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Abstract

The purpose of this paper is to study a model coupling an
incompressible viscous fluid with an elastic structure in a bounded
container. We prove the existence of weak solutions “à la Leray”
as long as no collisions occur.

1 Introduction

Because of its many applications to industrial [9], [11], [15] and
biological problems [17], [18, 19], fluid-structure interaction models have
been extensively studied over the past few years. Roughly speaking, the
problem is to describe the evolution of an incompressible or compressible
fluid coupled with a rigid or elastic structure located inside the fluid
or on the domain’s boundary. The purpose of this work is to prove
theoretical results for the interaction between an incompressible viscous
fluid governed by the Navier-Stokes equations and an elastic structure
whose deformation is given by a linear combination of a finite number
of modes. The case of a finite number of rigid structures embedded
in a fluid was treated in [6], dealing with the incompressible Navier-
Stokes equations as well as the compressible Navier-Stokes equations for
isentropic fluids (see also [1] [5] [8] [12] [13] [20]). Following a similar
approach, we intend here to prove existence of weak solutions “à la
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Leray” for such a fluid-elastic model. The container Ω is a C2,1 bounded
open subset of Rd (d = 2 or 3), in which an incompressible fluid of
density ρ̄F > 0 and viscosity µ > 0 evolves according to the Navier-
Stokes equations

ρ̄F (∂tv + div (v⊗ v)) = divσ
F

+ ρ̄F fF , in ΩF (t), (1)

divv = 0 in ΩF (t), and v|t=0 = v0 in ΩF (0), (2)

where σ
F

= 2µD(u)−p I and D(u)ij = (∂iuj +∂jui)/2. Here, fF denotes
bulk forces, p the pressure, and v the Eulerian velocity field.

On the other hand, the elastic structure is described in terms of
its displacement ξ(t,x) = X(t, 0,x) − x, where X(t, s,x) denotes the
Lagrangian flow, i.e. the position at time t of the particle located at
x at time s. We consider a linearized elasticity model, which writes as
follows

π
1
(ξ) = λtr(ε) I + 2µε, where ε(ξ) =

1
2
(∇ξ +t∇ξ). (3)

π
1

denotes the first Piola tensor, and λ, µ the Lamé constants of the
elastic media satisfying λ+2µ > 0. Denoting ρ̄S(0) the initial density of
the structure, the free dynamics would be given by ρ̄S(0)∂2

t ξ = divπ
1
(ξ)

in the absence of fluid. We now introduce the elastic modes in the initial
elastic C2,1 domain ΩS(0)

−divπ
1
(ξ

i
) = λiξi

in ΩS(0) and π
1
(ξ

i
) · nL = 0 on ∂ΩS(0), (4)

where nL denotes the outward normal to ∂ΩS(0), {ξ
i
}i∈N is an orthonor-

mal basis of L2(ΩS(0)) and {λi}i∈N is a non negative non decreasing
sequence of eigenvalues. The regularity of the domain ΩS(0) provides
us with H3 regularity for ξ

i
. Let us also observe that the eigenvalue

λi = 0 corresponds to Lagrangian rigid motions ξ(x) = a+b×x, where
a ∈ Rd and b ∈ R2d−3. Given N ≥ 1, we assume that the structure
displacement is determined in terms of the first N eigenmodes

ξ(t,x) = ξ
α
(t,x) :=

N∑
i=1

αi(t)ξi
(x), where α(t) = {αi(t)}1≤i≤N ∈ RN .

(5)
The corresponding Lagrangian flow x 7→ Xα(t, 0,x) = x + ξ

α
(t,x) has

to be a diffeomorphism from ΩS(0) onto ΩS(t) := Xα(t, 0,ΩS(0)), so
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that all what follows will hold as long as det Fα(t,x) 6= 0 on Ωs(0)
(where Fα(t,x) := ∇Xα(t, 0,x)), and Xα is one-to-one on Ωs(0). Thus,
we define Xα(0, t,x) by Xα(0, t, .) = Xα(t, 0, .)−1 and Xα(t, s,x) :=
Xα(t, 0,Xα(0, s,x)). Moreover, since we consider incompressible fluid
models, the fluid domain ΩF (t) has constant volume, so that the
volume of ΩS(t) = Ω \ ΩF (t) also has to be independent of t, which
yields the following nonlinear constraint on α :∫

ΩS(0)
det Fα(t,x) dx = |ΩS(0)|, 0 ≤ t ≤ T. (6)

Notice that for small enough T , there are functions α satisfying (6) for
N sufficiently large. Indeed, in this case, one can find 1 ≤ i ≤ N such
that

∫
∂ΩS(0) ξi

·n ds 6= 0, under which the implicit function theorem can
be applied.

Thus, the evolution of α is given by∫
ΩS(0)

(
(ρ̄S(0) ∂2

t ξα
− ρ̄S(0) fS)ξ

i
+ π

1
(ξ

α
) · ∇ξ

i

)
dx

=
∫

∂ΩS(t)
(σ

F
·n) ·(ξ

i
◦Xα(t,x, 0)) ds , for all i = 1, . . . , N (7)

fS denoting the bulk forces in Lagrangian coordinates. In order to give a
more complete description of the model, we have to precise the bound-
ary conditions. First, because of the viscosity, the fluid sticks to the
boundary: v(t,x) = 0 on ∂ΩF (t)∩ ∂Ω, and v(t,x) = ∂tξα

(t,Xα(0, t,x))
on ∂ΩF (t)∩ ∂ΩS(t). Finally, note that in (7) the N–mode projection of
the normal stress is assumed to be continuous on ∂ΩS(t) ∩ ∂ΩF (t):∫

∂ΩS(t)

((
σ

F
− σ

S

)
· n

)
·
(
ξ
i
◦Xα(t,x, 0)

)
ds = 0, i = 1 . . . N,

where σ
S

denotes the Cauchy stress tensor of the structure:

σ
S
(t,Xα(t, 0, ·)) =

π
1
(ξ

α
) · Fα

det Fα
. (8)

The aim of this paper is to define a weak formulation of the above
problem (section 2) and to prove the existence of weak solutions under
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appropriate assumptions (section 4). In section 3, we describe how to
represent a global Eulerian velocity compatible with (5) in terms of
functions defined in fixed reference domains. Section 6 is devoted to the
proof of stability for weak solutions, whereas in section 5, we construct
approximate solutions of the fluid–structure interaction problem.

Let us end the introduction with some perspectives on future work:
we have by now treated the case of rigid or slightly elastic bodies embed-
ded in a compressible or incompressible fluid. In forthcoming works, we
intend to consider the case of a 2-D or 3-D elastic structure containing a
3-D viscous fluid. The aforementioned situation is somehow connected
to blood flow modelling [18, 19] which has retained more and more at-
tention over the last few years (see1 for numerical simulations). Other
boundary conditions and solid bodies attached to the internal walls are
also among the situations that we would like to tackle.

2 Mathematical formulation

As in [5] [6], we introduce the globally defined Eulerian velocity u given
by u(t,x) = v(t,x) in ΩF (t) and u(t,x) = ∂tξα

(t,Xα(0, t,x)) in ΩS(t),
and the corresponding Lagrangian flow X

∂tX(t, s,x) = u(t,X(t, s,x)), X(t, s,x) = x ∈ Ω. (9)

We also need to introduce the fluid density ρF (t,x) = ρ̄F 1ΩF (t)(x) and
the total density ρ which are solutions of

∂tρF + div (ρFu) = 0 in (0, T )× Ω, ρF |t=0 = ρ̄F 1ΩF (0) in Ω, (10)

∂tρ+ div (ρu) = 0 in (0, T )×Ω, ρ|t=0 = ρ̄F 1ΩF (0) + ρ̄S(0)1ΩS(0) in Ω.
(11)

Notice that the incompressibility in the fluid domain ΩF (t) can be writ-
ten globally as

ρF divu = 0 in (0, T )× Ω. (12)

In order to formulate a weak formulation for the above model, we
introduce the space of test functions given by

1 http://dmawww.epfl.ch/Quarteroni-Chaire/Simulations/ index.html
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V :=
{
φ ∈ H1((0, T )×Ω)d, φ(t, .) ∈ H1

0 (Ω)d for t ∈ [0, T ], ρF divφ = 0,

in(0, T )× Ω, φ(t,X(t, 0,x)) =
∑N

i=1 β̇i(t)ξi
(x)

for x ∈ ΩS(0), β ∈ H2(0, T )N
} (13)

Note that for any φ ∈ V, the corresponding β satisfies∫
ΩS(0)

(Fβ̇ − I) : F−1
α det Fα dx = 0.

Let ΩF (0) and ΩS(0) = Ω\ΩF (0) be given smooth domains representing
the initial fluid and elastic domain. We assume that δ0 = d(ΩS(0), ∂Ω) >
0, which means that there is no contact between the structure and the
container at the initial time. Let v0 ∈ L2(ΩF (0))d such that

v0 · n = 0 on ∂Ω, divv0 = 0 in ΩF (0). (14)

Given α̇0 ∈ RN satisfying the compatibility condition

N∑
i=1

∫
∂ΩS(0)∩∂ΩF (0)

α̇i,0 ξi
· n = 0,

we define u0 ∈ L2(Ω)d by

u0(x) = v0(x) in ΩF (0) and u0(x) =
N∑

i=1

α̇i,0ξi
(x) in ΩS(0). (15)

The initial density ρ̄S(0) in the elastic domain is taken in L∞(ΩS(0)) ∩
Hso(ΩS(0)) for some positive so ∈ (0, 1), so that in particular ρ|t=0 ∈
L∞(Ω).

We shall say that (ρF , α,u) is a weak solution of the above model
on (0, T ) if

(i)
√
ρF u ∈ L∞(0, T ;L2(Ω))d , u ∈ L2(0, T ;H1

0 (Ω))d, divu ∈
L∞((0, T )× Ω),
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(ii) There exists α ∈ W 1,∞(0, T )N , α(0) = 0, α̇(0) = α̇0, satisfying
condition (6), and such that the Di Perna-Lions flow X of u satisfies
for a.e. x ∈ ΩS(0)

X(t, 0,x) = x + ξ
α
(t,x) for all t ∈ (0, T ).

(iii) (10), (11), and (12) hold in the sense of distributions in (0, T )×Ω.

(iv) for all φ ∈ V, we have∫
Ω
ρFu · φ(t,x) dx + tα̇ ·MS · β̇(t)

−
∫ t

0
ds

∫
Ω
dx

(
ρFu · ∂tφ+ ρFu⊗ u : D(φ)

−2µ(ρF /ρ̄F )D(u) : D(φ) + ρF fF · φ
)

+
∫ t

0

(
tα ·K · β̇ − tα̇ ·MS · β̈

)
ds

−
∫ t

0

ds

∫
ΩS(0)

dx ρ̄S(0)fS · ξβ̇
=

∫
Ω

ρF (0)u0 · φ0 dx + tα̇0 ·MS · β̇0. (16)

Here, K = diag(λ1, . . . , λN ), and MS denotes the symmetric nonnega-
tive inertia matrix

(MS)ij :=
∫

ΩS(0)
ρ̄S(0)ξ

i
(x) · ξ

j
(x) dx.

Notice that MS is positive definite as soon as ρ̄S(0) is positive and
bounded away from zero, which is an assumption that we make from
now on.

Taking φ = u as a test function in (16), we obtain the a priori energy
estimate: {∫

Ω
ρF

u2

2
dx +

tα̇ ·MS · α̇
2

+
tα ·K · α

2

}
(t)

+
∫ t

0
ds

∫
Ω
dx

(
2µ
ρF

ρ̄F
D(u) : D(u)

)

≤
∫ t

0

∫
Ω
ρF fF · u dxds+

∫ t

0

∫
ΩS(0)

ρ̄S(0)fS · ξα̇
dxds
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+
∫

Ω
ρF

u2
0

2
dx +

tα̇0 ·MS · α̇0

2
. (17)

Thus, as soon as u0 ∈ L2(Ω)d, f ∈ L2((0, T ) × Ω)d, we have
√
ρFu ∈

L∞(0, T ;L2(Ω))d, α ∈W 1,∞(0, T )N and u ∈ L2(0, T ;H1
0 (Ω))d.

3 Representation of velocities

In this section, we introduce an appropriate representation for admissi-
ble velocities u, which will allow to build approximate solutions for (i)
and (ii) , and to regularize velocity fields in a suitable way. The goal
here is to represent any global Eulerian velocity u such that u|ΩF (t) is
incompressible and u|ΩS(t) is given by (5) by functions defined in fixed
reference domains. This allows to use a fixed point approach without
directly dealing with the domain variation. Let to be the set{
ũ∈L∞(0, T ;L2(ΩF (0)))d∩L2(0, T ;H1

0 (ΩF (0)))d, div ũ = 0 in ΩF (0)
}
,

endowed with the natural associated norm | · |Y0 . The elastic domain
configurations are represented by

Y1 :=

{
α ∈W 1,∞(0, T )N ,

∫
ΩS(0)

det Fα(t,x) dx = |ΩS(0)|

}
,

endowed with the corresponding ambiant norm. The natural norm on
the product space Y[0,T ] = Y0 × Y1 is then given by ||(ũ, α)||Y[0,T ]

=
|ũ|Y0 + |α|Y1 . As noted in section 1, Y1 6= ∅ if N is sufficiently large.

Let ũ ∈ Y0 be given. Extending ũ by 0 outside ΩF (0), we deduce
from Di Perna-Lions theory [7] the existence of a unique generalized flow
X̃ ∈ L∞((0, T )× Ω) such that

• For all β ∈ C0,1(R; R), we have

∂tβ(X̃) = ũ(t, X̃(t, s,x)) ·Dβ(X̃), in D′((0, T )2 × Ω).

• For a.e. x ∈ ΩF (0), for all (t1, t2, t3) ∈ (0, T )3,

X̃(t1, t2,x) = X̃(t1, t3, X̃(t3, t2,x)),
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• Denoting λ0 the Lebesgue measure on ΩF (0), we have

λ0 ◦ X̃(t, s, .) = λ0.

A natural extension of X̃ to the whole domain Ω is given by X̃(t, s,x) = x
for x ∈ ΩS(0), (t, s) ∈ (0, T )2.

Given α ∈ Y1, we build XE defined on (0, T )2 × ΩS(0) by

XE(t, 0,x) = x + ξ
α
(t,x) = x +

N∑
i=1

αi(t)ξi
(x), (18)

XE(0, t, .) := XE(t, 0, .)−1 and XE(t, s,x) := XE(t, 0,XE(0, s,x)),

which is smooth in x and Lipschitz in t and s. Assuming that
d(ΩS(t), ∂Ω) ≥ δ1 > 0 on (0, T ), where ΩS(t) = XE(t, 0,ΩS(0)), we
want to build an extension X̂E of XE in (0, T )2×Ω which preserves the
Lebesgue measure on ΩF (0). First, we define the Eulerian velocity uE

of XE by uE(t,x) = ∂tXE(t, 0, XE(0, t,x)) for x ∈ ΩS(t). Next, for a
fixed time t ∈ (0, T ), we extend it on Ω with ûE defined by solving a
Stokes problem

−µ∆ûE +∇p̂E = 0, div ûE = 0, in ΩF (t),

ûE = 0 on ∂Ω ∩ ∂ΩF (t), ûE = uE on ∂ΩF (t) ∩ ∂ΩS(t). (19)

We claim that the corresponding vector field ûE extended by uE on
ΩS(t) belongs to L∞(0, T ;W 1,∞(Ω))d. Indeed, this is a consequence of
the regularity properties of uE combined with classical results for the
Stokes problem. The associated Lagrangian flow X̂E thus belongs to
W 1,∞((0, T )× Ω)d.

Finally, we introduce X defined for a.e. x in (0, T )2 × Ω by

X(t, 0,x) = X̂E(t, 0, X̃(t, 0,x)). (20)

In some sense, X̂E is a renormalization of X̃ depending smoothly on
t. Moreover, if A ⊂ ΩF (0), |X̃(t, 0, A)| = |A| and X̃(t, 0, A) ⊂ ΩF (0).
Hence, |X̂E(t, 0, X̃(t, 0, A))| = |X̃(t, 0, A)| = |A|. It follows that X pre-
serves the volume of subsets of ΩF (0). Note also that X(t, 0, ·) coincides
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with XE(t, 0, ·) in ΩS(0). Notice that the Eulerian velocity associated
with X is divergence–free in ΩF (t). In conclusion, given (ũ, α) ∈ Y[0,T ]

we construct a velocity u satisfying (i) and (ii) (and reciprocally).

Finally, let us call u = Θ(ũ, α) the Eulerian velocity associated with
X. Notice that this representation procedure allows us to regularize
Eulerian velocities satisfying (i) and (ii), by first regularizing separately
the two components of Θ−1(u), ũ and α, and then constructing a new
regularized velocity by taking the image by Θ of the regularized ũ and
α.

4 Main result

The aim of this paper is to prove existence of weak solutions “à la
Leray”, i.e. solutions satisfying the bounds associated with the en-
ergy inequality (17). Let us mention at this point the limitations of
our result, which as in [5] [6] [1] (in the rigid case) holds away from
collisions. In the elastic case, we are not only limited to times t such
that δ(t) = d(ΩS(t), ∂Ω) > 0, but also by the fact that x 7→ Xα(t, 0,x)
has to be a diffeomorphism from ΩS(0) onto ΩS(t), which constrains the
choice of the elastic model. Hence we have to restrict ourselves to times
t such that γ(t) = inf

x∈ΩS(0)
|det Fα(t,x)| > 0, and x 7→ Xα(t, 0,x) in

one–to–one on ΩS(0). Also, we have to ensure that Y1 is non empty,
which writes as

κ(t) = min
1≤i≤N

∣∣∣∣∣
∫

∂ΩS(0)
det Fα

(
F−1

α · n
)
· ξ

i
ds

∣∣∣∣∣ > 0 (21)

Theorem 4.1. Under assumption (14) on the initial data, and if δ(0) >
0, κ(0) > 0, ρ̄S(0) ≥ c0 > 0 in ΩS(0) for some c0, there exists T ∗ ∈
(0,∞]

T ∗=sup
{
t>0, δ(t)γ(t)κ(t)>0, XE(t, 0, ·) is one-to-one on ΩS(0)

}
,

(22)
and a weak solution (ρ, ρF ,u) to the above system such that the energy
inequality (17) holds for a.e. t ∈ (0, T ∗).
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In order to prove Theorem 4.1, we consider a sequence (ρn, ρn
F ,u

n)
of approximate solutions – which we will actually build in section 5 –
corresponding to regularized data un

0 converging strongly to the limit
ones. Then, using uniform energy bounds with respect to n, we prove
that up to the extraction of a subsequence, ρn and ρn

F converge strongly
in C([0, T ];Lp(Ω)) for all p < ∞ to some ρ and ρF , and un converge
to u in L2((0, T ) × Ω)d. Finally, we have to check that (16) holds for
any given φ ∈ V, which is done by approximating φ by φ

n
∈ Vn, test-

functions adapted to ρn
F and un. Let us emphasize that this methodology

was originated in the work of Tartar [22] for conservation laws, and later
by Di Perna and Lions for transport equations [7].

5 Construction of approximate solutions

In order to prove Theorem 4.1, we proceed along the lines of [6] to obtain
existence results for suitable approximate problems (Pε). These prob-
lems are easier to deal with than the original one, because the involved
convecting velocities are suitably regularized. Given T > 0 small enough
to ensure

min(δ(t), γ(t), κ(t)) ≥ α0 > 0 on (0, T ),

which can be achieved using the space and time Lipschitz a priori bounds
on the solid dynamics (see (17)), we introduce

E(T ) = C0

(
|u0|2L2(Ω) +

∫ T

0
|f|2L2(Ω)ds

)
,

which controls the energy in the interval (0, T ) in view of the a priori
bound (17).

In order to define (Pε), we first introduce two smoothing operators
R1

ε R
2
ε acting respectively on functions in Y0 and Y1 with values in the

space of analytic functions in time. Let ᾱ ∈ Y1 . Since R2
ε(ᾱ) has to

satisfy (6), one first has to regularize N − 1 modes {αj}j 6=j0 , where j0 is
such that ∫

∂ΩS(0)
ξ
j
· n ds 6= 0.

Then, the remaining mode is determined by the use of the implicit func-
tion theorem. Finally, we define Rε := (R1

ε, R
2
ε).
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Let BT ′ (0 ≤ T ′ ≤ T ) be the ball of Y[0,T ′] centered in 0 of radius
RT ′ = 2E(T ′). Let us now take w = (u, ᾱ) ∈ BT . For ε > 0 given,
we split (0, T ) into M subintervals Ik = [tk, tk+1), 0 ≤ k ≤ M − 1,
tk = kT/M such that

sup
t∈Ik

|∇xX
ε
w(t, tk, .)− I|L∞(Ω) ≤

1
2
, (23)

Xε
w denoting the Lagrangian flow associated with Θ(Rε(w)). Notice

that M depends only on ε and on RT .
Now, on the interval I1 = (0, t1) we build uε = Fε(u, ᾱ) as the unique

solution of the linear problem in I1 which is obtained by smoothing out
the initial velocity u0, by replacing u by vε := Θ(Rε(w)) in (10) and
(11). This yields density functions ρε

F and ρε, which define a set of test
functions Vε. Then, uε will be the function solving (i) to (iv), with ρF

replaced by ρε
F in (i) and (iv); α replaced by R2

ε(ᾱ) in (ii) and (iv), V
replaced by Vε in (iv) and u⊗ u by vε ⊗ u in (16).

The procedure to show that such a vε exists is the same as that used
in [6] (Galerkin approximation method on the Lagrangian formulation).
Then we show that Fε is compact by using classical parabolic regularity
results. We basically prove that

√
ρε

F uε belongs to L∞(0, t1;H1(ΩF (0)),
uε to L2(0, t1;H2(ΩF (0))), ∂tuε ∈ L2((0, t1)×ΩF (0)), and αε = Rε(ᾱ) ∈
H2(0, t1)N . This yields the existence of a fixed point for Fε in view of
Leray-Schauder Theorem. We proceed similarly on I2, starting from
u(t1, .) ∈ H1(ΩF (0)) and using the energy a priori bound (17) from t1
to t2. This provides us with a sequence of approximate solutions on
(0, T ) which as in [6] satisfy energy bounds uniform in ε.

6 Compactness results

Let (ρn,un) be a sequence of approximate solutions with initial data ρn
0

and un
0 converging to ρ0 and u0 in L1(Ω) and L2(Ω)d respectively, and

such that the energy bounds (17) hold uniformly in n. As a result, the
corresponding sequence αn is bounded in W 1,∞(0, T )N uniformly in n.
Let us observe that

|Fαn(t, .)−Fαn(s, .)|L∞(ΩS(0)) ≤ C|αn(t)−αn(s)| ≤ C|αn|W 1,∞(0,T )|t−s|,
(24)
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|∇Fαn |L∞((0,T )×ΩS(0)) ≤ C|αn|L∞(0,T ) ≤ CT, (25)

and recall that there exists a0 and b0 such that if M ∈ Md(R) satisfies
||M ||∞ ≤ a0, then det (I +M) ≥ b0 > 0. Taking s = 0 in (24) and T0

small enough with respect to a0, we deduce that

γn(t) ≥ γ1 > 0 and δn(t) ≥ δ1 > 0 on [0, T0], (26)

and x 7→ Xα(t, 0,x) in one–to–one on ΩS(0) for t ∈ [0, T0].
Moreover, using the particular expression of un in ΩS(t), we deduce that
un is bounded in L∞(0, T0;L2(Ω))d ∩ L2(0, T0;H1

0 (Ω))d, and divun is
bounded in L∞((0, T0)× Ω), uniformly in n.

First, using Ascoli’s theorem, we may assume, up to the extrac-
tion of a subsequence, that αn converges to some α ∈ W 1,∞(0, T0)N in
C0([0, T0])N , and Fαn converges to Fα in C0([0, T0] × ΩS(0)), so that
det Fαn converges to det Fα in C0([0, T0]×ΩS(0)). Di Perna–Lions com-
pactness results [7] immediately yield the convergence of ρn

F to some
ρF in C([0, T0];Lp(Ω)) for all p < ∞. On the other hand, ρn converges
strongly to ρ in Lp((0, T0)×Ω) for all p <∞; indeed, ρn

S := ρn−ρn
F is so-

lution of ∂tρ
n
S +div (ρn

Sun) = 0, ρn
S |t=0 = ρ̄S(0)1ΩS(0). Since un

|ΩS(t) =un
E ,

we remark that ∂tρ
n
S + div (ρn

Sûn
E) = 0, where the vector field ûn

E is
given by the Stokes’ extension (19). Since ûn

E is uniformly bounded
in L∞(0, T ;W 1,∞(Ω))d, ρn

S is bounded in L∞(0, T ;Hso(Ω)) for some
so ∈ (0, 1) (see [3]).

|ρn
S |L∞(0,T ;Hso (Ω)) ≤ C|ρS(0)|Hso (Ω) exp

(
C

∫ T

0
|∇ûn

E |L∞(Ω)ds

)
,

where ρS(0) is an extension of ρ̄S(0) in Hso(Ω). Classical compactness
results yield the claimed convergence.

Next, we claim that

Proposition 1. Let T > 0 such that δ(t) ≥ δ1 > 0 and γ(t) ≥ γ1 > 0
for t ∈ (0, T ). Then, for all h > 0 small enough, we have

sup
n∈N

∫ T

0

∫
Ω
ρn|un

+ − un|2dtdx ≤ Cδ1,γ1,T h
α∗ , (27)

where α∗ = 2/(d+ 2) and g+(t,x) := g(t+ h,x) for g ∈ D′(t,x).
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Proof. as in [2], [6], we denote by An the argument of the left hand
side of (27), and make the following splitting

An ≤
∫ T

0

∫
Ω
(ρn + ρn

+)|un
+ − un|2 dtdx = An

1 + 2An
2 , (28)

where An
1 =

∫ T

0

∫
Ω
(ρn

+ − ρn)(|un|2 − |un
+|2) dtdx,

and An
2 =

∫ T

0

∫
Ω
(ρn

+un
+ − ρnun) · (un

+ − un) dtdx.

An
1 is handled using the transport equation satisfied by ρn, (11). Indeed,

Hη being a smoothing kernel such that

||u−Hηu||L2 ≤ Cη||∇u||L2 (see [4] for possible choices of Hη),

we have:

An
1 ≤

∫ T

0

∫
Ω
(ρn

+ − ρn)(|Hηun|2 − |Hηun
+|2) dtdx

+η2|ρn
+ − ρn|L∞((0,T )×Ω)|∇un|2L2(0,T+h;L2(Ω))

≤ Cη2+∣∣∣∣∫ T

0
dt

∫ t+h

t
ds

∫
Ω
dx ρn(s,x)un

i (s,x) ·
(
∇iHηun

+ ·Hηun
+ −∇iHηun ·Hηun

)∣∣∣∣
≤ Cη2+
Ch|ρnun|L∞(0,T+h;L2(Ω))|∇Hηun|L2((0,T+h)×Ω)|Hηun|L∞((0,T+h)×Ω)

≤ Cη2 + Chη−d/2.

In order to estimate An
2 , we will use the weak formulation (16) with

wn := un
+ − un as a test function in [t, t + h]. However, wn has to

be slightly modified in order to be admissible. Observing that un =
ûn

E + (un − ûn
E), and that un

2 := un − ûn
E vanishes in ΩS(t) and thus is

incompressible in Ω, we slightly modify un
2 as follows: we first use the

fact that δ(t) ≥ δ1 > 0 and the fact that Xα is one-to-one on Ωs(0) to
split un

2 as in [6] into a velocity field un
2,1 supported away from ΩS(t),

and un
2,2 supported away from the boundary. Then, we make a dilation

centered in ΩS(t) of magnitude η >> h, so that un
2,2,η is supported
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outside a η–neighborhood of ΩS(t). Recalling that αn is bounded in
W 1,∞(0, T )N , ΩS(t + h) is included in a h–neighborhood of ΩS(t), so
that un

2,2,η also vanishes in ΩS(t+ h). Hence, we have modified un
2 into

un
2,η which is an admissible test function on [t, t+ h] and satisfies

|un
2 − un

2,η|L2((0,T )×Ω) ≤ Cη|∇un|L2((0,T )×Ω),

|∇un
2 |L2(0,T ;Lp(Ω)) ≤ Cpη

−d(1/2−1/p)|∇un|L2((0,T )×Ω).

The shifted velocity un
2,+ is handled similarly. The estimates associated

to the test function wn
2 are classical [2] [6]. We obtain∫ T

0

∫
Ω
(ρn

+un
+ − ρnun) ·wn

2 dtdx ≤ Chα∗ , where α∗ =
2

d+ 2
.

We finally have to take care of the elastic velocity wn
E := ûn

+,E− ûn
E .

Using the fact that X̂
n

E is bounded in C0,1([0, T ] × Ω), we first remark
that

|ûn
E(t,x)− ûn

E(t, X̂
n

E(t, t+ h,x))|L2((0,T )×Ω) ≤ Ch,

and that a similar estimate for ûn
+,E yields∫ T

0

∫
Ω
(ρn

+un
+ − ρnun) ·wn

E dtdx ≤ Ch+∣∣∣∣∫ T

0
dt

(∫
Ω
ρn
+un

+ · φn
2 dx−

∫
Ω
ρnun · φn

1 dx
)∣∣∣∣,

where the functions φn
i , i = 1, 2 , are given by

φn
1 (t,x) = ûn

E(t+ h, X̂
n

E(t+ h, t,x))− ûn
E(t,x),

φn
2 (t,x) = ûn

E(t+ h,x)− ûn
E(t, X̂

n

E(t, t+ h,x)).

In particular, we have

φ1(t, X̂
n

E(t, 0,x)) = φ2(t, X̂
n

E(t+ h, 0,x)) = ψh
0 (t,x),

where

ψh
0 (t,x) = ûn

E(t+ h, X̂
n

E(t+ h, 0,x))− ûn
E(t, X̂

n

E(t, 0,x)).
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Now, we can apply the weak formulation, and end the proof of Proposi-
tion 1.

It is now easy to conclude using Kolmogorov compactness theorem
that un converges strongly to u in L2((0, T )× Ω)d.

In order to prove that (ρ,u) is a weak solution, we consider a test
function φ ∈ V, and prove that (16) holds. As in [5] [6], we approximate
φ by φn ∈ Vn, which converge to φ in strong topologies, then pass to the
limit in n.
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