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ABSTRACT

We present algorithms and their implementation in the computer algebra system

Singular 2.0 for the computation of equations for moduli spaces for semiquasi-

homogeneous singularities w.r.t. right equivalence. In addition, we describe the

structure of the stabilizer group of Brieskorn-Pham singularities.

2000 Mathematics Subject Classi�cation: 14J17, 13P10.

Key words: Semiquasihomogeneous singularities, Brieskorn-Pham singularities.

1. Introduction

One of the important achievements of singularity theory was the classi�cation of some

\generic" classes of hypersurface singularities via normal forms by V.I. Arnold, cf.

Ch.15 in [2]. For more complicated classes of singularities the classi�cation by normal

forms seems to be impossible. In 1997 Greuel, Hertling, and P�ster came up with a

geometric classi�cation of semiquasihomogeneous hypersurface singularities with �xed

part w.r.t. right- and contact equivalence by geometric methods, i.e., by providing

a construction of moduli spaces for such singularities with some invariants �xed, cf.

[9]. The moduli spaces w.r.t. right equivalence (and �xed principal part) turn out to

be quotients of aÆne varieties by �nite groups, which are again algebraic varieties.

We describe algorithms and their implementation in the computer-algebra system

Singular 2.0 (cf. [10]) for computing equations of these moduli spaces given the

principal part. In addition, we provide a structure theorem for the isometry groups of
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Brieskorn-Pham polynomials and its application to the computation of moduli spaces

(cf. Ch. 4 in [3]).

The objects to classify are singularities de�ned by semiquasihomogeneous power

series with principal part f0 w.r.t. right equivalence, where f0 is a quasihomogeneous

polynomial which has an isolated singularity at 0. Right equivalence leads to an alge-

braic group action of the isometry group of the polynomial f0 (leaving the polynomial

�xed) on the vector space spanned by the upper monomials of the Milnor algebra of

f0. The quotient Mf0 of the linearization of this action, which is an aÆne variety, is

the desired coarse moduli space for semiquasihomogeneous singularities with principal

part f0 w.r.t. right equivalence.

We present the algorithms ArnoldAction, LinearizeAction and ModEqn

which are the essential parts of the Singular 2.0 libraries rinvar.lib and qhmoduli.

lib. Together with the zeroset.lib they provide constructive means to compute

equations for Mf0 given the principal part f0. The design and implementation of

these three libraries is part of the author's diploma thesis, cf. [3].
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2. Basic notation

In this section we provide necessary de�nitions from singularity theory and introduce

unfoldings of power series. We do not introduce moduli spaces 1 since the existence

of a moduli space is proved in [9] and technical details of the proof are not important

for the computation of the equations.

In the sequel we denote the ring of convergent power series over C by

Cfx1; x2; : : : ; xng. Let 0 6= f 2 Cfx1; x2; : : : ; xng be s.t. f(0) = 0. The power

series f has a singularity at 0 if @f

@x1
(0) = @f

@x2
(0) = : : : = @f

@xn
(0) = 0. The Jacobi

ideal of f is j(f) :=
D
@f

@xi
: 1 � i � n

E
and the Milnor algebra of f is de�ned by

Mf := Cfx1; x2; : : : ; xng=j(f). The Milnor number �f of f is �f := dimCMf . If

there exists a neighborhood U � Cn of 0 s.t. 0 is the only singular point of f in U

then 0 is called an isolated singularity of f . Note that the Milnor number gives an

important characterization of isolated singularities, namely �f <1 i� 0 is an isolated

singularity of f .

1We refer to Ch. 1 of [12] for a description or to, e.g., [9] for a de�nition.
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In the sequel we �x a weight vector w = (w1; w2; : : : ; wn) 2 Nn
+. A monomial

x� :=
Qn

i=1 x
�i
i is quasihomogeneous of type (d;w) if degw(x

�) := jx�jw :=Pn

i=1 wi�i. A polynomial f is quasihomogeneous of type (d;w)

if all of its monomials are quasihomogeneous of type (d;w). For a power series

0 6= f 2 Cfx1; x2; : : : ; xng we de�ne ordw(f) = minfjx�j
w
: x�g and ordw(0) := �1.

The power series f is called semiquasihomogeneous of type (d;w) with princi-

pal part f0 if f0 is a quasihomogeneous polynomial of type (d;w) with an isolated

singularity at 0 and f = f0 or ordw(f � f0) > d.

By Aut(Cfx1; x2; : : : ; xng) we denote the group of local C�algebra automor-

phisms. Two power series f; g 2 Cfx1; x2; : : : ; xng are right equivalent, denoted by

f �r g, if there exists a ' 2 Aut(Cfx1; x2; : : : ; xn) s.t. f = '(g). The power series

f 2 Cfx1; x2; : : : ; xng is k�determined w.r.t. �r if for g 2 Cfx1; x2; : : : ; xng we

have f (k) = g(k) $ f �r g where f
(k); g(k) denote the k�jet (f; g truncated at degree

k) respectively.

Theorem 1. Let f 2 Cfx1; x2; : : : ; xng be a power series with an isolated singularity

at 0. Then f is (�f + 1)�determined.

Proof. We refer to Section 6.3 of [2] (p. 121�).

For the construction of a moduli space we need the notion of families of un-

foldings of negative weight. Let f 2 Cfx1; x2; : : : ; xng be semiquasihomogeneous

with principal part f0. The power series f can be considered as a function germ

f : (Cn; 0) �! (C; 0) which can be deformed as follows. An unfolding of f over

a germ (T; t) is a map F : (Cn; 0) � (T; t) �! (C; 0) s.t. the following diagram

commutes,

(Cn; 0) ,! (Cn; 0)� (T; t)

# f # �
(C; 0) ,! (C; 0)� (T; t)

# #
0 ,! (T; t)

where �(x; t) = (F (x; t); t); and F (x; t) = f(x) + g(x; t) for some g 2 Cnfx; tg
with g(x; 0) = 0. Two unfoldings F; F 0 of f are right equivalent if there ex-

ists an isomorphism 	 : (Cn; 0) � (T; 0) ! (Cn; 0) � (T; 0) ;	(x; t) = ( (x; t); t)

s.t. F ( (x; t); t) = F 0(x; t). A morphism ' : (S; s) ! (T; t) induces an unfold-

ing '�F : (Cn; 0) � (S; s) ! (C; 0)of f by '�F (x; s0) = F (x; '(s0)) for s0 2 (S; s)

(base change). The unfolding F is semiuniversal if for each unfolding G of f over

some base space there exist a base space (S; s) and a morphism ' : (S; s) ! (T; t)

s.t. the unfolding G is right equivalent to the induced unfolding '�F and the dif-

ferential d' is unique. F is called an unfolding of negative weight over (T; 0) if

F �r f
0(x) + g(x; t) for some semiquasihomogeneous power series f 0 with g(x; 0) = 0

and degx(g) > d. If the germ (T; t) is replaced by a base space T then the map

F : (Cn; 0) � T �! (C; 0) is called a family of unfoldings of negative weight

over S. Hence �(x; t) = (F (x; t); t) = (Ft(x); t) and for each t 2 T the germ
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F : (Cn; 0) � (T; t) �! (C; 0) is an unfolding of negative weight of Ft over (T; t).

If, in addition, for any t 2 T; Ft : (C
n; 0) � (T; t) �! (C; 0) is right equivalent to a

semiquasihomogeneous power series with principal part f0 then F is called a fam-

ily of unfoldings of negative weight with principal part f0 or a family of

f�0 �unfoldings for short. For families of unfoldings right equivalence, base change
and semiuniversality are de�ned as for unfoldings.

For B a monomial basis of the Milnor algebra of f0 (jBj <1 since �f0 <1) we

de�ne the set of upper monomialsB� = fm1;m2; : : : ;mkg = fm 2 B : degw(m) >

dg of Mf0 and the space T� = Ck. Given f0, we de�ne the family of f�0 � unfoldings

F : Cn � T� �! Cn;

F (x; t) = f0(x) +

kX
i=1

timi

and call it the semiuniversal family of unfoldings of negative weight of semi-

quasihomogeneous power series with principal part f0. This name is justi�ed

by Proposition 3.4.5 and Theorem 3.2.3 below.

Example 1. The polynomial f0 = x2y + x2z + y5 � z5 is semiquasihomogeneous

of type (5; 2; 1; 1). The Milnor number equals �f0 = 24, hence f0 has an isolated

singularity at 0. Upper monomials are given by B� = fy3z3; x2y3; x2y2g and the

family of f�0 �unfoldings is

F (x; y; z; t1; t2; t3) = x2y + x2z + y5 � z5 + t1y
3z3 + t2x

2y2 + t3x
2y3:

3. Existence of a coarse moduli space

We brie
y describe the construction of a coarse moduli space for semiquasihomoge-

neous power series with principal part f0 given by Greuel, Hertling and P�ster in [9].

The building blocks are a Theorem of Greuel, Hertling and P�ster on the order of

quasihomogeneous maps and a Theorem of Arnold on semiquasihomogeneous power

series, which states that each semiquasihomogeneous power series with principal part

f0 is right equivalent to some Ft for t 2 T�. By [9] we only need to consider isomor-

phisms of order � 0, hence we can construct, by comparing coeÆcients, the isometry

group of f0 and its induced action on T�, the base space of the semiuniversal unfold-

ing F , which turns out to be a �nite group action. [9] proved that the quotient of this

action is a coarse moduli space for semiquasihomogeneous power series with principal

part f0 w.r.t. right equivalence.

We only provide those proofs, which are important for the algorithms of Section

4 or which are not given in [9].
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3.1. The order of maps

Let R = Cfx1; x2; : : : ; xng be the ring of convergent power series, let Aut(R) be the

group of local C�algebra automorphisms of R and let w = (w1; w2; :::; wn) 2 Nn be

weights. By Rd we denote the ideal generated by all power series of weighted order

greater or equal to d.

De�nition 1. (a) Let id 6= ' : R ! R be a ring homomorphism. The weighted

order of ', denoted by ordw('), is the maximal integer d s.t. ordw('(xi)� xi) �
wi + d for 1 � i � n.

(b) For d � 0 we de�ne Aut�d(R) := f' 2 Aut(R) : ordw(') � dg [ fidg and

Aut>d(R) := Aut�d+1(R).

If f is semiquasihomogeneous of type (d;w) and ' is an automorphism of

Cfx1; x2; : : : ; xng of order 0 then '(f) is semiquasihomogeneous of type (d;w). The
converse, due to Greuel, Hertling and P�ster (cf. Theorem 2.1 in [9]), is by no means

trivial and plays an important role for the construction of the moduli space.

Theorem 2. [9] Let f and g be semiquasihomogeneous power series of type (d;w)

and let ' 2 Aut(Cfx1; x2; :::; xng). Then

f = '(g) =) ordw(') � 0:

Proof. We refer to [9], Theorem 2.1.

Hence it suÆces to consider only automorphisms ' 2 Aut(R) which satisfy

ordw(') � 0. For the subgroups Aut�k we have the following result.

Proposition 1. For q > p � 0 Aut�q(R) � Aut�p(R) is a normal subgroup.

Proof. We refer to Proposition 12.4.2 in [2] (p. 203).

Note that if f is semiquasihomogeneous with principal part f0 then right equiva-

lence need not preserve the principal part.

3.2. Arnold's Theorem on semiquasihomogeneous power series

In this section we present a result of V.I. Arnold, cf. [1] (or Ch. 12.6, in [2], p.209),

which says that any semiquasihomogeneous power series with principal part f0 is right

equivalent to f0 +
P

�2B�

c�x
� for some complex numbers c�. Unfortunately, they

are not unique in general.

The proof of Arnold's Theorem provides a construction of a morphism of weighted

order > 0 which maps a given semiquasihomogeneous power series (with terms of

arbitrarily high degree) with principal part f0 to some F (x; c); c 2 T�, where F

is the semiuniversal family of f�0 � unfoldings. This construction is of fundamental
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importance for the existence of an induced action of the stabilizer Gwf0 of f0 on T�:

We follow the presentation in Ch. 12.5 and 12.6 of [2] (p. 206�).

In the sequel let f0 2 C[x1; x2; : : : ; xn] be a quasihomogeneous polynomial of type
(d;w) with an isolated singularity at 0: The following Lemma will be needed to prove

Arnold's Theorem.

Lemma 1. (a) Let f be a power series of weighted order d and ' be an automorphism

of the form '(x) = x� v of order Æ > 0;v = (v1; v2; : : : ; vn). Then

'(f) = f �
X @f

@xi
vi + r

for some r s.t. ordw(r) > d+ Æ.

(b) Any semiquasihomogeneous power series f0+f1 with �xed part f0 and ordw(f1) >

d and d0 > d can be transformed by a polynomial di�eomorphism of order > 0 to f0+f
0
1

s.t. the terms of degree less than d0 of f1 and f
0
1 coincide, and the terms of f 01 of degree

d0 reduce to
P

�2B�;j�j
w
=d0 c�x

� for some c� 2 C.

Proof. (a) We refer to the Lemma in Ch. 12.5 in [2] (p.207).

(b) Let g1 denote the sum of all terms of degree d0 in f1, let g
0
1 denote the terms of

f1 of degree < d0 and set g001 = f1 � g1 � g
0
1. Since fx

� : � 2 B�; j�jw = d0g is a basis
of monomials of Mf0 of degree d

0 we can write g1 as

g1 =

nX
i=1

@f0

@xi
vi +

X
�2B�;j�j

w
=d0

c�x
�

for some c� 2 C. Since g1 is quasihomogeneous, v1; v2; : : : ; vn can be chosen to be

quasihomogeneous of degree d0 � d + w1; d
0 � d + w2; ; :::; d

0 � d + wn respectively.

Consider the morphism ' de�ned by '(xi) = xi � vi. We have ordw('(xi)� xi) =

ordw(vi) = wi + d0 � d, so the order of ' equals d0 � d > 0. By applying (a) to

f = f0 + f1 we obtain

'(f) = f0 �

nX
i=1

@f0

@xi
vi + r0 + f1 �

nX
i=1

@f1

@xi
v0i + r1

= f0 +
X

�2B�;j�jw=d0

c�x
� + g01

+

 
r0 + g001 �

nX
i=1

@f1

@xi
vi + r1

!

where the (weighted) order of the terms in the bracket is greater than d0.

Theorem 3. [1] Let f be a semiquasihomogeneous power series with principal part

f0. Then

f �r f0 +
X
�2B�

c� � x
�:
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for some c� 2 C:

Proof. Let d0 > d be the minimal degree of a term in f not appearing in f0 and

set d00 := maxfj�j
w
: � 2 B�g. We use Lemma 3.2.1(a) to obtain a di�eomorphism

'1 s.t. ordw('1) � d0 � d and '1(f) = f0 +
P

�2B�;j�j
w
<d0+1 c�x

� + f1 where

ordw(f1) > d0. We successively apply Lemma 3.2.1(b) and obtain in the k�th step

'k Æ 'k�1 Æ ::: Æ '1(f) = f0 +
X

�2B�;j�j
w
<d0+k

c�x
� + fk

where ordw(fk) � d0 + k. Note that 'k does not change the coeÆcients c� where

j�jw < d0 + k. If d0 + k > d00 then no new terms of the form c�x
�, � 2 B�, are

introduced. Since f has an isolated singularity at the origin we have �(f) < 1 by

Theorem 2.1. Note that the Milnor numbers of f and f0 coincide, hence there exists

N > 0 s.t. ord(fN ) > �(f0) (not the weighted order) and therefore

f0 +
X

�2B�;j�j
w
<d0+k

c�x
� �r 'N Æ 'N�1 Æ ::: Æ '1(f) �r f

via some map ' 2 Aut(Cfxg).

In the next section, Arnold's Theorem will be used to construct a group action

on T�, where the order of the morphism, constructed in the proof above, is of funda-

mental importance.

Remark 1. (a) Arnold's Theorem provides a correspondence between semiquasiho-

mogeneous power series with principal part f0 and points of T�. Unfortunately, this

correspondence is not unique which can be seen, e.g., by applying the C��action
(which is of order 0) of f0 to F . For maps of order > 0 the correspondence is unique,

as shown in Proposition 2.3 in [9].

(b) By Proposition 2.3 of [9], the map ' constructed in the proof of Arnold's Theorem

has order > 0.

(c) In the proof of Arnold's Theorem it suÆces to compute the morphisms 'k for

1 � k � d00 � d0 + 1 because we are only interested in the coeÆcients c� and

'd00�d0+1 Æ ::: Æ '1(f) = f0 +
X

�2B�;j�j
w

c�x
� + fd00�d0+1

and ordw(fd00�d0+1) > d00. The application of 'k for k > d00 � d0 + 1 increases the

weighted order of fk0�1 and does not change f0 +
P

�2B�;j�j
w

c�x
�.

Example 2. For f0 = x2z + x2y � z5 + y5 we have to apply Arnold's Theorem
to f = f0 + x2z3 because x2z3 is no upper monomial, i.e., f(x) 6= F (x; t0) for

all t0. From x2z3 = 1
2
(xz2 � xyz + xy2)(@f0

@x
) � x2y3 we obtain the map '(x) =
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x� 1
2
(xz2 � xyz + xy2); '(y) = y; '(z) = z. Application yields

'(f) = f0 � x
2
y
3

�
3

4
x
2
z
5
+

3

4
x
2
yz

4
�

3

4
x
2
y
2
z
3
+

1

4
x
2
y
3
z
2
�

1

4
x
2
y
4
z +

1

4
x
2
y
5

1

4
x
2
z
7
�

1

2
x
2
yz

6
+

3

4
x
2
y
2
z
5
�

1

2
x
2
y
3
z
4
+

1

4
x
2
y
4
z
3

Since the terms of the last two lines have degree > 7 = maxfdegw(m) : m 2 B�g we
obtain f �r f0 � x2y3 by Theorem 3.2.3 and Remark 3.2.1(c).

3.3. The induced group action

Any morphism � 2 Aut(Cfxg) which leaves f0 invariant induces a map �(�) : T� !
T� by Arnold's Theorem. [9] proved that � induces an algebraic group action on

T� when applied to F and that morphisms of order > 0 preserve uniqueness (cf. the

proposition below). For the construction of the moduli space we may therefore restrict

ourselves to the factor group Aut�0(Cfxg)=Aut>0(Cfxg) which is isomorphic to the

group of quasihomogeneous morphisms of Cfxg. Additionally, [9] showed that the

group action induced by � on T� is �nite.

Proposition 2. [9] For any semiquasihomogeneous power series f with principal part

f0 there exists an automorphism  2 Aut>0(Cfxg) and a t0 2 T� s.t.  (f) = Ft0 . If

 0 2 Aut>0(Cfxg) and  
0(Ft0 ) = Ft00 for some t00 2 T� then t0 = t00.

Proof. We refer to Proposition 2.3 in [9].

Hence only a morphism of order 0 may send a semiquasihomogeneous power series

with principal part f0 to a di�erent point of T� (e.g., the C�� action of f0). Note

that morphisms of Arnold's Theorem have order > 0. Therefore we are interested in

the following group.

De�nition 2. A morphism � 2 Aut(Cfxg) is called quasihomogeneous (w.r.t.

w) i� � maps quasihomogeneous elements to quasihomogeneous elements of the same

degree. Set Gw := f� 2 Aut(Cfxg) : � is quasihomogeneous w.r.t:wg.

If � is quasihomogeneous then �(xi) is quasihomogeneous of degree wi, i.e., the

components �i are quasihomogeneous polynomials. By considering the nat-

ural inclusion i : Gw ,! Aut�0(Cfxg) and the projection � : Aut�0(Cfxg) !
Aut�0(Cfxg)=Aut>0(Cfxg) one obtains the following result.

Proposition 3. The set Gw is an algebraic group, in particular,

Aut�0(Cfxg)=Aut>0(Cfxg) �= Gw:
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Proof. We refer to Proposition 2 in Ch. 12.4 (p. 203) in [2].

De�nition 3. The stabilizer group of f0 is Gwf0 := f� 2 Gw : �(f0) = f0g.

Note that Gwf0 is an algebraic group since it is a closed subgroup of G
w. Combining

Theorem 3.1.2., Theorem 3.2.3 and the results above one can de�ne a group action

of Gwf0 on T� as follows.

Proposition 4. [9] (a) For any � 2 Gwf0 and t 2 T� there exists a unique s = �(�)(t)

and an automorphism ' 2 Aut>0(Cfxg) s.t. ' Æ �(Ft) = Fs.

(b) The function � : Gwf0 ! Aut(T�) is a group homomorphism.

(c) The components of �(�)(ti) are quasihomogeneous polynomials of degree deg
w
(mi)�

d. In particular, the group �(Gwf0) acts algebraically on T� and this action commutes

with a C��action on T�.

Proof. We refer to Proposition 2.4 of [9]

The induced group action of Gwf0 on T� = C3, where f0 = x2z + x2y � z5 + y5,

is given in Example 4.1.4. For the construction of the moduli space we are interested

in the image of the stabilizer Gwf0 under �.

De�nition 4. The group Ef0 := �(Gwf0) is the subgroup of Aut(T�) which is induced

by the action of Gwf0 on T� provided by Arnold's Theorem.

[9] proved that the quotient T�=Ef0 is a coarse moduli space for semiquasihomo-

geneous power series with �xed principal part.

Remark 2. (a) Unfortunately (for computational purposes) the map ' of Proposi-

tion 3.3.2 cannot be omitted.

(b) It follows from (a) that, in general, Ef0 does not act linearly on T�, even if

Gwf0 � GLn(C). In order to compute the equations of T�=Ef0 one has to linearize

the action of Ef0 on T� which is the main topic in Section 4.4.2.

The construction of the quotient T�=Ef0 is considerably simpli�ed by the fact

that Ef0 is �nite, hence reductive, so Hilbert's Finiteness Theorem implies that the

quotient is an algebraic variety.

Theorem 4. [9] Let f0 2 C[x1; x2; : : : ; xn] be a quasihomogeneous polynomial of type

(d;w) with an isolated singularity at 0 and set wi :=
wi
d
.

(a) The group Gwf0 is �nite if w1 <
1
2
; :::; wn�1 <

1
2
; wn �

1
2
.

(b) The group Ef0 is �nite.

Proof. We refer to Proposition 2.7 in [9], or for a more detailed treatment, to

Theorem 2.3.56 in [3] (p. 36�).

Remark 3. Under the above hypotheses it is tempting, but wrong, to conclude that

Gwf0 � GLn(C) or that �
n
i=1C

@f0
@xi

is a Gwf0�module.
2 Consider the quasihomogeneous

2For G � Gwf0
\ GLn(C) Orlik and Wagreich proved that it is a G�module, cf. Lemma 5.3 or

[15].
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polynomial f0 = x2 � xy2 + y4 of type (4; 2; 1) which has an isolated singularity at

0 (�f0(0) = 3). Its stabilizer group Gwf0 has order 8 and is generated by the two

automorphisms �; � , where

�(x) = �x+ y2;

�(y) = y;

and �(x) = �x; �(y) = iy. It is obvious that Gwf0 6� GL2(C). Moreover, C@f0
@x
�C@f0

@y

is not a Gwf0�module since ��1 � @f0
@y

= 2y @f0
@x

+ @f0
@y

. Nonetheless, this is true for

Brieskorn-Pham polynomials as we will show in Section 5.

3.4. Existence of the moduli space

We present the construction of coarse moduli spaces for semiquasihomogeneous sin-

gularities with principal part f0 w.r.t. right equivalence given by Greuel, Hertling

and P�ster (cf. Section 1 in [9]), whereas we do not introduce the notion of a moduli

functor or moduli space. We just mention that the points of a moduli space are in 1 : 1

correspondence with the isomorphism classes of semiquasihomogeneous singularities

with principal part f0.

Recall that the family F of f�0 �unfoldings has been called the semiuniversal family
of unfoldings of negative weight of semiquasihomogeneous power series with principal

part f0. This name is justi�ed by the proposition below.

Proposition 5. [9] Let f be a semiquasihomogeneous power series with principal

part f0.

(a) For each t 2 T� the restriction of F to the germ (T�; t) is a semiuniversal un-

folding of Ft of negative weight.

(b) T� does not contain trivial subfamilies.

(c) If f0 is neither simple nor simple elliptic then there exist t; t0 2 T� arbitrary close

to 0 s.t. Ft �r Ft0 (that is, the unfolding F is not universal in any neighborhood of

0).

Proof. We refer to [9], Remark 1:1, Lemma 1:2 and Remark 1.4.

If the singularity of f0 is simple or simple elliptic, K. Saito proved that T� = f0g,
i.e., all power series with principal part f0 are right equivalent to f0 (cf. [17]).

The functor for our moduli problem is de�ned as follows where � = alg if S denotes

the category of algebraic spaces and � = hol if S denotes the category of complex

spaces.

Unf�f0;� : S �! (sets);

S 2 Obj(S) 7�!
�
[�]

�r

: � a family of f�0 � unfoldings over S
	
;

T
'
! S 2 Mor(T; S) 7�!

�
[�]

�r

7! ['��]
�r

�
:
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Proposition 6. For the reduced point fptg 2 S we obtain

Unf�f0;� (fptg) =
�
[f ]

�r

: f semiquasihomogeneous with principal part f0
	
:

Proof. By de�nition, a family � of negative weight with principal part f0 over fptg
is a quasihomogeneous power series with principal part f0.

By Theorem 3.2.3 a quasihomogeneous power series f is right equivalent to Ft for

some t 2 T�: Hence Unf
�

f0;�
(fptg) is the desired set of equivalence classes classifying

semiquasihomogeneous hypersurface singularities with principal part f0 w.r.t. right

equivalence.Greuel, Hertling and P�ster solved the geometric classi�cation problem

by providing a coarse moduli space for Unf�f0;� .

Theorem 5. [9]. Let f0 2 C[x1; x2; : : : ; xn] be a quasihomogeneous polynomial with

an isolated singularity at 0. The quotient

Mf0;� := T�=Ef0

is a coarse moduli space for the functor Unf�f0;� where � = alg=hol.

Proof. We refer to Theorem 1.3 and Remark 1.5 in [9].

Note that the quotient Mf0;alg is an aÆne variety since Ef0 is �nite and acts

algebraically on T�.

Example 3. The moduli space Mf0;alg for quasihomogeneous power series w.r.t.

right equivalence with f0 = x4 + xy5 (W17) is given by the variety in C5, de�ned by

the equations

Y 2
4 � Y3Y5; Y3Y4 � Y2Y5; Y2Y4 � Y1Y5; Y

2
3 � Y1Y5; Y2Y3 � Y1Y4; Y

2
2 � Y1Y3:

The computation of such equations is our main concern in the following section.

We conclude this section by some remarks on the properties of the moduli space

Mf0;alg.

Remark 4. (a) Since the action of Gwf0 on T� is given by quasihomogeneous poly-

nomials, the quotient T�=Ef0 admits a C��action. It turns out that this action is

preserved by the linearization, i.e., the linearized action of Ef0 commutes with the

C��action, too.
(b) Since Ef0 is �nite, it is reductive, so Mf0;alg is an aÆne variety by Hilbert's

Finiteness Theorem. Finiteness of Ef0 implies that Mf0;alg is even a geometric quo-

tient. As an aÆne variety, the moduli space Mf0;alg is reduced, irreducible, has the

Cohen-Macaulay property, and admits a C��action.
(c) A �ne moduli space for Unf�f0;� does not exist even if S is the category of complex

germs (cf. [9]). Suppose M is a �ne moduli space. Then M is also a coarse moduli
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space, so M' T =Ef0 . There exists a universal unfolding over the germ (T�=Ef0 ; 0)

which can be induced from the semiuniversal unfolding F over the germ (T�; 0) and

vice versa. Since T� does not contain trivial subfamilies, the semiuniversal family F

over (T�; 0) would be universal, which contradicts Proposition 3.4.5(c).

4. Algorithmic construction of the moduli space

We present the main algorithm for computing equations of moduli spaces for semi-

quasihomogeneous power series with �xed principal part w.r.t. right equivalence,

subroutines for computing the induced action of Gwf0 on T� by Arnold's Theorem

and for a linearization of this action, and an implementation in the computer algebra

system Singular 2.0 ([10]). All other subroutines are either well known algorithms

in commutative algebra (cf., e.g., [19]) or are easy to implement. For a more detailed

description we refer to Chapter 3 of [3].

Procedure names typed in typewriter denote built-in Singular 2.0 commands,

e.g., std denotes the Standard bases algorithm of Singular 2.0.

4.1. The action of Gwf0

For a quasihomogeneous polynomial f0 2 C[x1; x2; : : : ; xn] we obtain a group action

of Gwf0 on T� by Proposition 3.3.4, namely

Gwf0 � T� �! T�

(�; t) 7�! �(�)(t) = s

where s 2 T� is s.t. ' Æ �(Ft) = Fs for some ' 2 Aut>0(Cfxg). We provide the

algorithm ArnoldAction for the computation of the algebraic action of Gwf0 on T�
which is an implementation of the proof of Arnold's Theorem (Theorem 3.2.3). The

algorithm computes the morphism ' of order > 0 s.t.

'(�(Ft)) = Fs + r(x)

where ordw(r) > d00 := maxfj�jw : � 2 B�g. By Remark 3.2.1 we may omit r(x),

i.e., '(Ft) = Fs. Since ordw(') > 0 Proposition 3.3.2 implies that s 2 T� is uniquely

determined by the morphism '. It remains to compute the action ti 7! pi(s; t) by

setting pi(s; t) := coeÆcient of mi in '(Ft) where m1;m2; : : : ;mk denote all upper

monomials of f0.

Algorithm ArnoldAction(f0; G
w

f0
; B�)

In: quasihomogeneous polynomial f0 2 K[x1; x2; :::; xn] with an isolated sin-

gularity at 0, equations for the de�ning ideal of Gwf0 in K[s1; s2; : : : ; sr], upper

monomials B� = fm1;m2; : : : ;mkg.
Out: (p1(s; t); p2(s; t); : : : ; pk(s; t)) polynomials de�ning the action of Gwf0 on

T� =Kn.
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Note: basering has parameters s1; s2; : : : ; sr; t1; t2; : : : ; tk and variables

x1; x2; : : : ; xn.

begin

lb := min (jmj
w
: m 2 B�) ;

ub := max (jmj
w
: m 2 B�) ;

F := f0 +
Pk

i=1 timi;

for d := lb to ub do

g := sum of all monomials in F of weighted degree d;

g1 := reduce(g;std(jacob(f0)));

v := lift(jacob(f0); g � g1); // g � g1 =
Pn

i=1
@f0
@xi

vi;

'(xi) := xi � vi(x);

F := '(F );

reduce F w.r.t. the ideal of Gwf0 (consider s1; s2; : : : ; sr as variables)

end;

for i := 1 to k do

pi := coeÆcient of mi in F ;

end;

return(fp1; p2; : : : ; pkg);
end.

Example 4. For f0 = x2z + x2y� z5+ y5 the ideal of the stabilizer G
(2;1;1)

f0

equals


s21s

2
3 � s3; s2s3; s

2
1s2 + s21s3 � 1; s42 � s43 + s21; s

4
1 + s32 � s33; s

5
3 � s21s3

�
where

G
(2;1;1)

f0
acts via the map (x; y; z) 7! (s1x; s3y + s2z; s2y + s3z), both computed

by StabEqn3. The action � of the group G
(2;1;1)

f0
on T� = C3 is computed by

ArnoldAction and is given by the following polynomials.

��t1 = p1(s; t1; t2; t3) = (s3 � s2) t1;

��t2 = p2(s; t1; t2; t3) =
�
s23 � s22

�
t2 + 2s22t

2
3;

��t3 = p3(s; t1; t2; t3) = (s2 + s3) t3

where s = (s1; s2; s3) and the ideal of G
(2;1;1)

f0
is contained in C[s]. In this case, the

action of G
(2;1;1)

f0
is not linear.

4.2. Linearization of a group action

As noted above, the algebraic action of Gwf0 on T� need not be linear, but this fact

is irrelevant for the existence proof of the moduli space. Nonetheless, the equations

of the moduli space are computed from generators of the invariant ring of the action

of Gwf0 and the corresponding algorithms only work for linear actions. Therefore we

3We refer to Section 4.3 or Ch. 3.4 of [3] for a description.
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need an algorithm for linearizing the action of Gwf0 on T�. Linearizations of algebraic

actions over algebraically closed �elds always exist and the construction is well known

(we follow Ch. 1.6. in [4]).

Let G be an algebraic group which acts algebraically on the aÆne variety X (both

de�ned over an algebraically closed �eld K of characteristic 0) via

� : G�X �! X

(�; x) 7�! � �� x:

A linearization of � consists of a closed morphism � : G ! GLn(K) and a closed

embedding � : X ! Kn s.t.

�(� �� t) = �(�) � �(t)

where \�" is the usual action of GLn(K). On the coordinate ring of X we obtain the

morphism ��(f)(x) := f(�(��1; x)) = ��(f)(��1; x) for � 2 G; f 2 K[X ] and x 2 X ,

which is called left-translation.

Lemma 2. Let G be an algebraic group acting algebraically on a variety X. Any

�nite dimensional vector subspace V of K[X ] can be extended to a �nite dimensional

vector subspace W of K[X ] s.t. G �� W � W . Moreover a necessary and suÆcient

condition that W is invariant under left translation is

��W �K[G]
W:

Proof. Firstly, we assume dimK(V ) = 1 and construct a G�invariant vectorspace
W � V . The general case follows by constructing G�invariant vectorspaces for each
basis element of V and taking the sum of these vectorspaces.

Choose a decomposition

��(f) =

rX
i=1

gi 
 hi 2 K[G]
K[X ]

s.t. r is minimal. Applying left translation to f yields ��f(x) = ��(f)(��1; x) =Pr

i=1 gi(�
�1)hi(x) for all � 2 G and x 2 X: Hence

��(f) =

rX
i=1

gi(�
�1)hi

so h1; h2; : : : ; hr span a K�vectorspace W � V s.t. ��(f) 2 W for all � 2 G. To see

that W is G�invariant take �; � 2 G and choose c1; c2; : : : ; cr 2 K s.t. ���1� (f) =Pr

i=1 cihi. We have �� (f) = ����1� (f) = ��(
Pr

i=1 cihi) =
Pr

i=1 ci��(hi), so �� (f)

is contained in the K�vectorspace W� spanned by ��(h1); ��(h2); :::; ��(hr). Since

Revista Matem�atica Complutense

2003, 16; N�um. 1, 103-129
116



Thomas Bayer Algorithms for the computation of moduli spaces. . .

r is minimal and dimK(W�) = r we have W \W� = W , therefore ��(hi) 2 W for

� 2 G and 1 � i � r.

Now let W � K[X ] be a �nite-dimensional subspace and ffig [ fhjg be a basis for

K[X ] s.t. ffig spans W . For f 2 W and � 2 G we have ��(f) =
P
ri(�

�1)fi +P
sj(�

�1)hj , where �
�f =

P
ri 
 fi +

P
sj 
 hj , so � � f 2W i� sj(�

�1) = 0 for all

� 2 G: Varying � 2 G and f 2W we see that ��(W ) �W i� ��W �K[G]
W .

Theorem 6. (Existence of equivariant embeddings) Let G be an algebraic group

acting algebraically on a variety X: There exists a �nite dimensional vectorspace V ,

a closed embedding � : X ,! V and a morphism � : G! GL(V ) s.t.

�(� �� x) = �(�) � �(x)

for all � 2 G and x 2 X:

Proof. By Lemma 4.2.2 we may assume that f1; f2; : : : ; fm 2 K[X ] are algebra

generators for K[X ] which span a G�invariant K�vectorspace V s.t. ��V �K[G]

V . Hence there exist mij 2 K[G] s.t. ��fi =

Pm

j=1mij 
 fj which de�ne a map

� : G! GLn(K); � 7!
�
mij(�

�1)
�
. Note that the mij 's are unique and that the map

� is a closed morphism of algebraic groups. For each � 2 G and x 2 X we have

fi(� �� x) =

mX
j=1

mij(�
�1)fj(x): (1)

De�ne � : X ! V = Km by yi := fi(x) for x 2 X , where y1; y2; : : : ; ym are coordinates

on V . Obviously, the map � is a morphism and, by de�nition, we have ��(yi) = fi,

i.e. �� is surjective, hence � is a closed embedding of X . Now we can write (1) as

�(� �� x) = �(�) � �(x):

In order to construct a linearization of � = (p1; p2; : : : ; pn) we start with B =

ft1; t2; : : : ; tng; V = hBi and apply Lemma 4.2.2 to each tj . If some hi of a minimal

decomposition is not contained in V we add hi to B. Each such hi gives rise to a new

component pki of the linearized action of �. From a linearization � : X ,! Km of �

and from the projection � : Km ! Km=G � Kr given by generators of the invariant

ring of the linearized action of G we obtain equations for the quotient of X=G by

computing the image of the composition � Æ �

X ,! Km �! Km=G ,! Kr:

Since � is injective and the �bers of � are �nite (provided that G is �nite which is

true for G = Ef0), the map � Æ � is �nite and therefore it is closed. Note that this

implies that the quotient X=G is geometric, cf., e.g., Ch. II.3.2 in [13] (p. 96).
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The algorithm MinimalDecomposition(pi) returns a list fg(i);h(i)g s.t. pi =Pni
j=1 g

(i)

j 
h
(i)

j 2 K[s1; s2; : : : ; sm]
K[t1; t2; : : : ; tk] is a minimal decomposition. For

a description we refer to Chapter 3:6 of [3].

Algorithm LinearizeAction(G; fp1; p2; : : : ; pkg)
In: Ideal of G inK[s1; s2; : : : ; sr], polynomials p1(s; t); p2(s; t); :::; pk(s; t) de�n-

ing an action of G on Kk.

Out: fp01(s; t); p
0
2(s; t); :::; p

0

l(s; t)g, de�ning a linear action of G on Kl,

fB1(t); B2(t); : : : ; Bl(t)g an equivariant embedding Kk ,! Kl.

begin

B := ft1; t2; : : : ; tkg; l := k;

(p01; p
0
2; : : : ; p

0

k) := p1; p2; : : : ; pk;

for i := 1 to k do

fg(i);h(i)g :=MinimalDecomposition(pi);

for j := 1 to ni do

if h
(i)

j =2 hBi
K
then begin

B := B [ fh
(i)

j g; l = l + 1; // extend basis

p0l := h
(i)

j (p1; p2; : : : ; pk); // new component of the action

replace h
(i)

j in p01; p
0
2; : : : ; p

0

l by the new variable tl;

end if

end

end

return(fp01; p
0
2; : : : ; p

0

lg; B);
end.

We continue with our running example in order to illustrate the algorithm.

Example 5. Let f0 = x2z + x2y � z5 + y5. We have to extend the C�vectorspace
V , spanned by ht1; t2; t3iC, to a Gwf0� invariant vectorspace W . The decomposition

of the nonlinear component p2 = (s23 � s22)t2 + 2s22t
2
3 of � = (p1; p2; p3) equals

��t2 = p2(s1; s2; s3; t1; t2; t3) =
�
s23 � s22

�

 t2 + 2s22 
 t23:

Therefore we consider the vectorspace W :=


t1; t2; t3; t

2
3

�
C
and we set t4 = t23 and

deg(t4) = 2. The new component of the action is given by

��t4 = ��t23 = (s2 + s3)
2
t23 =

�
s22 + 2s2s3 + s23

�
t4 =

�
s22 + s23

�
t4

since s2s3 is in the ideal of Gwf0 . Hence W is the desired Gwf0�invariant vectorspace.

The closed embedding � : T� ,! C4 is given by

(t1; t2; t3) 7�!
�
t1; t2; t3; t

2
3

�
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and the representation � : Gwf0 ! GL4(C) by

(s1; s2; s3) 7�!

0
BB@

s3 � s2 0 0 0

0 s23 � s22 0 2s22
0 0 s2 + s3 0

0 0 0 s22 + s23

1
CCA :

The ideal of the variety �(T�) is generated by t4� t
2
3 and the generator is quasihomo-

geneous of type (2; 1; 2; 1; 2). The group Gwf0 acts linearly but not faithfully on �(T�).

The ideal of the group E0

f0
:= �(Gwf0 ) computed by ImageGroup4 is

I(E0

f0
) =



s55 � 1; s24 � s5; s3 + s4s

3
5 � s5; s2 + s3 � s5; s1 � s35

�
and may be simpli�ed5 to I(E0

f0
) =



s104 � 1

�
so the linear action on �(T�) (and

C4)is given by

(s4; t1; t2; t3; t4) 7�!
�
s64t1; s

7
4t2 � s74t4 + s24t4; s4t3; s

2
4t4
�
:

Note that jGwf0 j = 20 and jE0

f0
j = 10.

The algorithm LinearizeAction preserves C�� actions.

Proposition 7. Let � be an action of G on Ck which commutes with a C��action
and let w be s.t. the de�ning polynomials of � are quasihomogeneous w.r.t. w,

where t1; t2; : : : ; tk are coordinates on Ck and the variables s1; s2; : : : ; sr of C[G] have

weight 0. The linearized action, constructed by LinearizeAction, commutes with

a C��action, i.e., the polynomials p1(s; t); p2(s; t); :::; pl(s; t) are quasihomogeneous

w.r.t. to the extended weight w0 where degw0(ti) = degw(tj) if i > k and ti comes

from the decomposition of ��ti. In particular, the ideal of �(T�) is quasihomogeneous

w.r.t. the weights of t1; t2; : : : ; tl.

Proof. We refer to Proposition 3.6.69 of [3] (p. 56).

4.3. Computation of equations for the moduli space

Given a semiquasihomogeneous polynomial f0 of type (d;w) we compute equations

for a coarse moduli space of semiquasihomogeneous power series with principal part

f0 as follows. Firstly, we compute equations for the stabilizer Gwf0 by means of

StabEqn and upper monomials for Mf0 with UpperMonomials (see below). Then

ArnoldAction yields an algebraic action � of Gwf0 on T� which is linearized by

(�; �), obtained from LinearizeAction (note that an action yields a representa-

tion). Equations for E0

f0
, the image of Gwf0 under �, are computed and Quotien-

tEquations (based on Derksen's Algorithm, cf. [5], and ImageVariety) provides

4The resulting equations may contain more variables than the equations of the input.
5Since the simpli�cation is done by elimpart (cf. [8]) and by hand, it is not contained in the

current version of qhmoduli.lib.
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equations for an embedding of the moduli space. Below we give a brief description of

the algorithms UpperMonomials, StabEqn, ImageVariety, ImageGroup and

QuotientEquations. For a thorough description we refer to Chapter 3 in [3].

1. UpperMonomials: Computes the set fm1;m2; : : : ;mkg of upper monomials

of a monomial basis of the Milnor algebra Cfx1; x2; : : : ; xng=j(f0) of f0. This
requires a standard basis computation in a local ring.

2. StabEqn: Computes equations of the stabilizer group Gwf0 � Gw � Aut(Cfxg)
of f0 by comparing coeÆcients of f0 and �(f0) where the elements � 2 G

w satisfy

�(xi) =
P

hw;�i=wi
si;�x

�; det(
@�(xi)

@xj
) 6= 0 and si;� are new indeterminates. The

equations are simpli�ed by using the command elimpart from the Singular

2.0 library presolve.lib, cf. [8]. Since f0 has an isolated singularity at 0 the

zeroset of the resulting ideal is a group. This step needs the command radical.

3. ImageVariety and ImageGroup: Computes the ideal I of the image of T�
under the morphism

� : T� ,! Cl ! Cl=E0

f0
,! Cm

given by ��(yi) = hi: Since h1; h2; : : : ; hm are quasihomogeneous (Cl=E0

f0
ad-

mits a C��action) we apply the Hilbert-driven standard bases algorithm

(stdhilb), which proves to be much more eÆcient in our application (cf. [18]).

The coarse moduli space for Unf�f0 is given by the variety V(I), de�ned by the

ideal I . In particular, as sets we have

V(I) ' Unf�f0 (fptg) :

ImageGroup computes equations of E0

f0
from the equations of Gwf0 and the lin-

earized polynomials p01; p
0
2; : : : ; p

0

l of the action of G
w

f0
. May introduce additional

variables.

4. QuotientEquations: Given equations of an algebraic group G, of a variety

X , and polynomials de�ning a linear action of G on X , QuotientEquations

computes equations of an embedding of the quotient X=G. Generators of the

invariant ringC[t1; t2; : : : ; tl]
G
are computed by Derksen's algorithm ([5]), which

requires equations for G and polynomials de�ning the action. In general, one

has to apply the Reynolds operator, in which case G must be �nite. In the

implementation one can choose to use equations for Gwf0 or E
0

f0
to compute the

invariant ring w.r.t. the linearized action (running times may be di�erent).

In the algorithm the group Gwf0 is described by its de�ning ideal and the action of

Gwf0 on T� is represented by polynomials p1(s; t); :::; pk(s; t) where s = (s1; s2; : : : ; sr),

t = (t1; t2; : : : ; tk). The linearized action is represented by the polynomials
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p1(s; t
0); :::; pl(s; t

0) where l � k and t0 = (t1; t2; : : : ; tl), which also encode the repre-

sentation �. From a theoretical point of view, the computation of E0

f0
is not necessary,

but this may simplify the computation of the Reynolds operator since jE0

f0
j � jGwf0 j.

The change of the basering, which occurs at several occasions in the Singular 2.0

implementation, is omitted.

Algorithm ModEqn(f0)

In: quasihomogeneous polynomial f0 with an isolated singularity at 0

Out: equations f1; f2; : : : ; fq of the moduli space of Unf
�

f0
.

begin

m :=UpperMonomials(f0); //

k :=size(m);

Gwf0 :=StabEqn(f0); // variables s1; s2; : : : ; sr
// variables are s1; s2; : : : ; sr; t1; t2; : : : ; tk; x1; x2; : : : ; xn

Ft := f0 +
Pk

i=1 tim[i];

fp1(s; t); :::; pk(s; t)g :=ArnoldAction(G
w

f0
; Ft);

(fp01(s; t
0); :::; p0l(s; t

0)g ; �) := LinearizeAction(Gwf0 ; fp1; p2; : : : ; pkg);
// variables are s1; s2; : : : ; sr; t1; t2; : : : ; tk; tk+1; :::; tl
E0

f0
:= ImageGroup(Gwf0 ; p

0
1; p

0
2; : : : ; p

0

l);

fg1; g2; : : : ; glg := f�1(t1; : : : ; tk); �2(t1; : : : ; tk); :::; �l(t1; : : : ; tk)g;
// variables are s1; s2; : : : ; sr0 ; t1; t2; : : : ; tk; tk+1; :::; tl;

fg01; g
0
2; : : : ; g

0

l0g := ImageVariety(f0g; fg1; g2; : : : ; glg);
// ImageVariety provides the ideal of the embedding of T�
ff1; :::; fqg := QuotientEquations (E0

f0
; fp01; p

0
2; : : : ; p

0

lg; fg
0
1; :::; g

0

l0g);
return(ff1; f2; : : : ; fqg);

end;

4.4. Singular 2.0 Implementation

All algorithms from the previous section are implemented in the Singular 2.0 li-

braries qhmoduli.lib,rinvar.lib and zeroset.lib. A short description is given

below, a full description for all algorithms and their options is contained in [3].

1. qhmoduli.lib: Contains the main algorithms for computing equations for mod-

uli spaces for semiquasihomogeneous power series with �xed principal part (e.g.,

ModEqn, ArnoldAction and StabEqn).

2. rinvar.lib: Contains algorithms for computing invariant rings of reductive

groups which are given by equations and algebraic actions (i.e., de�ned by poly-

nomials). The computation of the invariant ring is based on Derksen's algorithm

(NullCone), cf. [5]. Note that the Reynolds operator is implemented for �nite

groups only.
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3. zeroset.lib: Contains algorithms for computing the zeroset of a zero-dimensional

ideal (ZeroSet) and factorization of univariate polynomials (Factor) over �-

nite extensions of Q.

4.4.1. The example f0 = x2z + x2y � z5 + y5

..........

We show how to compute the moduli space of semiquasihomogeneous hypersurface

singularities w.r.t. the �xed part f0 = x2z+x2y� z5+y5 by means of the Singular
2.0 library qhmoduli.lib.

> LIB ''qhmoduli.lib'';

> ring R = 0,(x,y,z),ls;

> poly f = -z5+y5+x2z+x2y;

> list stab = StabEqn(f); > def R1 = stab[1]; setring R1;

> stabid;

stabid[1]=s(2)*s(3)

stabid[2]=s(1)^2*s(2)+s(1)^2*s(3)-1

stabid[3]=s(1)^2*s(3)^2-s(3)

stabid[4]=s(2)^4-s(3)^4+s(1)^2

stabid[5]=s(1)^4+s(2)^3-s(3)^3

stabid[6]=s(3)^5-s(1)^2*s(3)

> vdim(stabid); 20

> setring R;

> StabOrder(f);

20

> ideal B = UpperMonomials(f);

> B;

B[1]=y3z3

B[2]=x2y3

B[3]=x2y2

> def R2 = ArnoldAction(f,stab,B);

> setring R2;

> actionid;

actionid[1]=-s(2)*t(1)+s(3)*t(1)

actionid[2]=-s(2)^2*t(2)+2*s(2)^2*t(3)^2 +s(3)^2*t(2)

actionid[3]=s(2)*t(3)+s(3)*t(3)

> nvars(stab[1]);

3

> def R3 = LinearizeAction(stabid, actionid,nvars(stab[1]));

> setring R3;

> actionid;

actionid[1]=-s(2)*t(1)+s(3)*t(1)

actionid[2]=-s(2)^2*t(2)+2*s(2)^2*t(4)+s(3)^2*t(2)
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actionid[3]=s(2)*t(3)+s(3)*t(3)

actionid[4]=s(2)^2*t(4)+s(3)^2*t(4)

// 'ImageGroup' is not necessary

> def S = ImageGroup(groupid, actionid)
6
;

> setring S;

> groupid;

groupid[1]=s(2)+s(3)-s(5)

groupid[2]=s(4)^2-s(5)

groupid[3]=s(1)*s(5)+s(3)*s(4)-s(4)*s(5)

groupid[4]=s(1)*s(4)+s(3)-s(5)

groupid[5]=s(3)^2-2*s(3)*s(5)

groupid[6]=s(1)*s(3)-s(1)*s(5)+s(4)*s(5)

groupid[7]=s(1)^2+s(4)^2-2*s(5)

groupid[8]=-s(1)+s(5)^3

groupid[9]=s(3)*s(5)^2+s(4)-s(5)^3

groupid[10]=s(1)*s(5)^2-1

> ideal G = groupid,t(1),t(2),t(3),t(4);

> vdim(std(G));

10

// continue

setring R3;

> def R4 = QuotientEquations(groupid,actionid,embedid);

> setring R4;

> size(std(imageid)); // elimpart is not used !

72

> dim(std(imageid)); 3

// short version

> def T = ModEqn(f); setring T;

> size(modid); // 'elimpart' is used !

56

> dim(std(modid));

3

4.4.2. Performance

..........

We provide 6 examples with increasing complexity and runtime. The �rst table

contains information about the singularity, the group action and the invariant ring

together with the embedding of the moduli space while the second table contains a

pro�le of the computation. We consider the following examples

6Recall that the algorithm may introduce additional variables to those contained in groupid.
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1. E19 xy7 + x3 4. x2y + x2z + y5 � z5

2. V�1
19 x2y + y4z + z4 5. x5y � xy5

3. Z23 y11 + x3y 6. x8 + 14x4y4 + y8

where examples 1; 2; 3 are taken from [20]. Note that stabilizers of Example 3,4,5 con-

tain matrices with more than one entry per row. A \?" denotes that the computation

was aborted due to time or memory constraints (more than 12h or 700MB). For more

examples we refer to Chapter 4.2 in [3] (p. 70�).

Nr. � t� jGwf0 j jE0

f0
j l #I #E ub

1 19 2 21 21 2 8 21 21

2 19 3 32 16 3 22 191 16

3 23 3 33 33 3 35 673 33

4 24 3 20 10 4 21 56 10

5 25 3 144 ? 3 ? ? ?

6 49 10 192 ? > 10 ? ? ?

Here � denotes the Milnor number, t� the dimension of T�, l is the dimension of the

ambient space of the embedding of T� via �,#I ,#E are the numbers of generators

for the invariant ring C[t1; t2; : : : ; tl]
E0

f0 respectively ideal of the quotient (deg-lex.

Gr�obner basis) and ub denotes highest degree occurring in the basis of the invariant

ring. Note that dimT� = l implies � = id.

In the table below we provide running times (measured in seconds) for these exam-

ples computed in Singular-2-0-0 running under Linux on a 1GHz Athlon with 768 MB

RAM. Here we denote by Gwf0 the time for StabEqn, by � the time for ArnoldAc-

tion, by � the time for LinearizeAction, by E0

f0
the time for ImageGroup, by NC

the time for NullCone, by R1, R2 the timer for computing the Reynolds operator,

resp. applying the operator to all non-invariant generators, and by Eq the time for

ImageIdeal. In the last column we provide the running time of ModEqn.

Nr. Gwf0 � � E0

f0
NC R1 R2 Eq. tot.

1 0.02 0.02 0.00 0.01 0.02 0 0 0.07 0.13

2 0.03 0.05 0.00 0.01 0.06 0 0 15.46 15.60

3 0.02 0.04 0.01 0.15 0.00 0 0 829.35 829.56

4 0.05 0.15 0.04 0.01 0.16 0.90 0.00 4.80 5.10

5 0.03 0.37 0.01 ? ? ? ? ? ?

6 0.04 6910.00 ? ? ? ? ? ? ?

5. Brieskorn-Pham singularities

A polynomial f0 2 C[x1; x2; : : : ; xn] is called a Brieskorn-Pham polynomial if f0 =Pn

i=1 x
ai
i for a1; a2; : : : ; an 2 N. Brieskorn-Pham polynomials appeared, e.g., in the

study of exotic spheres pursued by Milnor, Brieskorn and others in the 1960's. For
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semiquasihomogeneous power series with principal part a Brieskorn-Pham polynomial

the computation of the moduli space may be much simpler because of the following

two facts :

� Generators for Gwf0 can be written down without computation.

� The image of � is contained in GLk(C), i.e., the induced group action of Gwf0
on T� is linear.

Hence one may compute all elements of Gwf0 or Ef0 , which are needed to compute

the Reynolds operator, by matrix multiplication instead of computing the zeroset of

a 0�dim. ideal (the ideal of Gwf0 or Ef0). In general, the Reynolds operator must

be used since Derksen's algorithm computes generators for the ideal generated by

C[t1; t2; : : : ; tm]
Gw
f0

+ , which are not necessarily invariant. This might be a signi�cant

improvement in the computation, cf., e.g., Example 5.7.

In order to prove the structure theorem on Gwf0 we need the following Lemma,

which was published (without proof ) in 1991 by Orlik and Wagreich.

Lemma 3. [15] Let f 2 C[x1; x2; : : : ; xn] be quasihomogeneous and G = Gwf0 \
GLn(C). Then

nM
i=1

C
@f

@xi

is a G�module.

Proof. For � 2 Gwf0 \ GLn(C) we have f0 = f0 Æ � (composition of functions)

and therefore @f0
@xi

(x) = @f0Æ�

@xi
(x) =

Pn

j=1
@f0
@xj

(� � x)
@�j
@xi

(x). Since � 2 GLn(C)

the terms
@�j
@xi

(x) are constants which we denote by �j 2 C. We obtain @f0
@xi

(x) =�Pn

j=1 �j
@f0
@xj

�
(� � x). Now

� �
@f0

@xi
(x) = � �

0
@ nX
j=1

�j
@f0

@xj

1
A (� � x) =

0
@ nX
j=1

�j
@f0

@xj

1
A (��1� � x)

=

nX
j=1

�j
@f0

@xj
(x):

By using the previous lemma we obtain a theorem about the structure of the

stabilizer groups of Brieskorn-Pham polynomials.

Theorem 7. Let f0 2 C[x1; x2; : : : ; xn] be a Brieskorn-Pham polynomial.

(a) For f0 =
Pn

i=1 x
d
i the group Gwf0 is generated by the diagonal matrix containing

precisely one d�th root of 1 and all n� n permutation matrices, provided that d > 2.
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(b) Let f0 =
Pm

i=1 f
(di)
0 where f

(di)
0 =

Pri
j=ri�1+1

xdij s.t. di; ri 2 N; 0 < di < dj for

i < j and r0 = 0; ri < ri+1. The stabilizer of f0 is

Gwf0 =

mM
i=1

Gw
f
(di)

0

:

Proof. (a) Since all weights are equal (to 1) the only quasihomogeneous automor-

phisms are matrices, i.e., Gwf0 � GLn(C). Let M =
Ln

i=1C
@f0
@xi

= Cxd�11 �Cxd�12 �

::: � Cxd�1n and assume w.l.o.g. that A = (aij) 2 Gwf0 is s.t. a11 and a12 are not

equal to 0. By Lemma 5.3 M is a Gwf0�module, but A
�1 � xd�11 contains terms like

ad�211 a12x
d�2
1 x2, and is therefore not contained in M , a contradiction. Hence any ma-

trix in Gwf0 contains precisely one nonzero entry per row, which must be a d�th root

of unity. Since f0 is invariant under permutations the claim follows.

(b) By assumption we have degw(x1) = degw(x2) = ::: = degw(xr1) > degw(xr1+j)

and for ri�1 < k � ri each automorphism ' 2 Gwf0 is of the form

'(xk) =

riX
j=ri�1+1

�kjxj + ckRk(xri+1; xri+2; : : : ; xn)

for some �kj ; ck 2 C and Rk 2 C[xri+1; xri+2; : : : ; xn] with degw(Rk) = wk s.t.

det( @'
@xi

(0)) 6= 0. We show that ck = 0 and that the linear part of ' satis�es part (a)

for each block xri�1+1; xri�1+2; : : : ; xri of variables which proves the claim. Let i be

minimal s.t. '(xk) is not as required for some ri�1 < k � ri and de�ne '0(xk) = xk
for 1 � k � ri�1, '

0(xk) =
P
�kjxj for ri�1 < k � ri and '

0(xk) = '(xk) otherwise.

By assumption, '(x1); '(x2); : : : ; '(xri�1
) only a�ect x1; x2; : : : ; xri�1

which cannot

be changed by '(xri�1+j) for j > 0 and xri�1+1; xri�1+2; : : : ; xri are a�ected by

'(xri�1+1); '(xri�1+2); : : : ; '(xri). Note that '(f
(di)

0 +f
(di+1)

0 + : : :+f
(dm)

0 ) = f
(di)

0 +

f
(di+1)

0 + : : : + f
(dm)

0 . Hence '0(f
(di)
0 ) = f

(di)
0 + R0(xri+1; xr+2; : : : ; xn) and by part

(a) the coeÆcients �kl in '(xk) have the desired form. Now suppose some ck 6= 0 for

some ri � k � ri+1 � 1. Then, for a monomial x� in Rk, the term (�kjxj)
di�1x�

cannot be canceled from '(f
(di)

0 + f
(di+1)

0 + : : :+ f
(dm)

0 ), a contradiction to ' 2 Gwf0 .
Hence we obtain

jX
i=1

f
(di)

0 = '

 
jX

i=1

f
(di)

0

!
= '

 
j�1X
i=1

f
(di)

0

!
+ '(f

(dj)

0 ) =

j�1X
i=1

f
(di)

0 + '(f
(dj)

0 );

hence f
(dj)

0 = '(f
(dj)

0 ) for 1 � j � r.

Now we make use of the knowledge of the structure of Gwf0 to show that the induced

group-action of Gwf0 on T� is linear.
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Theorem 8. If f0 is a Brieskorn-Pham polynomial then Ef0 � GLk(C), i.e., the

induced action of Gwf0 on T� is linear.

Proof. By Theorem 5.7 Gwf0 � GLn(C) is generated by diagonal and permu-

tation matrices so we may assume that f0 =
Pn

i=1 x
di
i . For diagonal matrices

� = diag(�1; �2; : : : ; �n) it is clear that �(�) 2 Ef0 since

��1 � x� = (�1x1)
�1 � (�2x2)

�2 � ::: � (�nxn)
�n

induces a diagonal matrix in Ef0 � Aut(T�). Now let B� be the set of upper mono-

mials of the Milnor algebra Mf0 = C[x1; x2; : : : ; xn]=hx
di�1

i i. Since any permutation

is a product of transpositions it suÆces to consider the transposition � = (ij). Note

that any monomial in B� can be written as m = x�ii x
�j
j � m0, where m0 does not

contain xi and xj and �i < di � 1; �j < di � 1. The application of the transposition

� 2 Gwf0 to m yields

� �
�
x�ii x

�j
j �m0

�
= x

�j
i x�ij �m0 2M�

since �i; �j < di � 1 = dj � 1 and induces a permutation matrix in Ef0 � Aut(T�).

In both cases the map  from Theorem 3.2.3 is the identity.

Still the computation of moduli spaces for semiquasihomogeneous power series

with principal part a Brieskorn-Pham polynomial may fail due to the intrinsic com-

plexity of the invariant ring of Ef0 and the quotient T�=Ef0 . We illustrate the situ-

ation with 2 examples.

Example 6. Let f0 = x4+ y8 be a Brieskorn-Pham polynomial of type (8; 2; 1). The

semiuniversal family of negative weight is given by F (x; y; t1; t2) = x4+y8+ t1x
2y6+

t2x
2y5. We have �f0(0) = 21, jG

(2;1)

f0
j = jEf0 j = 32 and T� = C2. The invariant

ring equals C[t1; t2; t3; t4]
Gw
f0 = C[t41; t

2
1t
4
2; t

8
2] and the embedding of the moduli space

M = T�=Ef0 in C3 is given by the variety V(y1y3 � y22).

Example 7. Let f0 = x3+y3+z7 be a Brieskorn-Pham polynomial of type (21; 7; 7; 3).

We have �f0(0) = 24, jG
(7;7;3)

f0
j = jEf0 j = 126 and T� = C5. The invariant ring

C[t1; t2; t3; t4; t5]
Ef0 is generated by 162 homogeneous invariants h1; h2; : : : ; h162 with

degrees ranging from 3 to 42. Among the 162 generators delivered by Derksen's

algorithm, 107 are invariant. Even the computation of the zeroset of G
(7;7;3)

f0
takes

ca. 2h25' (without applying the Reynolds operator) but we can write down the

generators of Gwf0 and compute the induced action by hand (or Singular 2.0). Then

all matrices of Ef0 are computed (12.68sec) and the Reynolds operator is applied to

each non-invariant generator (1589.30sec). In order to compute the equations one has

to eliminate the variables t1; t2; t3; t4; t5 in the ideal hy1 � h1; y2 � h2; :::; y162 � h162i.
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6. Conclusion

We have described algorithms and their implementation in Singular 2.0 for comput-

ing equations of moduli spaces of semiquasihomogeneous power series with principal

part f0 w.r.t. right equivalence. The algorithms are contained in the Singular 2.0

libraries qhmoduli.lib and rinvar.lib and some auxiliary algorithms are contained

in zeroset.lib. The implementation is not restricted to speci�c classes of princi-

pal parts, but limitations arise from the intrinsic complexity of Gr�obner bases and

Arnold's Theorem.

If one considers the coarser relation contact equivalence instead of right equiva-

lence, then a coarse moduli space still exists, but one has to �x more invariants and

the construction is much more involved. In particular, the corresponding group need

not be reductive! We refer to [9] for the existence proof. For a construction in the

case of space curve singularities we refer to [6].
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