On the strict convexity of the
Besicovitch-Orlicz space of almost periodic
functions with Orlicz norm

Mohamed MoRSLI and Fazia BEDOUHENE

Faculty of Sciences
Department of Mathematics
University of Tizi-Ouzou
Algeria
Morsli@ifrance.com
fbedouhene®@yahoo.fr.

Recibido: 16 de Julio de 2001
Aceptado: 11 de Enero de 2003

ABSTRACT

The problem of strict convexity of the Besicovitch-Orlicz space of almost peri-
odic functions is considered here in connection with the Orlicz norm. We give
necessary and sufficient conditions in terms of the function ¢ generating the
space.
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1. Introduction

The class of Bohr’s almost periodic functions denoted by {u.a.p} was subject to
different generalizations. In [1], A.S. Besicovitch considered this class in the context
of the Lebesgue LP -spaces. Later, T.R. Hillmann [3] extended the work [1] to the
context of Orlicz spaces, defining the large class of Besicovitch-Orlicz almost periodic
functions.

All this work concerned different aspects of structure and topological properties.
In [5], [6], [7], we characterized the strict and uniform convexity of this space equipped
with the Luxemburg norm.

In this note, we consider the Orlicz norm case and give a characterization of
the strict convexity of this space in terms of regularity conditions on the generating
function ¢.

The results are of the same kind as those known in the classical Orlicz spaces.
The methods are however different in many parts since the Orlicz case arguments are
not valid in our space. We developed specific technical results in this sense.
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2. Preliminaries

2.1. Orlicz functions

Let ¢ : R — RT be an Orlicz function, i.e. it satisfies the following conditions: ¢ is

even, convex, ¢ (u) =0 iff u =0 and linBM =0, lim M = 4o00.
u— 00 u

u— u
The function ¢ is said to satisfy the As—condition when, there exist K > 2 and
ug > 0 such that
¢ (2u) < K¢ (u), Yu > up.

An Orlicz function admits, except on a denumerable set, a derivative ¢ : Rt — Rt
which satisfies ¢ (0) = 0, ¢ (Ju|) > 0 if u # 0, and ‘ llim @ (lu]) = 4o0.

The derivative ¢ is increasing to infinity and moreover (c.f.[8]),

up (u) < ¢ (2u) < 2up (2u) ,Yu >0 (2.1)

From [8], we know that if ¢ is an Orlicz function then, for each € > 0 there exists
an equivalent Orlicz function ¢, with a continuous derivative, such that

(I-e)d(x) <¢1(x) <¢p(x), Y >0. (2.2)

The function ¢ (y) = sup{x|y| — ¢ (z),x > 0} is called conjugate to ¢, it is an
Orlicz function when ¢ is. The pair (¢, ) satisfies the Young’s inequality:

vy < o(x)+¢(y), z,yeR,

Let now ¢ be strictly convex, then (c.f.[2]) : for every k > 0, and £ > 0, there
exists § > 0 such that

o(150) < 1-p 2000

for all u,v € R satisfying |u| < k, |v| < k and |u —v| > €.

2.2. The Besicovitch-Orlicz space of almost periodic functions

Let M (R) denote the linear set of Lebesgue measurable functions on R. The func-
tional,

+T
e M (R) = 0. +00) oo () = T o [ (15 o)
T

is a pseudomodular (c.f.[3], [7]).

The associated modular space,
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B (R) = {f € M (R), lim pps (af) = 0}

is called the Besicovitch-Orlicz space (c.f.[3], [8]).
This space is usually equipped with the Luxemburg pseudonorm (c.f.[3],[8]),

11l e Zinf{k >0, ppe (%) < 1}7 f € B® (R)

Let P be the linear set of all generalized trigonometric polynomials, i.e.;

P = {P(t):ZakeXp(i)\kt), M €ER, ap € C, kEN},

k=1

The Besicovitch-Orlicz space of almost periodic functions denoted by B%a.p. is the
closure of P in B? (R) with respect to the pseudonorm ||| 54 :

B%a.p. = {f € B*(R),3p, € P,n=1,2,...; s.t. lim ||f — Pnllge = 0}

From [3], [8], we know that ¢ (|f|) € B'a.p. when f € B%a.p. and from a classical
result in [1] we deduce the existence of the limit in the expression of pgs (f), i.e. :

ppe (f) = lim —/¢> F®))dt, f € Bap.

We denote by {u.a.p} the classical algebra of Bohr’s almost periodic functions or,
what is the same, the closure of P in the uniform metric. We know that ¢ (|f|) €

{u.a.p} when f € {u.a.p} (c.f.[1]).
Furthermore, from [1] we know that M (|f|) > 0 if f € {u.a.p}, f # 0, where

M(f) = hm—/f

T— 400 2T

For each f € B%a.p., we define the Bohr’s transform of f, a (\, f) = M (f exp (i\t)),
A € R. There is at most a denumerable set {A1, Ag, ..., Ay, ...} of values of A € R for

which a (A, f) # 0, (c.f.[1],13],[8]) -

Questions concerning the convergence of the formal Fourier series

S(f)(x) =Y a(An, f)exp (iAnz)

n>1

are not trivial and only partial results are available.
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The Bochner approximation result will be of importance in the sequel :
For f € B%a.p., there exists a sequence {o,, (f)}, m > 1 of generalized trigono-
metric polynomials ( the Bochner-Fejer’s approximation polynomials ) of the form,

o (1) (@) = 3 e s £) exp (IN) - (e-1-(1], 3], [7)
k=1

where the convergence factors {fm,, } depend only on the exponents A\, & > 1 of the
function f and are such that 0 < gy, < 1.
The sequence {o,, (f)} satisfies moreover these fundamental approximation prop-

erties (c.f.[3],[7]) :
() llom (Nlige < 1 fllgs»m =1,2,... (and ppo (om (f)) < ppe (),
(2) 0w (/) = fll o —0 when m—o0 (a > 0, pge (a (o (f) — F) — 0 as m—oc).

Let us mention that ||.|| 5, is in fact a norm on {u.a.p} .
To end this section, as usual in such spaces, one may define in the space B%a.p.
the following Orlicz pseudonorm,

£l gs = sup {M (|fg]).g € BYap.,pps (9) <1}.

3. Auxiliary results

A sequence {fr}i>;, fx € B?(R) is called modular convergent to f € B? (R), when
Jim ppo (fr = f) = 0.

Let ¥ (R) be the ¥—algebra of Lebesgue measurable subsets of R. We define the
set function

+T
o — 1 1
M(A)legoﬁ/XA(t)dthlggo i (T, +TINA)
-T

where x4 denotes the characteristic set function of A € ¥ (R).
Clearly, @ is null on sets with u—finite measure. Moreover, & is not o—additive.
As usual, a sequence of ¥ —measurable functions { fz},~, is called i— convergent
to f when, for all € > 0, B

T i {t € R, |fic(#)  f ()] > €} = 0.
From easy computations we can show the following

Ve > 0,30 >0, VAe X, (A) >e=|xallgs > 0.
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Let now {4;},~,,4; € ¥ besuch that A;NA; =0ifi#jand J A; C[0,a],a <
= i>1

Put f = > a;xa, with > ¢ (a;) p(A;) < o0 and let £ be the periodic extension of

i>1 i>1
f to the whole R (with period 7 = 1). Then, there exists a sequence { P, },. <1 , Pm € P
such that -

PR (f—4Pm> — 0asm — 4oo. (c.f.[5]) (3.1)

Now, we state some technical results that will be used in the sequel :

Proposition 3.1. (c.f.[5],]6], 7))
Let {fx}y>1 be a sequence of functions from B? (R). We have the following :

(1) If f € B? (R) is such that klim pps (fr — f) = 0 and there exists g € B?.a.p.
for which max (|fi|, [ f]) < g, then lim ppo (fi) = ppo (f)-

(2) If f € B®.a.p. and {P,} is the sequence of Bochner-Fejer’s approzimation poly-
nomials associated to f we have, lim ppe (Pp) = pge (f) and lim ||P,| s =

1£1l 3o

(3) If f € B%.a.p. is such that lim pgs (f,, — f) =0, then

(a) Lm pps (fr) > p(f).

k—o0o

(b) {fk},Ql is u—convergent to f.

Proposition 3.2. Let f € B%.a.p. with ||f||gs = 1. Then the following conditions
hold true :

(1) There exist real numbers 0 < a < [ and 6 € ]0,1[ such that for the set G =
{teR, a<|f()| < B} we have i (G) > 6

(2) If{fn}nzl , fn € B?.a.p. is a sequence modular convergent to f, we have i (G,,) >

01, Vn > ny, where G, = {t eR, ay < |fn ()| < P1} and a1 = %, 61 =

0
% + 4, 0, = 2’ with o, 8 and 0 from part 1.

Proof.
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(1) The proof will consist of two steps.

Let us show first that taking 6 € ]0, 1[ there exist 3 > 0 and Tp > 0 such that
for all T' > Ty there holds :

p(GN[=T,T)) > 0.2T where G={t R, |f(t)| < B} (3.2)
For, let 6 € ]0,1[, take 3 > 0 such that ¢ (8). (1 — ) > 2. Supposing that (3.2)

is not true, there will exist a sequence (7,),,>,, increasing to infinity for which
1 (5 N [T, Tn]) < 6.2T,, and thus,

Tn
1 1 1
o [etma = o [ etfae g [ e
—Tn (GN[-T,T2)) GN[=T,Ty]
1
> o | elma
G°N[=Ty,Ty]
1 _
> Eqﬁ(ﬁ).(l—@).QTn

> ¢(B).(1-0)>2

(Here the notation G is used for the complementary of G )-

T’!‘L

Finally, since the limit lirf 57— | o (|f])dt exists and is finite, we will get
n—+oofin _n

—4in

ppe (f) > 2. A contradiction.

Let now & € ]0, 1] then, there exist 6 € 0, 1[ and T > 0 such that
" (é N[-T, T]) <0.27 for T > T, (3.3)

where G = {t € R, |f (1) <¢™' (1-4)}.

For, let {P,},~, be the sequence of generalized trigonometric polynomials
that converge to f ie., ||f — Py|lge — 0, when n — oo. Take Ps such that

pge (2(f — Ps)) < g Since Pj is uniformly bounded, put M = sup¢ (2 |Ps (t)])
R

J
and let € > 0 be such that 5+ Me < 4. Suppose now that (3.3) is not true.

Taking 0 =1- e, there exists a sequence {7}, -, increasing to infinity for
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which g (é N [—Tn,Tn]) > 5.2Tn, Vn > ng and then,

Ty
1 1 1
o [etma = o [ etmae g [ e
~Tn (GN[-T.Ta]) GeN[=Tn, T
1
< (1- _—
< -9ty [ el
GeN[—Tn,Ty]
and since,
= euma
275,
GeN[—Ty,Ty]
< e | eew-mhasg [ e@ippa
o 2T, s 2T, 5
écm[anan] écﬂ[an,Tn]
16 1)
< |24+ Me| <t
= 2{24— 5}_2

Tn 5 )
we get finally 50— [ ¢ (|f]) dt < 1—5 and then pps (f) < 1—5, a contradiction
T,

with PBe¢ (f) =1.

We now show the result 1 of the proposition. Let § € ]0,1[, put o = ¢~ (1 — 4)
and consider the set G = {t € R, a < |f (t)| < 8} where § is the constant from
(3.2) more precisely :

Choose 6 as in (3.3) then take 6 > 0 as in (3.2) and finally 3 > a as in (3.2).

n

We get
GN[=T.T] = {te[-T.T], [f ()| <o} U{te[-T.T], |f ()] = 5}
(é N[-T, T]) U (@C N[-T, T})
and then,

u(GNI[=T,T])

A
=
/N
@)
D
T
N
~
N—
+
=
—
a
D
R
~
=
N—
IN
Nl
[N}
N
+
_
|
\SEI
N
N

IN
/N
—
|

|
+
)
N—
[\
|

Finally p (GN[-T,T]) > (5 — 5) 2T for T > Tp and the proof of 1 is finished.
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0
(2) Take oy = %, pr = %Jrﬂ and 0; = 3 then, since {j’n}n21 is modular convergent

to f it is also i— convergent to f (see 3 of proposition 3.1), it follows then

ﬁ{teR, [ (t) — £ ()] > %} < g for n > no.

Putting F,, = {t ER, |fn(t)—f@)] > %} , we will have G\ F,, C G,,, Vn > nyg.

Indeed, if t € G\F), then a < |f(t)] < B and |f, (t) — f(1)] < %. Moreover,

from the inequalities, |f (t)| — [fn () — f ()] < [fu (O] < |fu (O) = f (O] + 1 (D)
we get, ay < |fn (£)] < By, ¥n > ng, and thus t € G, Vn > ng.
Finally,

V> .71 (G) 2 7L (G\E) 2 T (G) ~ T (E) 20— 9 = 6,

The assertion follows immediately.

Lemma 3.3. Let f € B%a.p. and E € . Then, the function

F:]0,+00[ = R, F'(A) = py (fXTE>

is continuous on |0, +oo].

Proof. Let A\g > 0 and {\,} be a sequence of scalars such that lim A\, = X\g. We

n—oo

have

prs (fxE) — 0 when n — oo.

EREE RN DA

S ATy R el PEEY
1 ) 1

It follows that {)\ fx E} is modular convergent to * fxe-
n 0

Moreover, we have

1 1
max <— IfIxe, ~ |l XE) < A|f| € B%a.p.
|An] Aol

for some constant A > 0.
From lemma 3.1, it follows directly that

lim pps Ixe = pre IXE
L OB N, PB B

Which means that F' is continuous at Ag [ |

Proposition 3.4. Let f € B®a.p., || f|l gs # 0 then,
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(1) 1fllpo = inf {1 (14 e () > 0.

Moreover, there exists kg € K (f) = {k >0, flllge =

_
(%) P (||f|||3¢) =1,
() 17le < 11F1Lge <211 Fllps -

1+ pse (kf))}-

el

Proof. Let us note that by arguments similar to those used in the Orlicz space case,
we may show that,

If1llpe <21 fll 5o - (3.4)
(1) From the Young’s inequality we have
1 1
M (5l = M (kfgl) < T loge (k) + pio (0)], k> 0.
and then,
) 1
5100 < jut { 3 0+ oo (61 (35)

For the opposite inequality, we proceed in several steps :
We suppose first that the derivative ¢ of ¢ is continuous.
Let P € P, then there exists ko € ]0, +o0[ such that,

1
I1Plls = - (1+ pie (kaP))

For, define the function F : [0, 4o00[— [0, +oo|, F (k) = pge [¢ (kK |P (t)])],
we claim that klim F (k) = +o0. Indeed, if P # 0, from proposition 3.2, there

exist «, 3,0, with 8 > o > 0 and 6 € (0,1) such that 7 (G) > 6 where G =
{t e R, a < |P(t)| < SB}. It follows then,

T T4 2T
[-T,+T)NG

ppelip (kIP)) = Tm / Y (e (kP (2)]) de = 0.4 [ (ka)].

Then, since an Orlicz function increases to infinity with it’s derivative (c.f.[2], [8]) ,
we get klir{:oF (k) = +o0.

We now show that F' is continuous. For, let ky € ]0,+oo] and {k,} be a
sequence of scalars converging to kg. Since a trigonometric polynomials is uni-
formly bounded, we put |P|., = M. Let ¢ > 0 be arbitrary, since ¢ is uni-
formly continuous on the interval [’“2—0, %] there exists ng such that n > ng =

lo (kn |P]) — ¢ (ko | P])] < Pt (e) and then
ppv @ (kn |P|) — ¢ (ko |P|)] <e. (3.6)
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Let us put f, = ¢ (k,|P|) and f = ¢ (ko |P|) then f, € {u.a.p.} and f €

{u.a.p.}. Since ¢ is increasing, we have moreover f, < ¢ (2kg |P|). Now, from

(3.6) we have lim pge (f, — f) = 0. Finally, in view of proposition 3.1, we

get lim ppe (fn) = ppe (f) and then F is continuous at kg. Consequently,
n—oo

since F'(0) = 0 and klim F (k) = 400, there exits kg € ]0,4o00[ for which

ppv [ (ko |P|)] =
Considering the case of equality in the Young’s inequality we get :

I1Pllge > k—loMukoP\.w(kowD)
> ki (pe (KoP) + pie [0 (ko [P))])
> (oo (BoP) +1)
0

and finally, combining this with (3.5), it follows that

P11 = jnf {5 (ome GP) 4D f = - e (00P) 41 (3)

To prove this equality in the general case of f € B%a.p., let { P, } be the sequence
of Bochner-Fejer’s polynomials of the approximation of f. From (3.7) we know
that, ¥n > 1,3k, € ]0,4o0[ such that

1
Pl = { g (14 o (P | (3.5
from (3.4) and the properties of the Bochner-Fejer’s polynomials (see (1) of 2.2)
we get,
1
7 S Palllpe < 2([Pullpe < 211fllpe -
1
and thus k,, > 2 ||fH = ¢; > 0. Let us show that &k, < cg, Vn > 0 for some
B

constant co. Indeed, if this is not the case there exists a subsequence denoted
by {k,} increasing to infinity and then

1 = ppvlp(kn|Pnl)]
> _—
> Tgrfooﬂ/w (ko | P (2)])) iz
2 911[)[ (knal)] njmoo
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where G,,, 01, a; are defined in proposition 3.2. A contradiction.
Now, since the sequence {k,} is bounded, there exists a subsequence denoted
by {k,} that converge to some ko with 0 < kg < 4+o00. Let us show that

nILH;Ode’ (knPp) = ppe (kof) -

Indeed, we have by (1) of 2.2,

oo (enPa— kof) < Sppe 2k — ko) Pa) + 3 pie (2o (Po — £)

< Jkn — kol pie () + 5050 (2ho (P — 1)

and then lim pps (k,Pn — kof) = 0. Now, in view of proposition 3.1 it follows
that lim pgs (knPn) > ppe (kof). On the other hand, from the inequality

PB¢ (knpn) < PBo (knf)a we geta

n@opm (knPpn) < n@opm (knf) = lim ppoe (knf) = ppe (Kof)

and then,
n@opB(b (knPn) < PB¢ (kof) < h_m PBe (knpn) ’
ice. im ppo (knPn) = ppe (kof)

Finally, letting n — oo in (3.8) it follows

171 = 5 (pe (Fof) +1). (59)

Consider now the case of a discontinuous ¢. From [8], we know that for each
€ > 0 there exists an equivalent Orlicz function ¢; with continuous derivative
(1, more precisely

(1-¢g)¢(x) <d1(x) <¢(x), 220

We have also ( see [3] ) B%a.p. = B%a.p. as sets and one sees easily that

(1—¢)ppe (f) < ppar (f) < ppe (f), [ € Bap. (3.10)

The same inequality holds for the corresponding norms.
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Now, since (3.9) is true for ¢y, using (3.10) we get,

{7 s e+ 0} < g {3 (Foom ) +1) )

1 1
< ot { ko 60400}
1
< e
1
< Al .11

Finally € > 0 being arbitrary and recalling (3.5), this proves that (3.9) holds in
the general case as well.

(2) Suppose first that ¢ is continuous and f € {u.a.p.}, f # 0. Let g € B%a.p.

then,

(i) if ppe (9) <1, we have M ([ fg]) < [[|f]llgo -

o . g 1

ii) if pge (g) > 1, we will have p ( > < ppv (9) = 1 and
182 (0 2 o @) = oo @

then M (‘ L ') <11l -

It follows that in all cases we have,

M (|fgl) <max (1, pgs (9)) - [l flllge -

Suppose now that g = ¢ (ﬁ), then g € {u.a.p.} and using the case of
B¢

equality in the Young’s inequality and the fact that in this case the limit exists,
we may write

f
M <4
(‘ /150 ?

so that we get pgs (L> <1
171l o

To consider the general case of f € B®a.p., let {P,} be the sequence of Bochner-
Fejer’s polynomials of the approximation of f, we have :

Py
12l o

But, in view of proposition 3.1 and (1) of 2.2, we can write :

> = ppe <||f|f“3¢> + ppv (9) < max (1, pps (9))

e = jut {5 (0 oo (6P < fut {31+ pme 60 = 1

k>0
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so that,

PBe \ e ) SPBe \ i ) S b
MMl A

and then by (3) of proposition 3.1 it follows pge (W) <1
B

In the genaral case of a discontinuous ¢, we use the inequalities (3.10) to obtain

e N0
poe (IIIfIIIm) = o (|f|||B¢1> = Poe ((1 =) ||f|||B¢1)

Finally, using lemma 3.3 we get

(i) e () e () =
& (Ilflllm = \ T e )~ 2 e ) =

(3) We have, ppge (
(3.4) we get,

4|f|f|| ) < 1 and then ||f||zs < |l|f|ll g+ - Finally, in view of
B

1 llze < Wflllpe < 21/l s -
|

Proposition 3.5. Let f € E? ([0,1]) where E? ([0,1]) is the Orlicz class of functions

E?([0,1]) = {f measurable s.t. py (\f) < +oo, YA > 0},

1
where py (f) = [ ¢ (|f]) dp is the usual Orlicz modular. Then,
0

1. Iff is the periodic extension of f to the whole R ( with period T = 1), we have
f € B%.p..
2. The injection i : E® ([0,1]) — B%a.p., i (f) = f is an isometry with respect to

the modulars and for the respective Orlicz norms.

Proof.

1. Let f = > aixa, AinA; =0ifi # jand J A, C [0,0],0 < @ < 1. Let
i=1 i=1
m € N\ {0}, since > ¢ (ma;)p(A;) < +oo, it follows from (3.1) that there
i=1
exists P,, € P ( the set of generalized trigonometric polynomials ) for which

- 1 ~
ppo (% (f — Pm)> < — where f is the periodic extension ( of period 7 = 1)
m
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of f to the whole R.
Let A > 0 be given and mg € N\ {0} such that A < % then,

por (7)) <om (2 (7 1)) < vz

This means that lim Hf— PmH =0,ie. fe Ba.p..
m——+00 B¢
Consider now the general case of f € E? ([0,1]). It is known (see [2]) that the
step functions are dense in E? ([0, 1]) , hence given ¢ > 0, thereisa g. = > a;x 4,
i=1
for which [|g. — fl|, < Z Since f is absolutely continuous, we may choose § > 0
such that p(A4) <6 = [|fxal, < §- We take a > 0 with 1 —a < § and put
n

A¢ = A;0[0,a], i =1,n. Let g& = Y a;xae then g € E?([0,1]). If f and g

i=1
are the respective periodic extensions ( with period 7 = 1) of f and g2, we will
have,
|F-a2),, = Ir—g2i,
< (=9 xpally, + 10 = 92) Xtamll,
< Nf=gelg+ H,fX[a,l]H¢
< € L e €
T 4 4 2
Now, since §& € B?a.p. there exists P. € P for which [|g® — P.| gs < g
Finally,
|F=r|,, <||F-a2] .+l - Pllpe < 5+ 5 ==
ie. fe Ba.p.

2. Tt is clear that i : E¢ ([0,1]) — B%a.p. is a modular isometry.
The fact that it is also an isometry for the Orlicz norms follows immediately
since

510 = jut {5 0+ o e | = pnt {5 (15 ome (1)) b = ||

Bé
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4. Strict convexity of the space B%a.p.
Now, we can characterize the strict convexity of the space B%a.p..

Theorem 4.1. The space B®a.p. induced with the Orlicz norm is strictly convex if
and only if the function ¢ is strictly conver on R.

Proof. Sufficiency. Let f,g € B%a.p. be such that [||f||ze = ll|gl]l 535 = 1 and
Ilf—glllge > 0. For s € K(f) and m € K (g) we have |||sf —mg|||g. > 0, since
in the contrary case we will get [||sf|||gs = |llmgl||lzs and then s = m so that
Ilf — glll g» =0, a contradiction.

Now by proposition 3.2 there exist @ > 0 and 6 € (0,1) such that for the set
G={teR,|sf(t) —mg(t)| > a} we have i (G) > 6. It follows from this,

ppe (sf —mg) > ¢ () 7 (G) = ¢ () .0 > 0.

1
Let k> 1 be such that 7z (A) > — = ||xallgs > z and define the sets,

= >

Ar={teR|f®)] =k} ; A2={teR,[g(t)| =k}
we have,

L=llflllge = Ifllgs = lfxa1ll 5o = FlIxa: ]l po

1 0
ie. |xallgs < z and then i (A1) < T By similar computations we get also fi (Az2) <
0
1

From the strict convexity of ¢, there exists § > 0 such that,

¢(ru+(1—r)jv) < (1 =0)[rd(u)+ (1 —7)¢(v)]

1 b
for each r € [1—_'_1), b—i——l} and |u| < bk, |v| < bk, |u —v| > r where b = max (s, m).
1 b
Since . —im and S _Tm are in L—M, l)—i——l] , we will have for t € G\ (A; U Az),

o (St ram) <09

stm (mf (H) + ——6(sg(®)|  (41)

S
s—i—m(b
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Then using the results in proposition 3.4 it follows,

2~ £+ 9lll o
> %(14-,0305 (Sf))+%(1+PB¢ (mg))—S:—mm (1+PB¢ (Si—mm(f+9))>
> TETooﬁ_T [Sfm¢(sf(t))+sjm (mg(t))aﬁ(simm (f(t)Jrg(t)))}dt
>l oo +T[§<z><sf (00 + 20 (mg 1) at
§ %ETOO%;TVW )+ (g (t))} u
% 11 |sf (t) —mg (1)]
= ?TETOOQ—_/ Mfﬂ‘“
S [ ()

(G\(A1UA2))N[-T,T]
20 s/« 0 s/«
> Zo(=)nm >—o(=). .
> 20(5)rE\ () 2 20 (5) 00

and then, B®a.p. is strictly convex.

Necessity: The strict convexity of ¢ is necessary for the strict convexity of the Orlicz
class E% ([0,1]) (c.f.[2]). Using proposition 3.5, we deduce that is also necessary for
the strict convexity of B®a.p.. ]
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