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ABSTRACT

In this work we investigate a mathematical model for small vertical vibrations

of a stretched string when the ends vary with the time t and the cross sections

of the string is variable and the density of the material is also variable, that is,

� = �(x). It contains Kirchho� model for �xed ends. We obtain solutions by

Galerkin method and estimates in Sobolev spaces.

2000 Mathematics Subject Classi�cation: 74H45.
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1. Introduction

In the present article we investigate, from the point of view of mathematical analysis,
a model for small vertical vibration of a stretched elastic string when the ends of the
string are variables and its material is not homogeneous. In order to make clear the
hypothesis we, �rst of all, deduce the model.

In fact, let us consider a Cartesian orthogonal system of coordinates in R
2 ,

(x; 0; u). We suppose the string on the ordinate 0x, with ends 0 < �0 < �0 and

suppose �0 , �0 has small displacements 0 < �(t) < �0 < �0 < �(t). Thus, at time t,
the lenght of the string is [�(t); �(t)] which is a deformation of the rest position [�0; �0].
The vertical displacement of the point x 2 [�(t); �(t)], at time t, is represented, in R2 ,
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by u(x; t). The problem is to �nd a mathematical model for the small displacements
u(x; t).

We suppose u(x; t) twice continuously derivable with respect to x and t. The

hypothesis of small deformations means

����@u@x
���� � 1, i.e. the gradient of deformations

u(x; t) is small.
Let us denote by �0 the initial tension of the string at the rest position [�0; �0];

by �̂ (t) the tension of the string in the position [�(t); �(t)] which is the deformation
of [�0; �0] and by �(t) the tension of the curve deformation u(x; t) of [�(t); �(t)]. The
tension at each point of the curve u(x; t) is a vector that has the direction of the
tangent vector of this curve at this point and has modulus �(t). Thus its vertical
component is

�(t) sin �;

where � is the angle of the direction 0x with the tangent vector. From the hypothesis
of small deformations we don't consider the horizontal component of the tension. We

have sin � � tg � =
@u

@x
� Thus the vertical component of

��!
�(t) is

�(t) sin � = �(t) tg � = �(t)
@u

@x
�

The variation of the tension generates a force and by second Newton's Law, we obtain

@

@x
(�(t) sin �) = m

@2u

@t2
;

where
@2u

@t2
is the acceleration of the deformation u(x; t) and m is the mass of the

string. We have

m
@2u

@t2
= �(t)

@2u

@x2
� (1:1)

Calculus of the Tension �(t).
We calculate the tension �(t) in function of �(t), �(t), u(x; t). In fact, by Hooke's

Law, we have

�̂(t)� �0 = k

(t)� 
0


0
; (1:2)

where 
(t) = �(t) � �(t) is the lenght of [�(t); �(t)] and 
0 = 
(0) = �0 � �0 the
lenght of [�0; �0].

If we represent by S(t) the lenght of the arc of the curve u(x; t), deformation of
[�(t); �(t)], we obtain:

S(t) =

Z �(t)

�(t)

s
1 +

�
@u

@x

�2

dx �
Z �(t)

�(t)

 
1 +

1

2

�
@u

@x

�2
!
dx:
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By hypothesis of small deformations

����@u@x
����� 1. Thus

S(t)� 
(t) =
1

2

Z �(t)

�(t)

�
@u

@x

�2

dx:

By Hooke's Law we obtain

�(t)� �̂ (t) = k
S(t)� 
(t)


(t)

or

�(t) � �̂ (t) =
k

2
(t)

Z �(t)

�(t)

�
@u

@x

�2

dx (1:3)

From (1.2) and (1.3) we obtain the tension �(t)

�(t) = �0 + k

(t)� 
0


0
+

1

2
(t)

Z �(t)

�(t)

�
@u

@x

�2

dx (1:4)

Substituting �(t) given by (1.4) in (1.1) and dividing by m, we obtain

@2u

@t2
�
 
�0

m
+
k

m


(t)� 
0


0
+

k

2m
(t)

Z �(t)

�(t)

�
@u

@x

�2

dx

!
@2u

@x2
= 0 (1:5)

This is a model for small vertical deformations u(x; t) when the ends of the string are
not �xed, that is, it has small displacements �(t) < �0 and �(t) > �0 .

Remark 1.1. If we suppose the extremes of the string �xed, that is, �(t) = �0 ,
�(t) = �0 for all t > 0. The model (1.5) reduces to

@2u

@t2
�
 
�0

m
+

k

2m
0

Z �0

�0

�
@u

@x

�2

dx

!
@2u

@x2
= 0 (1:6)

proposed by Kirchho� in 1883, (cf. Kirchho� [11]). The mathematical aspects of
this model were largely investigated. See, for example, Arosio-Spagnolo [1], Bernstein
[3], Dickey [6], Hazoya-Yamada [9], Lions [14], Pohozhaev [21], [22], [23]. A survey
of the results about the mathematical aspects of Kirchho� model can be found in
Medeiros-Limaco-Menezes [19], Part one. See also Milla Miranda-Jutuca [20] for
non homogeneous boundary conditions. For explicit solutions in dimension one see
Ebihara-Tanaka [7], for blow-up Bainov-Minchev [2].

Remark 1.2. When we suppose the tension constant, equal to �0 , we don't have the
nonlinear contribution in (1.5) and it reduces to

@2u

@t2
� �0

m

@2u

@x2
= 0 (1:7)
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very well known as d'Alembert model (1743), (cf. L�uzen [17]).

Remark 1.3. For the case of variable ends it was investigated, initially, by Limaco-
Medeiros [13], Medeiros-Limaco-Menezes [19], Part two and Limaco-Medeiros [12], for
membranes. For numerical experiments see I-Shih-Liu & Rincon [10].

Remark 1.4. Note that in the model above k = aE where a is the area of the cross-
section of the string and E the Young's modulus of the material of the string. In the
mathematical investigations above cited this cross-section supposed to be constant.
The same for the density, that is, the mass per unity of lenght. In the present article
we investigate, from the mathematical point of view, the model (1.5) when the cross-
section depends on the ordinate x and, consequently, the mass per unity of lenght
depends also on x. In general, we will consider a mathematical model of the type

@2u

@t2
� cM

 
x; t;

1


(t)

Z �(t)

�(t)

�
@u

@x

�2

dx

!
@2u

@x2
= f̂(x; t); (1:8)

for �(t) < x < �(t), t � 0 and cM(x; t; �) a function for �(t) < x < �(t), t � 0 and
0 < � < 1. Note that the models (1.5), (1.6) and (1.7) are particular cases of (1.8)

when we specify cM(x; t; �).
Rivera-Rodriguez [24] and Frota [8] investigated a mixed problem for (1.8) but

they generalized only the Kirchho� model (1.6) when k = k(x) and the mass per unit
of lenght depends on x too. They did not considered the moving ends as will be done
in the present investigation.

In Section 2 we will �xe the notations and the assumptions on cM(x; t; �), �(t),

�(t), f̂(x; t) and formulate a mixed problem for (1.8). In the Section 3 we prove the
theorems of Section 2. At the end of the article we have a small list of references.

2. Notations and Statements of the Main Results

We represent by bQ the noncylindrical domain of R2 de�ned as follows:

bQ = f(x; t) 2 R2 j �(t) < x < �(t); for all t � 0g:

The lateral boundary b� of bQ is de�ned by

b� =
[

0<t<T

f(�(t); �(t)) � ftgg

for all T > 0.
Let us represent by bL the operator acting on real functions u(x; t) de�ned in

(x; t) 2 bQ, by
bLu(x; t) = @2u

@t2
� cM

 
x; t;

1


(t)

Z �(t)

�(t)

�
@u

@x

�2

dx

!
@2u

@x2
�
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Thus, we formulate the mixed problem for bL in bQ as��������
bLu(x; t) = f̂(x; t) in bQ
u(x; t) = 0 for (x; t) 2 b�
u(x; 0) = u0(x);

@u
@t
(x; 0) = u1(x) in �0 < x < �0 :

(21)

We need hypotheses on cM(x; t; �), �(t), �(t) and f̂(x; t).
The notations and results on Sobolev spaces are contained in Lions-Magenes [16],

Lions [15] and Brezis [4].
In fact, for 
 = (0; 1) we consider the Hilbert spaces L2(
) and H1

0 (
) with scalar
product and norms denoted, respectively, by ( ; ), j � j and (( ; )) jj � jj) de�ned by

(u; v) =

Z 1

0

u(y)v(y) dy; juj2 =
Z 1

0

u2(y)dy; for all u; v 2 L2(0; 1)

((u; v)) =

Z 1

0

@u

@y

@v

@y
dy; jjujj2 =

Z 1

0

�
@u

@y

�2

dy; for all u; v 2 H1
0 (0; 1):

Note that

H1
0 (0; 1) =

�
v 2 L2(0; 1); @v

@y
2 L2(0; 1); v(0) = v(1) = 0

�
:

All derivatives are in the sense of distributions.
We also consider 
t = (�(t); �(t)) and the spaces L2(
t) and H

1
0 (
t).

We observe that when �(t) < x < �(t), 0 < t < T , we have

y =
x� �(t)


(t)
; 0 < t < T

and 0 < y < 1. Thus, when (x; t) varies in bQ the point (y; t) varies in the cylinder
Q = (0; 1)� (0; T ). Therefore, we de�ne a mapping

�: bQ! Q (2:2)

such that �(x; t) = (y; t), with y =
x� �(t)


(t)
�

In order to transform, by �, the operator bLu(x; t) to obtain an operator de�ned
for functions v(y; t), with (y; t) 2 Q, we need certain assumptions.

We consider cM(x; t; �) a numerical function de�ned for x 2 
t = (�(t); �(t)),
t 2 (0; T ) and � 2 (0;K), K any positive number. Suppose

(cM1) cM(x; t; �) and @cM
@� (x; t; �)

are continuous in t, � and measurable in x.
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(cM2) cM(x; t; �); @cM
@x

(x; t; �); @cM
@�

(x; t; �)

belongs to L1(
t � (0; T )� (0;K)) for all K > 0.

(cM3) cM(x; t; �) � m0 > 0 for all x 2 
t ,

t 2 (0; T ), T > 0, � 2 (0;K) for all K > 0.

(H1) �; � 2 C2([0; T ];R); �(t) < �0 < �0 < �(t),

any T > 0, �(0) = �0 , �(0) = �0 ,

(H2) �0(t) < 0; �0(t) > 0 for all t 2 [0; T ];

�0(0) = 0, �0(0) = 0. Set 
(t) = �(t)� �(t) and suppose


0(t) � Æ

12

0 ;

Æ > 0 de�ned by (2.5) and 
0 = 
(0).

(H3) j�00(t) + 
00(t)yj � j�0(t)+
0(t)yj2

 ; 0 � y � 1, for all t 2 [0; T ].

Remark 2.1. We have �0(t) < 0, and 0 < y < 1. By the de�nition of Æ, see (2.5),

we have Æ <
3
p
m0


0
what implies for all t � 0 and 0 < y < 1

j�0 + 
0yj <
p
m0

4
� (2:3)

Now we will transform, by means of (2.2), the noncylindrical mixed problem (2.1)
into a cylindrical mixed problem.

Set v(y; t) = u(x; t), for y =
x� �(t)


(t)
� With this change of variable the operator

bLu(x; t) is transformed into Lv(y; t) de�ned by

Lv(y; t) =
@2v

@t2
� 1


2

�
M

�
y; t;

1


2
jjv(t)jj2

�
� m0

16

�
@2v

@y2
�

� @

@y

�
a(y; t)

@v

@y

�
+ b(y; t)

@v0

@y
+ c(y; t)

@v

@y
;

for (y; t) 2 Q.
Note that
� M(y; t; �) = cM(
y + �; t; �)

� a(y; t) =
m0

16
2
�
�
�0 + 
0y




�2

� b(y; t) = �2
�
�0 + 
0y




�
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� c(y; t) = �
�
�00 + 
00y




�
The force f̂(x; t) is transformed into f(y; t) given by f(y; t) = f̂(
y + �; t).

The initial data v(y; 0) = u0(
y + �). For the velocity
@v

@t
we have

@u

@t
(x; t) =

@v

@y

@y

@t
+
@v

@t
(y; t):

Note that
@y

@t
= ��

0 + 
0y



, which is zero for t = 0, by (H2). Therefore

@v

@t
(y; 0) = '1(y) where '1(y) = u1(
0y + �0):

Thus, the noncylindrical mixed problem is transformed into the cylindrical mixed
problem ���������

Lv(y; t) = f(y; t) in Q

v(0; t) = v(1; t) = 0 for 0 < t < T

v(y; 0) = '0(y);
@v

@t
(y; 0) = '1(y) for 0 < y < 1:

(2:4)

Now we have all the objects to formulate the theorems.

We consider the bilinear, continuous and coercive form de�ned for all �; � 2
H1
0 (0; 1) by

a(t; �; �) =

Z 1

0

a(y; t)
@�

@y

@�

@y
dy:

Remark 2.2. Note that M(y; t; �) is de�ned in (0; 1) � (0; T ) � (0;1) with real
values such that

� It is continuous in t, � and measurable in y.

� M(y; t; �) 2 C1((0; 1)� (0; T )� (0;K)), for all K > 0.

� M(y; t; �),
@M

@y
(y; t; �);

@M

@�
(y; t; �) belongs to L1((0; 1)� (0; T )� (0;K))

for all K > 0.

� M(y; t; �) � m0 for all (y; t; �) 2 (0; 1)� (0; T )� (0;K), for all K > 0.

We consider the following constants that will appear in the proofs of the theorems
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to be given in the next section������������������������������

K0 =
16

15m0

; K1 =
32

15m0
0

�
1 +

16 + 4
p
m0

15�2m0

�
;

K2 = jjM jjL1(Q�(0;1=�2
2
0
)) = jjcM jjL1( bQ�(0;1=�2
2

0
))
;

K3 =
1

2

�
1 +

K2


20

�
; �0 =





@M@t (0)





L1(Q)

;

� =
�
1 + e(1+K0�0)T

�
;

K4 =
64

15�2m0

(K3 + 1) �; K5 =





@M@�





L1(Q�(0;K4))

;

Æ = Min

 
1;
3
p
m0


0
;

log 2

3T (1 + 2K1K5�)
;

�
log 2

6K1K5�T

�1=2!
;

KÆ = K3Æ
2 + Æ

(2:5)

Note that will use the notation

j � j0 ; jj � jj0 ; j � jt ; jj � jjt

to represent the norms in L2(
0), H1
0 (
0), L2(
t), H1

0 (
t) where 
0 = (�0; �0),

t = (�(t); �(t)).

Theorem 2.1. Supose M(y; t; �) as in Remark 2.2,



@M@t





L1((0;1)�(0;T )�(0;K4))

� log 2

3K0T
(2:6)

and (H1), (H2), (H3). Take f 2 L2(0; T ;H1
0(0; 1)), for T > 0. Then, given '0 2

H1
0 (0; 1) \H2(0; 1), '1 2 H1

0 (0; 1) such that

����@2'0@y2

����
2

+ jj'1jj2 +
1

Æ

Z T

0

jjf(t)jj2 dt < Æ2; (2:7)

Æ given by (2.5), there exists a unique function v:Q! R satisfying

v 2 L1(0; T ;H1
0 (0; 1) \H2(0; 1)) (2:8)

v0 2 L1(0; T ;H1
0 (0; 1)) (2:9)

v00 2 L2(0; T ;L2(0; 1)) (2:10)

which is solution of (2.4).

Revista Matem�atica Complutense

2003, 16; N�um. 1, 179-206
186



T. Nunes Rabello et al. Small vertical vibrations of strings with moving ends

Theorem 2.2. Suppose cM(x; t; �), �, � satisfying (cM1), (cM2), (cM3), (H1), (H2),
(H3) and

Ess Sup

(�����@
cM
@t

(x; t; �)

����� ; (x; t) 2 bQ; � 2 (0; 1=�2
0)

)
� log 2

3K0T
� (2:11)

Then, given u0 2 H1
0 (
0)\H2(
0), u1 2 H1

0 (
0), f̂ 2 L2(0; T ;H1
0 (
t)) such that


30

����@2u0@x2

����
2

0

+ 
0jju1jj20 +
1

Æ

Z T

0


jjf̂(t)jj2t dt � Æ2 (2:12)

there exists only one function u: bQ! R satisfying:

u 2 L1(0; T ;H1
0(
t) \H2(
t)) (2:13)

u0 2 L1(0; T ;H1
0 (
t)) (2:14)

u00 2 L2(0; T ;L2(
t)) (2:15)

which is solution of the mixed problem (2.1).

3. Proof of the Theorems

Proof of Theorem 2.1. We will proof this theorem by Galerkin method. In the
scheme for the method, in each step � 2 N, we consider the nonlinear term evaluated
in the step �� 1. Then, in each step, we have a linear approximate problem what is
the key point to obtain a priori estimates.

Let fw� ; ��g, � 2 N, be the solutions of the spectral problem ((w� ; v)) =
��(w� ; v), for all v 2 H1

0 (0; 1). We consider (w�)�2N orthonormal complete set in
L2(0; 1) and orthogonal in H1

0 (0; 1) and in H1
0 (0; 1) \H2(0; 1). We can calculate ex-

plicitly and obtain w�(x) = sin ��x and �� = (��)2, � = 1; 2; : : : . We represent by
V0 = f0g the null vector space and V� = [fw1; w2; : : : ; w�g] the vector subspace of
H1
0 (0; 1) \ H2(0; 1) generated by the vectors w1; w2; : : : ; w� . Thus if v�(t) 2 V� we

have

v�(t) =

�X
�=1

g��(t)w� :

Approximate Scheme. We de�ne v0(t) = 0 for all t 2 [0; T ]. For each � = 1; 2 : : :
we consider v�: [0; T�]! V� the unique solution of the linear initial value problem

(v00�; w)�
1


2

��
M

�
y; t;

1


2
jjv��1(t)jj2

�
� m0

16

�
@2v�

@y2
; w

�
+

+a(t; v�; w) +

�
b(t)

@v0�
@y

; w

�
+
�
c(t)

@v�
@y
; w
�
= (f�(t); w)

for all w 2 V� :

(3:1)

187 Revista Matem�atica Complutense

2003, 16; N�um. 1, 179-206



T. Nunes Rabello et al. Small vertical vibrations of strings with moving ends

v�(0) = v0� ! '0 in H1
0 (0; 1) \H2(0; 1) (3:2)

v0�(0) = v1� ! '1 in H1
0 (0; 1) (3:3)

where

T� = Sup f� ; 0 < � � T��1 and v�: [0; � ]! V�

is solution of (3.1), (3.2), (3.3)g
(3:4)

with

f�(t) =

�X
�=1

(f(t); w�)w� ; for 0 < t � T:

Estimate (1)

Set w = �@
2v0�
@y2

in (3.1). We have

1

2

d

dt
jjv0�(t)jj2 +

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv��1(t)jj2

�
� m0

16

�
@2v�

@y2
@2v0�
@y2

dy+

+a
�
t; v�;�@2v0�

@y2

�
�
R 1
0
b(y; t)

@v0�
@y

@2v0�
@y2

dy�

�
R 1
0
c(y; t)

@v�
@y

@2v0�
@y2

dy = ((f�(t); v
0
�(t)))

(3:5)

Remark 3.1. In order to avoid complicated notation, we represent �(t), �(t),

(t), by �, �, 
.
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Analysis of the Terms in (3.5) We have

� 1

2

d

dt

Z 1
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Substituting the above expressions in (3.5) we obtain:
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and
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Now we start the proof of Lemma 3.1. In fact, for � = 1, since v0(t) = 0 on [0; T ],
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To begin we modify (3.8) writting its right hand side in function of z�(t) by means
of (3.10){(3.13). In fact, note that

� 1

2
2

Z 1

0

����@M@t
�
y; t;

1


2
jjv��1(t)jj2

����� (�v�(y; t))2dy � 1

2
2
���1j�v�(t)j2 �

� 16

15m0

���1 z�(t):

(3:16)
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� 1

2

Z 1

0

����@M@�
�
y; t;

1


2
jjv��1(t)jj2

�����
�
4 +

p
m0

4�2
5
j�v��1(t)j2+

+
1


3
jjv0��1(t)jj2

�
(�v�(y; t))

2 dy �

� 1
2
���1

R 1
0

h
4+
p
m0

4�2
5
32
2

15m0

���1 +
2

3
���1

i
(�v�(y; t))

2 dy =

= ���1 ���1

�
16 + 4

p
m0

15m0�2
+ 1

�
32

15m0
0
z�(t) (3:17)

� 
0



jjv0�(t)jj2 � 2


0



z�(t) (3:18)

�
"
3

�
1 + �

�

�2

+ 2

# �

0




�3

j�v�(t)j2 �

�
h
3
�
1+�
�

�2
+ 2
i

2
0

15
 z�(t) =

=

"
2

5

�
1 + �

�

�2

+
4

15

#�

0




�
z�(t) (3:19)

�
�
4 + 3�

�

��

0




�2

j�v�(t)j jjv0�(t)jj �

�
�
3�+4
�

�
2
0p
15


z�(t) (3:20)

Substituting (3.14){(3.18) in (3.7) we obtain

z0�(t) �
1

Æ
jjf�(t)jj2 +

�
Æ

2
+

16

15m0

���1+

+
32

15m0
0

�
16 + 4

p
m0

15�2m0

+ 1

�
���1 ���1+

+

0




(
2

5

�
1 + �

�

�2

+
2p
15

�
3 +

4

�

�
+

4

15

)�
z�(t) �

� 1

Æ
jjf�(t)jj2 +

�
Æ

2
+K0���1 +K1���1���1 +

6
0




�
z�(t)

or

z0�(t) �
1

Æ
jjf�(t)jj2 + (Æ +K0���1 +K1 ���1 ���1) z�(t)

then for 0 � t � T� , we have

z�(t) �
"
z�(0) +

1

Æ

Z T

0

jjf�(t)jj2 dt
#
e(Æ+K0���1+K1���1���1)t:
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By hypothesis the right hand side is bounded by constant independent of � for all
t 2 [0; T�]. Thus the solution v� is extended for all t 2 [0; T ], and (3.9) is true for all
t 2 [0; T ] and all � 2 N what proves Lemma 3.1.

Set

�� = z�(0) +
1

Æ

Z T

0

jjf�(t)jj2 dt:

By (3.2), (3.3) and the de�nition of z�(t), we obtain:

�� �
1

2

�
jj'1jj2 +

K2


20
j�'0j2

�
+

1

Æ

Z T

0

jjf(t)jj2 dt:

From the condition (2.7) on '0 , '1 and f , we obtain

�� �
Æ2

2

�
1 +

K2


20

�
+ Æ

or
�� � K3 Æ

2 + Æ = KÆ for all � 2 N; (3:21)

with K3 =
1

2

�
1 +

K2


20

�
.

Lemma 3.2. For all � 2 N and t 2 [0; T ], we have

z�(t) � 2C0 ; (3:22)

with

C0 = KÆ

�
1 + e(1+K0�0)T

�
and KÆ = K3 Æ

2 + Æ.

Proof. We will do it by induction. For � = 1 we obtain from (3.15) and (3.21),

z1(t) � KÆ e
(Æ+K0�0)T � C0 � 2C0 (3:23)

and it is true for � = 1.
Suppose (3.22) true for �. Then we have

� �� � 2C0 ; �0� � K4 ; �� � K5 and �� �
log 2

3K0T
� (3:24)

We have by hypothesis of induction, Lemma 3.2 true for � 2 N. Thus from (3.21)
we have

z�+1(t) � KÆ e
(Æ+K0�m+K1����)t:

Note that KÆ < C0 = KÆ

�
1 + e(1+K0�0)

�
. Thus, we need only prove the estimate

(Æ +K0�� +K1����)t � log 2; 0 � t � T:
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In fact, we have by (3.24)

(Æ +K0�� +K1����) �
�
Æ +

log 2

3T
+ 2K1K5C0

�
=

= Æ +
log 2

3T
+ 2K1K5

n
(K3Æ

2 + Æ)
�
1 + e(1+K0�0)T

�o
=

= (1 + 2K1K5 �)Æ + (2K1K3K5 �)Æ
2 +

log 2

3T
�

� log 2

3T
+

log 2

3T
+

log 2

3T
=

log 2

T

by the de�nition of Æ given in (2.5).
Thus we obtain

(Æ +K0�� +K1����)t � log 2

or
e(Æ+K0��+K1����)t � 2

and
z�(t) � 2C0 for all 0 � t � T

which proves Lemma 3.2.

It follows that there exists a constant C1 > 0 independent � 2 N such that

jjv0�(t)jj2 + j�v�(t)j2 < C1 ; for all � 2 N and all t 2 [0; T ] (3:25)

Estimate (2)

Set w = v00�(t) in (3.1) observing Remark 2.2 and the estimate (3.25) we obtain

jv00�(t)j2 �
1


20

�
K6 + 
20 +m0

�p
C1 jf(t)j2

with
K6 = jjM jj

L1
�
Q�

�
0;

C1

�2
2
0

��:
Consequently Z T

0

jv00�(t)j2 dt < C2 for all � 2 N; (3:26)

what is the Estimate (2).

Now, from the estimates (3.25), (3.26) and Newton-Leibniz theorem of calculus,
we obtain

jjv�(t)� v�(s)jj �
p
C1 jt� sj; jv0�(t)� v0�(s)j �

p
C2 jt� sj1=2;
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for all t; s 2 [0; T ].

Thus, by (3.25), (3.26) and the equicontinuity above for (v�)�2N and (v0�)�2N ,
we obtain, by Ascoli's theorem, vector version, see Royden[25], Lions [15], that there
exists a function

v 2 C([0; T ];H1
0 (0; 1)) \ C1([0; T ];L2(0; 1))

and a subsequence (v�j ) of (v�) such that

v�j ! v strongly H1
0 (0; 1), uniformly on [0; T ]

v0�j ! v0 strongly L2(0; 1), uniformly on [0; T ]:

These convergences are suÆcient to pass to the limits in the linear terms of the
approximate scheme. To obtain the limits of the nonlinear term of the approximate
scheme we need the proposition we prove below. Observe that the nonlinear term
depends of v�j�1.

Proposition 3.1. We have

lim
�!1

jjv�+1(t)� v�(t)jj = 0; uniformly on [0; T ]: (3:27)

Proof. For all � 2 N set v�+1(t)� v�(t) = w�(t) and de�ne

 �(t) =
1

2
jw0�(t)j2 +

1

2

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv��1(t)jj2

�
�

�(�0 + 
0y)2
��

@w�

@y
(y; t)

�2

dy:

By hypothesis M(y; t; �) � m0 > 0, then

1


2

Z 1

0

�
M

�
y; t;

1


2
jjv��1(t)jj2

�
� (�0 + 
0y)2

��
@w�

@y
(y; t)

�2

dy � 15m0

16
2(T )
jjw�(t)jj2;

because (�0 + 
0y)2 � m0

16
, by hypothesis (H2).

Thus we obtain

jjw�(t)jj2 � C4  �(t) for all t 2 [0; T ] and � 2 N:

Then, to prove Proposition 3.1 it is suÆcient to prove that

lim
�!1

 �(t) = 0 uniformly on [0; T ]:
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We take the derivative of  what gives

 0(t) =

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� (�0 + 
0y)2

�
@w�

@y

@w0�
@y

dy+

+
1

2

Z 1

0

d

dt

�
1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� (�0 + 
0y)2

���
@w�

@y
(y; t)

�2

dy+

+
1

2

d

dt
jw0�(t)j2:

(3:28)

Now we obtain
d

dt
jw0�(t)j2 by means of the approximate scheme. In fact, we

evaluate (3.1) at �+ 1 and �. Then we sum and subtract

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� m0

16

�
�v�(y; t)

and observing that w� = v�+1 � v� , we have, with w = w0�(t) in (3.1),

1

2

d

dt
jw0�(t)j2 =

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� m0

16

�
�v�(y; t)w

0
�(y; t)dy+

+

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
�M

�
y; t;

1


2
jjv��1(t)jj2

��
�v�(y; t)w

0
�(y; t)dy+

+

Z 1

0

�
b(y; t)

@w0�
@y

� @a

@y
(y; t)

@w�

@y
(y; t)� a(y; t)�w�(y; t)

�
w0�(y; t)dy�

�
Z 1

0

�
c(y; t)

@w�

@y
(y; t)� f�+1(y; t)� f�(y; t)

�
w0�(y; t)dy:
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Substituting
1

2

d

dt
jw0�(t)j2 given above in (3.28) we obtain

 0�(t) =

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� (�0 + 
0y)2)

�
�w�(y; t)w

0
�(y; t)dy+

+

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
�M

�
y; t;

1


2
jjv��1(t)jj2

��
�v�(y; t)w

0
�(y; t)dy+

+

Z 1

0

@b

@y
(y; t)(w0�(y; t))

2dy +

Z 1

0

�
@a

@y
(y; t)� c(y; t)

�
@v�

@y
(y; t)w0�(y; t)dy+

+

Z 1

0

1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� (�0 + 
0y)2

�
@v�

@y
(y; t)

@w0�
@y

(y; t)dy+

+
1

2

Z 1

0

d

dt

�
1


2

�
M

�
y; t;

1


2
jjv�(t)jj2

�
� (�0 + 
0y)2

���
@v�

@y
(y; t)

�2

+

+

Z 1

0

(f�+1(y; t)� f�(y; t))w
0
�(y; t)dy:

By the estimates obtained for the solution v�(y; t), we select a constant C5 > 0,
independent of � 2 N and t 2 [0; T ] such that from the expression above for  �(t)
gives

 0�(t) � C5

�
jjw��1(t)jj2 + jw0�(t)j2 + jjw�(t)jj2

�
+

+
1

2
jf�+1(t)� f�(t)j2 � C5 ( ��1 +  �) +

1

2
jf�+1(t)� f�(t)j2:

Integrating this di�erential inequality we get

 �(t) � eC5T

"
 �(0) +

1

2

Z T

0

jf�+1(t)� f�(t)j2 dt
#
+ C5e

C5T

Z t

0

 ��1(s)ds:

Set

�� =  �(0) +
1

2

Z T

0

jf�+1(t)� f�(t)j2 dt;

we obtain
lim
�!1

�� = 0:

Let be
C6 = Max

�
C5T;C5 e

C5T ; Ess Sup  1(t)
	
;

what implies

 1(t) � C6 and  �(t) � C6�� + C6

Z t

0

 ��1(s)ds; for � = 2; 3; : : :
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As a consequence of the above recurrence inequality we obtain

 �(t) � C6

��1X
�=0

(C6t)
�

�!
���� ;

for all t 2 [0; T ] and � = 2; 3; : : : .

Note that lim
�!1

�� = 0 and
1P
�=0

(C6T )
�

�!
= eC6T .

This implies that

lim
�!1

 �(t) = 0 uniformly on [0; T ];

which proves Proposition 3.1.

Convergence of the Nonlinear Term

From the Proposition 3.1 it follows that

lim
�!1

jjv���1(t)jj2 = jjv(t)jj2:

We employ the identity j jaj2 � jbj2j � Cja � bj and w�� (t) = v���1 � v�� (t) is a
subsequence of the sequence w�(t) = v�+1(t) � v�(t). Then we employ Proposition
3.1.

Now consider����M
�
y; t;

1


2
jjv���1(t)jj2

�
�M

�
y; t;

1


2
jjv(t)jj2

����� =
=

�����
Z 1


2
jjv���1(t)jj2

1


2
jjv(t)jj2

@M

@�
(y; t; �)d�

����� � C
��jjv���1(t)jj2 � jjv(t)jj2�� :

Here we employ the notation �(y; t; �) = �(t; �)(y). Thus����M
�
t;

1


2
jjv���1(t)jj2

�
� v �M

�
t;

1


2
jjv(t)jj2

�
� v
����
L2(0;1)

=

=

Z 1

0

����M
�
y; t;

1


2
jjv���1(t)jj2

�
�M

�
y; t;

1


2
jjv(t)jj2

�����
2

� jv(y)j2 dy �

� Cj jjv���1(t)jj2 � jjv(t)jj2j2 jv(t)j2:

Then

M

�
t;

1


2
jjv���1(t)jj2

�
� v !M

�
t;

1


2
jjv(t)jj2

�
� v in L2(0; 1):
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It follows that we can pass to the limit in the approximate scheme and conclude
that v is a solution claimed in the Theorem 2.1 that is

Lv(t) = f(t) in L2(0; 1); for all t 2 [0; T ]:

To complete the proof we need to show the uniqueness.

In fact, let v, v̂ be two solutions of Theorem 2.1 and set w = v � v̂. Then w is
solution of the equation

w00(y; t)� 1


2

�
M

�
y; t;

1


2
jjv(t)jj2

�
� m0

16

�
�w(y; t)+

+
1


2

�
M

�
y; t;

1


2
jjv̂(t)jj2

�
�M

�
y; t;

1


2
jjv(t)jj2

�
� m0

8

�
�w(y; t)+

+b(y; t)
@w0

@y
(y; t)� @a

@y
(y; t)

@w

@y
(y; t)� a(y; t)�w(y; t)+

+c(y; t)
@w

@y
(y; t) = 0;

with initial conditions w(y; 0) = w0(y; 0) = 0, for y 2 (0; 1).

To prove that w(y; t) = 0 in Q we employ the argument of the proof of the
Proposition 3.1. In fact, we consider the function

 (t) =
1

2
jw0(t)j2 + 1

2
2

Z 1

0

�
M

�
y; t;

1


2
jjv(t)jj2

�
� (�0 + 
0y)2

��
@w

@y
(y; t)

�2

dy

and we prove that

jjw(t)jj2 � C (t); for all t 2 [0; T ]:

Then, to obtain uniqueness, it is suÆcient to prove that  (t) = 0 in [0; T ]. As in the
proof of the Proposition 3.1 we obtain a constant C8 > 0 such that

 0(t) � C8  (t) for t 2 [0; T ]

what implies that  (t) = 0 for all t 2 [0; T ].

Proof of Theorem 2.2. Suppose cM , u0, u1 f̂ given as in Theorem 2.2. We consider
the mapping

�: bQ! Q

such that

�(x; t) = (y; t) with y =
x� �



�
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We set
v0(y) = u0(�0 + 
0y)
v1(y) = u1(�0 + 
0y)

f(y; t) = f̂(�(t) + 
(t)y; t)

and

M(y; t; �) = cM(�(t) + 
(t)y; t; �):

Then, M(y; t; �), v0, v1, f satis�es the condition of Theorem 2.1. Furthermore

jjv0jj2 = 
0jju0jj20 ; j�v0j2 = 
30 j�u0j20 ; jjv1jj2 = 
0jju1jj20

and jjf(t)jj2 = 
(t)jjf̂(t)jj2t . It follows from (2.12) that we obtain (2.7). Thus, by
Theorem 2.1, there exists a unique function v = v(y; t) solution of the problem (2.4).

By de�ning u(x; t) = v

�
x� �



; t

�
and after some computations we can see that

u = u(x; t) is the unique solution of the problem (2.1).
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