min <Sm7h, _”NZ>
INQm® NQ,F NQ(0)™=

Proposition 6.2. (i) Let 0 < pu < % and A € R. Then I_, » satisfies the (PS).
condition for ¢ < S’C,o’h.

(i) Let p >0 and X € R. Then I, x satisfies (PS). condition for ¢ < S p.

The proof is straightforward application of the concentration-compactness princi-
ple and is omitted.

We are now in a position to establish the existence results through a min-max
principle based on a topological linking. First we consider problem (24). We assume
that

N <A< A} for some k. (28)
Let E, = span {e},...,e]'}, where ef,... ¢ are all eigenfunctions corresponding
to eigenvalues A} ..., A ;. We have the orthogonal decomposition

HY\(Q) = B @ B}
Let w € Ef — {0} and define a set

M“:{ueHl(Q);u:v—l—sw,veE;,sZO, lu]l < R}.
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Proposition 6.3. There exists a« > 0, p > 0 and R > p (R depending on w) such
that

Ioa(u) > a foral ue E/J[ N oB(0, p)

and
Ioa(u) <0 for ue OM*.

The proof is standard and is omitted.
We now define
Z.=E, ®RU.y = E,, ®RU/,

€Y7

where U/, denotes the projection of U, onto E;}. From now on we use U/, in the
definition of M*.

Theorem 6.4. Suppose that N > 5.

(i) Let Qu < 2%2Q,,. Suppose that (10) and (28) hold. Then problem (24) has
a solution.

(ii) Let Qum > 25°2Q,,. Suppose that Qny = Q(y) with y #0, Q € C*(B(0, p)) for
some ball B(0,p) C Q and D;;Q(y) =0, 4,5 =1,...,N. Then for every p there
exists an integer k(p) > 1 such that for Aj_1 < A < X; with j > k(u), problem
(24) has a solution.

Proof. (i) We follow, with some modifications, the argument on pp. 52-53 in [36].
For u # 0 we have Y
>

1 (fQ(|Vu|2 + ,u% - )\u2) dx)
N (@@l dr)

whenever the integral in the numerator is positive and the maximum is 0 otherwise.
In what follows we always denote by C; positive constants independent of e. It is
sufficient to show that

max Iy, x (tu) =

2
U
me = Sup / (IVul* + p—g = M?) do < ——5=
UEZe,|lull2x ,q=1/Q |5E| ZWQmN
This obviously implies that
ST
sup IH,A(U) < — ~N_z -
ueM INQ?

Ifue Z. and |ju

2%.Q = 1, then
u=u" +sUcy = (u +sU_,)+sUJ,

€Y’
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where U., and U;ry denote the projections of U, on £ and EIJ[, respectively. We
now observe that

[y _
/(IV Ueyl® + " |2<U5,y)2—A(U€,y)2) dz <0,
SO

(|VU P+ ,)?) de < [ MU dr <2 U2 dz = O(2).
||

By the Sobolev inequality, we deduce

2*<cl/(|w;y|2+w( ))da:<01/(|VU P L (U)) de =0
Q

as € — 0. Therefore there exists a constant Co > 0 such that 0 < s < (5 and

[u™ |2« < Cy. Tt follows from the convexity of || - ||3. o that
. . _ 2°—1
1= ||u\|§*Q > ||sUe,y §*7Q—|—2*/ Qu (sUe,y) dx
o
> sUeyli3- g = CsllUeyl13-Z1llu™ [l2.
Hence

[IsUe.y %Q <Cpez 41

Since all norms in £, are equivalent, we see that

/ (Vu~VUey + ——uU, ) da <
Q T e ’

N—2

Ueyl) ™l =0(e = )[[u[l2- (29)

1
< C5([IVUeyll1 + HW

Tt follows from (10) that

1Ue,y

gIQ :Qm/ Ug;dx+0(e).
Q
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With the aid of (29) we obtain
/ (|Vul® + WU — \?) dz

<N — /|u \de—&—O(

Y |l2

U2
+s /(|VU€y2+u|| —\UZ,) dz

= (A =X 3+ 0 (T u |2 (30)

2 Ugy 2
b s /(WU%, UL U2, do

—(A =Xl ||2+0(6 )l |2
fQ(WUﬂ/' +“|x|2 dm 2*/@ U2, da %.
(Jo Q)02 d )*

We now take into account the estimate (9), in order to estimate the ratio term on the
right hand side of (30). We then have

A= N DB+ O u—]2)

S N-2
(—EANQm H(y )—I—o(e)) (1—1—046 3 )
QNQm

for some constant Ax > 0 and the result follows.
(ii) The only change is in the estimating the ratio term on the right-hand side
of (30). First we observe that

/Q WU2 dx = O(e / U2, dx > ci€

for some ¢; > 0 independent of € > 0. Moreover, we have

+

/QQ(x)Uf;dx—QM/UQ dx + o(€?).

Since lim; o A} = 0o, we can find an integer k(u) such for \J | < A < ); and

j > k(p) the term X [, U2, dx dominates u [, #Uzy dz and the result follows. [

We now consider problem (25). We use similar notations as in the case (24).

By {( Y i =1,2,..., we denote the sequence of eigenfunctions corresponding to
elgenvalues e "1 4 =1,2,.... We assume that a parameter \ satisfies

Aty <A< A for some k. (31)
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We set EZ, = span{e,”,...,e; "}, where e;”,... e/" are eigenfunctions corre-
sponding the eigenvalues A;%,... A\, ",. We have the orthogonal decomposition
H'(Q) =E-,®E',. Let we E-, — {0} and define a set

M ={uec H(Q);u=v+sw,ve EZ,, s>0, and |lul| < R}.

Proposition 6.5. Suppose that (31) holds. Then there exists « > 0, p > 0 and
R > p (depending on w) such that

I_ua(u) > a for every ue EX, NOB(0,p)

and
I_,x(u) <0 for every ue OM™H.

Theorem 6.6. Suppose that N > 5.

_ N
(i) Let Soopy = —2%=. Suppose that for some y € O with H(y) > 0 and
2NQp?
Qm = Q(y) we have
Q(y) — Q(z)| =o(lx —y|) for x close to y.

If X satisfies (31), then problem (25) has a solution.

_ N
(i) Let Soo,n = S% . Suppose that Q(y) = Qu with y # 0, Q € C%(B(0,p)) for
NQ
some ball B(O,;)w) CQand D;;Q(0) =0,4,5=1,...,N. If A > 0 and satisfies
(31), then problem (25) has a solution.

iz

S;”N,z and Q € C?*(B(0,p)). Suppose that (31) holds and

(i) Let Seon =
NQ(0) 2
< i—1 and A > 0 and moreover D;Q(0) =0 and D;;Q(0) =0,4,j =1,...,N.
Then problem (25) has a solution.

Proof. The proof of (i) and (ii) is similar to the proof Theorem 24. In both cases we
use w = U, in the definition of M~#. N

S . s
To show that sup,cp;—u I—pa(u) < ﬁ we take w = U} in the definition
NQ(O) =z

of M ~#. By straightforward calculations we verify that
ae® < / (U#)? da < be?
Q
for some constants a > 0 and b > 0 independent of e. Moreover, if u < @ — 1, then

w2 P o T = w2 H o x4+ ofe?
L vvse By ey e = [ (VUL - @) de ot
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and
/(U;L)2 d:v:/ (UM)? da + o(e?).
Q RN

These estimates allow to derive the following inequality
. 2 2 N

JolIVU2P = g (U -y e 5%,

* 2 N—2

(o Q) (U£)" da)™ Q)=

for some constant @ > 0. This obviously implies the desired estimate form above of
I_,, » on the set Z7#. O

7. Critical Hardy-Sobolev nonlinearity

In this section we are concerned with the existence of solutions of the following prob-
lem

Bl

—Au— Ao fu?2u 4 e = Q(x)[ul"u in Q, (32)
%u(x) =0 on 89

We assume that A > 0and g > 0. For0 < a < 2,2} = 2%:‘; is the limiting exponent

for the Hardy-Sobolev embedding H}(Q) — L% (Q,|z|~®) and 2 < ¢ < 2*. Tt is
known that that H!(€) is continuously embedded into L2a (Q, |z|~%). If 2 < p < 2%,
then H!(f2) is compactly embedded into LP(£2,|z|~%). Let

Vul|?d
So= r  dalVeldr (33)
u€HL(Q)—{0} (fg I‘u\laa dx) 2%

The constant S, is independent of 2 and is not achieved if Q # RY. If a = 0, then
So = S. For every € > 0, the family of functions

T2 (N = 2)(N — ) =9
u€(x) = N—2
(2= + |x|2—o¢) 2-a
satisfies the equation
—Au = |z|"%ul* in RY
and is a minimizer for
Se= inf Jon [Vul” dz
T ueHIEY) (fan ul?s|z]— dx)%

We also have

/ \Vue(x)|2dm:/ e ()2 2] do = SFF
RN RN
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It follows from (33) that

[uf?% ) % :
Sa de < | |Vul“dz
o |zl Q

for every u € H1(Q). It is clear that this inequality is no longer true in H*(£2). As in
Section 2 we formulate the following modification of this inequality in H* ().

Lemma 7.1. For every 6 > 0 there exists a constant C(8) > 0 such that

Lo\
/ude—l— (/ || %= dm) 1 .
Q )

Proof. Let ¢ be a function defined in the proof of Lemma 2.1. Then

ks ) ( Jug > ) ( Jul? (1 = ¢%) )
(/ )< (T e

||
g5;1/(|vu|2¢2+2uvu¢v¢+u2\v¢|2) dz + C (/ |u|?a dz) SL(34)
Q Q

2:; 2*
< [ul dm) < (551 +9) /|Vu|2dx+0(6)
Q

for some constant C; > 0. An application of the Young inequality completes the
proof. O

Solutions of (32) will be sought as critical points of the functional

1 25 1
Jo,—p(u) = 3 / (|Vul]* + Au?) dz — 2% ful dx — 7/ Q(z)|u|? dx.
Q @ q.Jq

o |zl

It follows from Lemma 7.1 that the functional J, _, (u) is well defined for u € H'(€2).
It is easy to verify that J, _, is C' and

27 -2
Ui ul)od) = [ (VS04 Nug) do = [ '“'|$a“<z>da:— | Q@ uoda

for every ¢ € HY(Q).
We set

N_2

NG aNger NQO) + 1) T o(N — a)(Q(0) + 1) 2

N N N %
Soo,a,—p = min( 5= s 5 (2= a)pSa ) .

Proposition 7.2. (i) If ¢ = 2*, then the functional Jo, —, satisfies the (PS). con-
dition for ¢ < Seo,a,—p-
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(i) If2 < ¢ < 2%, then the functional Jo —, satisfies the (PS). condition for

c <

(2 - ) Sz
2N =) (Q0) + ) T
Proof. (i) Let {u,,} be a (PS). sequence. Then

1
Ja,—u(um) - §<J<;,—u(um)7 um>

@ [ fuf®
2N —a) Jo J2l°

1 .
dz + —/ Q@) |uml? dz < ¢+ 1+ o( )
N Q

for m > mo. This combined with the fact that J, _,(u,) — c implies that the
sequence {u,,} is bounded in H'(Q). Since {u,,} is bounded in H(2) we may
assume that wu,, — u in H'(Q), L¥ (), L*(Q,|z|~®) and u,, — u in LP(Q) for
2 < p < 0co. On the other hand by the concentration - compactness principle we have

lun|* = ul* + Zl/jéxj + Vodo
JjeJ
and
[Vt |? = |Vul? + Z,ujéx]. + pobo.
jed

[

25
The sequence { \wl“’ } can only concentrate at 0, so we have

R

ez T

Using a family of test functions concentrating at x; (or at 0), we derive the following
relations
pj = Q(aj)v; for z; #0 (35)
and
to = Q(0)vo + pivo. (36)
We now show that all coefficients v; and U, vanish. If v; > 0 for some z; € 2, then

2
by (35) and the fact that Svi" < pj; we get that

Sﬂ
vz (37)
Qz;)=
2
If 2; € 09, then 2%1/7-2* < p; and
% 7.
Sﬂ
vz —— (38)
2Q(x;)>
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Assuming that v; > 0 for z; € Q, then

. 1 1 S
c= mlgnoo J%_M(um) — §<Ja,—u(um)’um> > NQ(xj)Vj 2 T N-2
NQp?

and we get a contradiction. In a similar manner we show that v; = 0 if z; € 0.
We now distinguish two cases: (a) vo < ¥ and (b) 7o < v,. If (a) occurs, then
to < (Q(0) + 1) and by (33) we get

Since

v

N—«o

2(N = a)(Q(0) +p) >

we have arrived at a contradiction. If (b) prevails, then puo, < (Q(0) + p)vs and
consequently
S%
Vo> ————— x5

(Q(0) + 1) -

Again, as in the previous case, we get a contradiction. O

To obtain critical points of J, _, we apply the mountain-pass principle. First
we check that the functional J, _, has a mountain-pass geometry. It follows from
Lemma 7.1 and Sobolev inequalities that

Jo,—p(u) > W/ (|Vu|2 +u2) dx
Q

- [(S’al+5)/ﬂ(|Vu2+)\u2) dx+é<5)/9(|vu|2+u2) dx}

-G (/Q(WW +u?) dx) g

for some constants C'(§) > 0 and C; > 0. Since 2% > 2, we can choose constants
p >0 and o > 0 so that
Jo,—p(u) > a for ||ul = p.
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For every v # 0 in H'(2) we have J, _,(tv) < 0 and [[tv| > p for sufficiently large
t > 0. We now define the mountain-pass level

do,—p = inf max Jo,—u(v(1)),

where
I'={y e C([0,1], H'(2)); 7(0) = (0), 7(1) = v}
with ||v]| > p and Ju,—,(v) < 0.
First we establish an existence result in the subcritical case.

Theorem 7.3. Suppose that 2 < q < 2* if N >4 and 4 < q <6 if N =3. Then for
every A > and p > 0 problem (32) admits a solution.

Proof. According to Proposition 7.2 we must show that

9_ =
da7_u < % (39)
2(N —a)uz-=

We take v = u. in the definition of the mountain-pass level. Since tlim Joo,—p(tue) =
— 00
—00, there exists t. > 0 such that

Jaﬁu(tm Ue) = r{lzagi Jaﬁu(tue)

and i
tellue)? —utf*l/ te dx:tfffl/ Qx)u ' dx.
|7l Q
Hence
2 %
R
€ = 2%
o Iifel‘] dx
and
2%
2-a) ()= /
Jo_u(teue) < — — = x)ul dx. 40
s IJ«( )—Q(N_a) ufa 753 q QQ( ) ( )
(ﬂ Jo 15 dx)
Since N
/ (IVue]* + M2) do = Sq=* + O(€V™*) + A0(€?)
Q

and i

uga N—

/ —dx =S5 +0(" )
a |7
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we deduce from (40) that

2 —« S;:;’
Jo,—p(tette) < ——————F—5 + 2O ) —t? | Q(zx)ud da.
plteue) 2(N —a) 2= (<) Q (@)

We now verify that

/ Q(z)ul dx > beN a7
Q

provided % < g. This condition is satisfied if 2 < g for N > 4 and 3 < ¢q for N = 3.
In both cases we have N — q¥ < 2. Hence

2-a) SZ*
_u(t At
max Jo,—p(ttie) <

for € > 0 sufficiently small. This completes the proof of (39) and the result follows
from the mountain-pass theorem.

O
The assertion of Proposition 7.2 becomes more transparent if Q(0) = 0 (we assume
that Q(z) > 0 for = # 0).

Proposition 7.4. Let ¢ = 2* and Q(0) = 0. Then J, _, satisfies the (PS). condition
for
N N o
. S Sz (2—a)Sq
¢ < min N_z> N_2 N-2
NQ,/ 2NQ,* 2(N—a)u>
We set .
. . S% ST (2—a)Sa ™
Soc,a,—p = Min N-z’ N-z» N—z |
NQ,/ 2NQ,* 2(N—a)u>=
We now consider two cases:

(i) there exists a constant po = o (N, Qpm, Qar) > 0 such that

N—«
o (2—a)Sa*
Soo,oc,fp. = N-—2
2(N — a)p2-=

for p > po.

(ii) there exists a constant pu; = p1 (N, Qprr, @) such that

[ 8% S .
mln( ~ N2> = Se.a—n (42)
NQ,7 2NQ»’
for 0 < p < py.
221
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Theorem 7.5. Let ¢ = 2* and Q(0) =

(i) Suppose that (41) holds for pn > po. Moreover we assume that Q is C? in small
ball around 0 and that the Hessian {D;;Q(0)} is positive definite. Then there
exists A = A(p) > 0 such that problem (32) has a solution for u > . and
0<A<A

(ii) Suppose that (42) holds for 0 < p < py and let « < 1. If Qpr > ZﬁQm,

|Q(z) — Q(y)| = o(|lx —y|) for x near y with Q(y) = Qur, then problem (32) has
a solution for 0 < p < pq and A > 0.

(iii) Suppose that (42) holds for 0 < p < py. If Qu < 273 |Q(z) — Qy)| =
o(lx — y|) for x near y with Q(y) = Qm and H(y) > 0, then problem (32) has
a solution for A >0 and 0 < pn < .

Proof. (i) We proceed as in the proof of Theorem 7.3. There exists t. > 0 such that

2-a) WUW”Q 2/
= <
Jo,—p(tew) Iggf‘]a’ﬂ‘(tue)_Q(N—a ( I —— —t Qz u " da.
”ka

Since {D;;Q(0)} is positive definite, we see that

L+)\O( )7662
@)

for some constant ¢ > 0. We can now find a constant A = A(z) such that for 0 < A < X
and p > fio

N—a
(2—a)Sa°
2(N - a)u% .

(i) We take v = U, with Q(y) = Qp in the definition of the mountain-pass
level. First we observe that

for some constant b > 0. We then have

Jo,—p(te, ue) <

2
Uey dx > be®
q lx

| [eY

*

2 .
1 ([o(IVUey|? + AU2,) dz) =2 UZe
N (fQ Uz* dl‘) 2* 2 2a Q |.’L’|
N 2
(s¥ 2077
= 2 — poe.
(QuST +o0(e)) T
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Since o < 1 the result follows.
(iii) The proof is similar to the part (ii) and we use the asymptotic estima-
tes (9). O

If Q(x) > 0 on Q, then it is rather difficult to verify that the mountain-pass level
is strictly below So ,—,- A rudimentary estimate of the mountain-pass level can be
obtained with the use of a constant test function. First, we observe that there exists
to > 0 such that

Jo,—p(to) = max J, _,(t) <

0<t

o —apapEE 2

min - ” Q(x) dx,
e )

al
1 pepF= e /dm)
N(f,Q@ydr)™= 2 Jalel

Using this inequality, for a given interval [d, A], § > 0, we can find A\, > 0 such that
for 0 <A <A and < pu <A, we have J, _,(t )<Sooa -

Conversely, given an interval (0, A] we can find a constant B > 0, such that for
0 <A< Aandp > B, we have Jo,—,(to) < Soc,a,—pu- In both cases we obtain the
existence of mountain-pass solutions.

8. Critical Hardy-Sobolev nonlinearity, case pu > 0

We now consider the following modification of problem (32)

(43)

—Au + —|u|2 2u+du = Q(z)|ul%u in Q,
3uu(:z:) =0 on 00

with ¢ < 2*. A variational functional for problem (43) is given by

1
o, (1) = 3 /Q(|Vu|2 + Au?) dx + 2% \u| - 7/ Q(x)|ul? dx.

Proposition 8.1. (i) Let ¢ = 2*. The functional J,,, satisfies the (PS). condition

for
( S% 5% )
¢ < min 3 ~ |-
NQ,;/ 2NQ.’

(i) If2 < q < 2%, then J,,, satisfies the (PS). condition for every c.
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Proof. (i) TFirst we show that a (PS). sequence {u,,} is bounded in H'(Q). Indeed,
we have

1 1 1
Jou(tUm) — ?(J&’M(Um>7um> = (5 - 2—*) /Q(|Vum\2 + \uZ,) dz
1 1 «
5y = 37) [, QT de < o 1 olfuml)
[eY Q

for m > m,. This obviously implies that the sequence {u,,} is bounded in H'(Q).
We can also assume that u,, — u in H'(Q), L* (Q), L (£, |z|~*). We also have

| 5 ul® + ) 16, and [V * 5 [Vl + ) pid,,,
jeJ jeJ

[t |20

in the sense of measure. A possible concentration point of { B

family of functions concentrating at z; or 0 we derive that

} is 0. Using a

Qzj)v; =p; if 2; #0 and Q(0)ve = o + Uis.

As in the proof of Proposition 2.2 we show that v; = 0 for every j and the result
follows.

Since {u,,} is bounded in H!(Q) we may assume that u,, — u in H'(Q) and
U, — w in Lk9(2). Writing for n > m

(Jé’u(um) — Jé’u(un), U — Up) = /Q(|V(un — um))? 4+ Mup — um)z) dx

+ /’4/ (|um|2;_2um - |un|2:‘_2un)(um - un)

||

dx

2% -2

U ) (Un — ) dz,

Q
:/Q(x)qum\?*—?um—\un
Q

we deduce that {un,} satisfies the Cauchy condition and the result follows. O

As a consequence of Proposition 8.1 we can formulate the following existence
result.

Proposition 8.2. (i) Letq=2*, 1 <a <2 and Qp < 9n=2 Q- Suppose that
1Q(y) — Q)| = ol —y|)

for x near y with Q(y) = Quar and H(y) > 0. Then for every A > 0 and p > 0
problem (43) has a solution.

(ii) Let ¢ = 2* and Qp > 2572 Then there exists \* > 0 and w* >0 such that for
0< A< A and 0 < pu < p* problem (43) has a solution.
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(iii) Let 2%, < q < 2*. Then there exist A > 0 and ji > 0 such that for 0 < A < X and
0 < pu < i problem (43) has a solution.

(iv) Let 2 < q <2y, Then for every 0 < a < b there exists A > 0 such that for every
a<p<band0 <A<\ problem (43) has a solution (this solution is a global
minimaizer).

Proof. To prove (i), (ii) and (iii) we use the mountain-pass theorem. Part (i) follows
by testing Jo,, with U, , and applying the asymptotic estimates (9). Parts (ii) and
(i) follow by testing J, , with a constant function.

(iv) First we show that J, , is bounded from below on H'(Q2). It follows from
the Young inequality that for every § > 0 there exists C'(§) > 0 such that

|U 2 % _go 222‘:q
/ Q(x)|uldr < Qum (/ - d;v) (/ || 251 dx)
Q o |7 Q

2
ga/ |“||a dz + C(5).
Q

|

Selecting § < 5°- we get

1 2%
Jau(w) = */(IWIQ) do + M? + (5 —5)/ lul™ 4 GO
. 2 Jo 2 o |zl o

This shows that for every a < p < band A > 0 J,,, is bounded from below on Ht (Q).
For ¢t > 0 we have

2|0 t2a—4 d 1
p(t) = 2| |+tq<u x _Q*/Q(x)dx)
Q

J -
2; Jalzl®

First we choose t so small that

utZZQ/ dx 1/
” =5 [ Q@)dr <0
2 olzl® 2% Jo

e

for a < p < b. Then we choose A\, > 0 small so that J, ,(t) < 0. Hence
inf,c g1(Q) Ja,u(u) < 0. The existence of a global minimizer follows from the Ekeland
variational principle. O
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