EXISTENCE OF SOLUTIONS OF STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN \mathbf{R}^{N}

A. BENKIRANE and M. KBIRI ALAOUI

Abstract

The paper is dedicated to the existence of local solutions of strongly nonlinear equations in \mathbb{R}^{N} and the Orlicz spaces framework is used.

1 Introduction

Let A be the Leray-Lions operator given by $A(u)=-\operatorname{div} a(., u, \nabla u)$ where $p \in] 1, N], \frac{1}{p}+\frac{1}{p^{\prime}}=1$ and where $a: \mathbf{R}^{N} \times \mathbf{R} \times \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$ is a Carathéodory function satisfying for a.e. $x \in \mathbf{R}^{N}$, for all $s \in \mathbf{R}, \xi, \xi^{*} \in$ \mathbf{R}^{N} with $\xi \neq \xi^{*}$:

$$
\begin{gather*}
|a(x, s, \xi)| \leq \beta\left(c(x)+b(x)|s|^{p_{-} 1}+d(x)|\xi|^{p_{-} 1}\right) \tag{1.1}\\
{\left[a(x, s, \xi)_{-} a\left(x, s, \xi^{*}\right)\right]\left[\xi_{-} \xi^{*}\right]>0} \tag{1.2}\\
\nu|\xi|^{p} \leq a(x, s, \xi) \xi \tag{1.3}
\end{gather*}
$$

where $c(x) \in L_{l o c}{ }^{p^{\prime}}\left(\mathbf{R}^{N}\right), c \geq 0 ; b(x), d(x)$ are locally bounded functions, $\beta \in \mathbf{R}^{+}$and $\nu>0$. On the other hand, $g: \mathbf{R}^{N} \times \mathbf{R} \rightarrow \mathbf{R}$ is a Carathéodory function such that for a certain constant $\delta>0$:

$$
\begin{equation*}
g(x, s) \text { signs } \geq|s|^{\delta} \tag{1.4}
\end{equation*}
$$

holds for all $s \in \mathbf{R}$, a.e $x \in \mathbf{R}^{N}$. Moreover, for every $t>0$,

$$
\begin{equation*}
\sup _{|s| \leq t}|g(., s)| \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \tag{1.5}
\end{equation*}
$$

2000 Mathematics Subject Classification: 35J60.
Servicio de Publicaciones. Universidad Complutense. Madrid, 2001
a.e. $x \in \mathbf{R}^{N}$.

We consider the following nonlinear equation

$$
\begin{equation*}
A(u)+g(., u)=f \text { in } \mathbf{R}^{N}, f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \tag{1.6}
\end{equation*}
$$

We say that u is a weak solution of (1.6) if it satisfies:

$$
\left\{\begin{array}{l}
u \in W_{l o c}^{1,1}\left(\mathbf{R}^{N}\right), a(., u, \nabla u) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right), g(., u) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \tag{1.7}\\
A(u)+g(., u)=f \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

By combining [10] and [11], we can deduce the existence of weak solutions u for (1.6), with the following regularity:
$u \in W_{l o c}^{1, q}\left(\mathbf{R}^{N}\right)$ for every $q<\bar{q}=\frac{N\left(p_{-} 1\right)}{N _1}$ if $\delta>p-1$ and $p_{0}=2-\frac{1}{N}<$ $p \leq N$. $u \in W_{l o c}^{1, q}\left(\mathbf{R}^{N}\right)$ for every $q<q_{1}=\frac{p \delta}{\delta+1}$ if $\delta>\bar{q}^{*}$ and $p_{0}<p<N$ or $\delta(p-1)>1$ and $1<p \leq p_{0}$.

It is our purpose in this paper to prove the limiting regularity $W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ and $W_{l o c}^{1, q_{1}}\left(\mathbf{R}^{N}\right)$ (which is not reached in general) of weak solutions of (1.6), when we replace the conditions (1.1) and (1.3) by the following:

$$
\begin{gather*}
|a(x, s, \xi)| \leq \beta\left(c(x)+b(x)|s|^{p-1} \log ^{\alpha p}(e+|s|)\right. \tag{1.1}\\
\left.+d(x)|\xi|^{p _1} \log ^{\alpha p}(e+|\xi|)\right) \\
\nu|\xi|^{p} \log ^{\alpha p}(e+|\xi|) \leq a(x, s, \xi) \xi \tag{1.3}
\end{gather*}
$$

a.e. $x \in \mathbf{R}^{N}, \forall s \in \mathbf{R}$ and $\xi, \xi^{*} \in \mathbf{R}^{N}, \xi \neq \xi^{*}$. With $c, b(x), d(x), \beta, \nu$ as above, $1<p \leq N$, and $\alpha>\frac{1}{p}$.
It is to be noticed that our study covers the regularity $W_{l o c}^{1, N}\left(\mathbf{R}^{N}\right)$.
We prove also that the condition $\alpha>1 / p$ is necessary to obtain the limiting regularity $W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ for the solutions given by theorem 2.1. The case $g(., s)$ signs ≥ 0 was studied in [8] with second member measure and Ω bounded.

For other strongly nonlinear equations in Orlicz spaces see [7], [5], [6], [15], [16]

2 Preliminaries

We list some well known results about Orlicz and Orlicz-Sobolev spaces.
2.1. Let $M: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$be an N -function, i. e. M is continuous, convex with $M(t)>0$ for $t>0, \frac{M(t)}{t} \rightarrow 0$ as $t \rightarrow 0$ and $\frac{M(t)}{t} \rightarrow \infty$ as $t \rightarrow \infty$.

Equivalently, M admits the representation: $M(t)=\int_{0}^{t} a(s) d s$ where $a: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is nondecreasing, right continuous, with $a(0)=0, a(t)>0$ for $t>0$ and $a(t) \rightarrow \infty$ as $t \rightarrow \infty$.

The N-function \bar{M} conjugate to M is defined by $\bar{M}(t)=\int_{0}^{t} \bar{a}(s) d s, \bar{a}$: $\mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is given by $\bar{a}(t)=\sup \{s: a(s) \leq t\}$ (see [1], [17]).

The N-function is said to satisfy the Δ_{2} condition if, for some $k>0$: (2.1)

$$
M(2 t) \leq k M(t) \quad \forall t \geq 0
$$

when holds only for $t \geq t_{0}>0$ then M is said to satisfy the Δ_{2} condition near infinity .

We will extend these N -functions into even functions on all \mathbf{R}.
2.2. Let Ω be an open subset of \mathbf{R}^{N}.The Orlicz class $K_{M}(\Omega)$ (resp.the Orlicz space $L_{M}(\Omega)$)is defined as the set of (equivalences classes of)real valued measurable functions u on Ω such that:
$\int_{\Omega} M(u(x)) d x<+\infty\left(\right.$ resp. $\int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x<+\infty$ for some $\left.\lambda>0\right)$.
$L_{M}(\Omega)$ is a Banach space under the norm:

$$
\|u\|_{M, \Omega}=\inf \left\{\lambda>0: \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x \leq 1\right\}
$$

and $K_{M}(\Omega)$ is a convex subset of $L_{M}(\Omega)$.
The closure in $L_{M}(\Omega)$ of the set of bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{M}(\Omega)$.

The equality $E_{M}(\Omega)=L_{M}(\Omega)$ holds if and only if M satisfies the Δ_{2} condition, for all t or for t large according to whether Ω has infinite measure or not .

The dual of $E_{M}(\Omega)$ can be identified with $L_{\bar{M}}(\Omega)$ by means of pairing $\int_{\Omega} u(x) v(x) d x$ and the dual norm on $L_{\bar{M}}(\Omega)$ is equivalently to $\|u\|_{\bar{M}}, \Omega$.

The space $L_{M}(\Omega)$ is reflexive if and only if M and \bar{M} satisfy the Δ_{2} condition, for all t or for t large according to whether Ω has infinite measure or not .
2.3. We now turn to the Orlicz-Sobolev space. $W^{1} L_{M}(\Omega)$ (resp. $\left.W^{1} E_{M}(\Omega)\right)$ is the space of all functions such that u and its distributional derivatives up to order 1 lie in $L_{M}(\Omega)\left(\right.$ resp. $\left.E_{M}(\Omega)\right)$.

It is a Banach space under the norm :

$$
\|u\|_{1, M, \Omega}=\sum_{|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{M, \Omega}
$$

Thus, $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ can be identified with subspaces of the product of
$\mathrm{N}+1$ copies of $L_{M}(\Omega)$. Denoting this product by $\prod L_{M}$, we will use the weak topologies $\sigma\left(\prod L_{M}, \Pi E_{\bar{M}}\right)$ and $\sigma\left(\prod L_{M}, \prod L_{\bar{M}}\right)$.

The space $W_{0}^{1} E_{M}(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^{1} E_{M}(\Omega)$ and the space $W_{0}^{1} L_{M}(\Omega)$ as the $\sigma\left(\prod L_{M}, \Pi E_{\bar{M}}\right)$ closure of $\mathcal{D}(\Omega)$ in $W^{1} L_{M}(\Omega)$.

Let $W^{-1} L_{\bar{M}}(\Omega)$ (resp. $W^{-1} E_{\bar{M}}(\Omega)$)denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\bar{M}}(\Omega)$ (resp. $\left.E_{\bar{M}}(\Omega)\right)$. It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space $\mathcal{D}(\Omega)$ is dense in $W_{0}^{1} L_{M}(\Omega)$ for the modular convergence and thus for the topology $\sigma\left(\prod L_{M}, \prod L_{\bar{M}}\right)$ (cf. [13], [14]). Consequently, the action of a distribution in $W^{-1} L_{\bar{M}}(\Omega)$ on an element of $W_{0}^{1} L_{M}(\Omega)$ is well defined.

The following abstract lemma will be applied in the following.
Lemma 2.1. (see [6]) Let $F: \mathbf{R} \rightarrow \mathbf{R}$ be uniformly lipschitzian, with $F(0)=0$. Let M be an N - function and let $u \in W_{0}^{1} L_{M}(\Omega)$ (resp. $\left.W_{0}^{1} E_{M}(\Omega)\right)$.

Then $F(u) \in W_{0}^{1} L_{M}(\Omega)$ (resp. $W_{0}^{1} E_{M}(\Omega)$). Moreover, if the set of discontinuity points of F^{\prime} is finite, then:

$$
\frac{\partial}{\partial x_{i}} F(u)= \begin{cases}F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. in }\{x \in \Omega: u(x) \notin D\} \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \in D\}\end{cases}
$$

3 Main results

Theorem 3.1. Under the hypotheses (1.1)', (1.2), (1.3)', (1.4), (1.5) $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right), \delta>p-1, p_{0}<p \leq N$ and $\alpha>\frac{1}{p}$, there exists at least one weak solution $u \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ for (1.7).

In the following, we put $M(t)=t^{p} \log ^{\alpha p}(e+t)$, where $\left.\left.p \in\right] 1, N\right]$ and $\alpha>\frac{1}{p}$.
Recall that the N-function M and \bar{M} satisfy the Δ_{2} condition on \mathbf{R}^{+} (see [17]).

Proof of Theorem.

For $n \geq 1$, we set $f_{n}=\inf (|f|, n) \operatorname{sign}(f), B_{n}=\left\{x \in \mathbf{R}^{N},|x|<n\right\}$. Consider the approximate problem :

$$
\left\{\begin{array}{l}
A\left(u_{n}\right)+g\left(., u_{n}\right)=f_{n} \tag{3.1}\\
u_{n} \in W_{0}^{1} L_{M}\left(B_{n}\right), g\left(., u_{n}\right) \in L^{1}\left(B_{n}\right), u_{n} g\left(., u_{n}\right) \in L^{1}\left(B_{n}\right)
\end{array}\right.
$$

The problem (1.3) has a solution by theorem 6 of [15].

Estimation

Case $p=N$
Step 1. In the following, all constants C, C_{i} and C_{i}^{\prime} depends only on the data.
We follow the same argument as in lemma 2.1 of [11].
Let K be the N-function defined by $K(t)=\exp t^{N^{\prime}}{ }_{_} 1$. We recall that $W^{1, N}\left(B_{r}\right) \hookrightarrow L_{K}\left(B_{r}\right)$
Let $r>0, n>2 r$, we claim there exists a constants C which does not depend on n such that:

$$
\begin{gathered}
\left\|u_{n}\right\|_{\delta, B_{r}} \leq\left\|g\left(., u_{n}\right)\right\|_{1, B_{r}} \leq C \\
\int_{B_{r}} \frac{M\left(\left|\nabla u_{n}\right|\right)}{\left(1+L_{n}\right) \log ^{\alpha N}\left(e+L_{n}\right)} \leq C\left\|u_{n}\right\|_{K, B_{r}}
\end{gathered}
$$

(3.3) if $\left\|u_{n}\right\|_{K, B_{r}}>1$, then
where $L_{n}=\frac{\left|u_{n}\right|}{\left\|u_{n}\right\|_{K, B_{r}}}$.

In the following, we omit the index n for simplicity.
Let $\phi: \mathbf{R} \rightarrow \mathbf{R}$ the function defined by :

$$
\phi(s)= \begin{cases}\int_{0}^{s} \frac{d t}{(1+t) \log ^{\alpha N}(e+t)} & \text { if } s \geq 0 \\ -\phi(-s) & \text { if } s<0\end{cases}
$$

Let $\zeta \in \mathcal{D}\left(B_{2 r}\right), 0 \leq \zeta \leq 1, \zeta=1$ in B_{r} and $|\nabla \zeta| \leq \frac{2}{r}$.
Let $\eta>0$ and $0<\epsilon<\frac{1}{2}$ (the choice of ϵ and η will be fixed in the following).
We take $v=\phi(u) \zeta^{\eta}$ as test function in (3.1) (see lemma 2.1), we have

$$
\begin{aligned}
\int a(., u, \nabla u) \phi^{\prime}(u) \nabla u \zeta^{\eta}+ & \int g(., u) \phi(u) \zeta^{\eta} \leq \int f \phi(u) d x+\frac{2}{r} \int_{B_{2 r}} c(x) d x \\
& +\frac{2 \eta}{r} C \int|\nabla u|^{N-1} \log ^{\alpha N}(e+|\nabla u|) \phi(u) \zeta^{\eta-1} \\
& +\frac{2 \eta}{r} C \int|u|^{N-1} \log ^{\alpha N}(e+|u|) \phi(u) \zeta^{\eta-1}
\end{aligned}
$$

in the other hand, we have

$$
\begin{aligned}
& |\nabla u|^{N-1} \log ^{\alpha N}(e+|\nabla u|) \zeta^{\eta-1}= \\
& |\nabla u|^{N-1} \log ^{\alpha(N-1+\epsilon)}(e+|\nabla u|) \log ^{\alpha(1-\epsilon)}(e+|\nabla u|) \zeta^{\eta-1} \\
& \leq C(\alpha, \epsilon)|\nabla u|^{N-1+\epsilon} \log ^{\alpha(N-1+\epsilon)}(e+|\nabla u|) \zeta^{\eta-1} .
\end{aligned}
$$

Let $h>0, l=\frac{N}{N-1+\epsilon}$, by Young inequality with exponents $l, l^{\prime}=\frac{N}{N-\epsilon}$ we obtain

$$
\begin{align*}
& |\nabla u|^{N-1} \log ^{\alpha N}(e+|\nabla u|) \zeta^{\eta-1} \tag{3.4}\\
& \leq C(\alpha, \epsilon, N) \zeta^{\eta} h \frac{M(|\nabla u|)}{(1+|u|) \log ^{\alpha N}(e+|u|)} \\
& +(1+|u|)^{\left(l^{\prime}-1\right)} \log ^{\alpha N\left(l^{\prime}-1\right)}(e+|u|) \zeta^{\eta-l^{\prime}} \frac{C(\alpha, \epsilon,)}{h^{l^{\prime}-1}}
\end{align*}
$$

Hence, by (1.3)'

$$
\begin{aligned}
& \nu \int M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta}+\int g(., u) \phi(u) \zeta^{\eta} \\
& \quad \leq C_{1}+\frac{2 \eta}{r} C h \int M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta} \\
& +\frac{2 \eta C}{r h^{l^{\prime}-1}} \int(1+|u|)^{\left(l^{\prime}-1\right)} \log ^{\alpha N\left(l^{\prime}-1\right)}(e+|u|) \zeta^{\eta-l^{\prime}} \\
& \quad+\frac{2 \eta}{r} C \int|u|^{N-1} \log ^{\alpha N}(e+|u|) \phi(u) \zeta^{\eta-1} d x
\end{aligned}
$$

where $C=C(\alpha, \epsilon, N, r)$.
We shall fix $\epsilon>0$ such that $l^{\prime}-1<\delta$ and $\eta>l^{\prime} \frac{\delta}{\delta-\mu}$.

We choose μ, such that $N-1<\mu<\delta$, and $l^{\prime}-1<\mu<\delta$, then

$$
\begin{aligned}
\nu \int M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta} d x+ & \int g(., u) \phi(u) \zeta^{\eta} d x \\
& \leq C_{1}+C_{2} h \int M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta} d x \\
& +C_{2} \int(1+|u|)^{\mu} \zeta^{\eta-l^{\prime}} d x
\end{aligned}
$$

since the logarithm function is less than any power function small enough near infinity.
A convenient h gives:

$$
\begin{align*}
\nu^{\prime} \int M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta} d x+ & \int g(., u) \phi(u) \zeta^{\eta} d x \leq \tag{3.5}\\
\leq & C_{1}+\leq C_{2} \int(1+|u|)^{\mu} \zeta^{\eta-l^{\prime}} d x
\end{align*}
$$

with $\nu^{\prime}>0$.
Let now $\lambda>0$. By using the Young inequality, with exponents $\frac{\delta}{\mu}$ and $\left(\frac{\delta}{\mu}\right)^{\prime}$, we have

$$
\zeta^{\eta-l^{\prime}}(1+|u|)^{\mu} \leq \frac{\lambda \mu \zeta^{\eta}}{\delta}(1+|u|)^{\delta}+\frac{\delta-\mu}{\delta \lambda^{\frac{\mu}{\delta-\mu}}} \zeta^{\eta-l^{\prime} \frac{\delta}{\delta-\mu}} .
$$

η is chosen such that, $\eta>l^{\prime} \frac{\delta}{\delta-\mu}$, hence

$$
\begin{equation*}
\zeta^{\eta-l^{\prime}}(1+|u|)^{\mu} \leq \frac{2^{\delta} \lambda \mu \zeta^{\eta}}{\delta}|u|^{\delta}+\frac{2^{\delta} \lambda \mu \zeta^{\eta}}{\delta}+\frac{\delta-\mu}{\delta \lambda^{\frac{\mu}{\delta-\mu}}} \zeta^{\eta-l^{\prime} \frac{\delta}{\delta-\mu}} \tag{3.6}
\end{equation*}
$$

We choose λ small such that $\frac{2^{\delta} \lambda \mu}{\delta}<1$.
We introduce (3.6) in (3.5) and we use the fact that $|s|^{\delta} \leq g(., s) \frac{\phi(s)}{\phi(1)}+1$, we obtain

$$
\nu^{\prime} \int_{B_{r}} M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta} d x+C \int_{B_{r}} g(., u) \phi(u) \zeta^{\eta} d x \leq C_{3}
$$

Then, we deduce (3.2), and

$$
\begin{equation*}
\int_{B_{r}} M(|\nabla u|) \phi^{\prime}(u) \zeta^{\eta} d x \leq C \tag{3.3}
\end{equation*}
$$

In order to obtain (3.3), we proceed as follow:
In (3.1) we take $v=\phi_{0}(u)$ as test function, where $\phi_{0}(u)=$ $\|u\|_{K, B_{r}} \phi\left(\frac{u}{\|u\|_{K, B_{r}}}\right)$ and we suppose $\|u\|_{K, B_{r}}>1$.
We follow the same way as before, we have then in place of (3.5), the inequality

$$
\begin{aligned}
& \nu^{\prime} \int M(|\nabla u|) \phi^{\prime}\left(\frac{|u|}{\|u\|_{K, B_{r}}}\right) \zeta^{\eta} d x+\int g(., u) \phi_{0}(u) \zeta^{\eta} d x \leq C_{1}^{\prime}\|u\|_{K, B_{r}} \\
& +C_{2}^{\prime}\|u\|_{K, B_{r}} \int(1+|u|)^{\mu} \zeta^{\eta-l^{\prime}} d x
\end{aligned}
$$

since $\|u\|_{K, B_{r}}>1$
We now combine (1.5), (3.2) and (3.6) to get

$$
\nu^{\prime} \int M(|\nabla u|) \phi^{\prime}\left(\frac{|u|}{\|u\|_{K, B_{r}}}\right) \zeta^{\eta} d x \leq C_{1}^{\prime}\|u\|_{K, B_{r}}+C_{2}^{\prime}\|u\|_{K, B_{r}} .
$$

Then (3.3) follows.

Step 2. In this step, we give an estimate of the solution u in $W^{1, N}\left(B_{r}\right)$. Let $H(t)=t \log ^{\alpha N}(e+t), B(t)=t \log (e+t)$.
Let $0<\epsilon<\frac{1}{2}, 1+\epsilon<N^{\prime}$ and $\log ^{\alpha^{N}}(e+t) \leq \frac{t^{\epsilon}}{\epsilon}$, for all $t \geq 1$. W e suppose $L \geq 1$, then :

$$
\begin{aligned}
\frac{\epsilon}{2}|\nabla u|^{N} & =\frac{\epsilon}{2} \frac{|\nabla u|^{N}}{(1+L) \log ^{\alpha^{N}}(e+L)}(1+L) \log ^{\alpha^{N}}(e+L) \\
& \leq H\left(\frac{|\nabla u|^{N}}{(1+L) \log ^{\alpha^{N}}(e+L)}\right)+\bar{H}\left(\epsilon L \log ^{\alpha^{N}}(e+L)\right) \\
& \leq C \frac{M(|\nabla u|)}{(1+L) \log ^{\alpha^{N}}(e+L)}+C+\bar{H}\left(L^{1+\epsilon}\right) \\
& \leq C \frac{M(|\nabla u|)}{(1+L) \log ^{\alpha^{N}}(e+L)}+C+K(L)
\end{aligned}
$$

since $\bar{H}(t)<\bar{B}(t)$ and $1+\epsilon<N^{\prime}$.
Thus

$$
|\nabla u|^{N} \leq C \frac{M(|\nabla u|)}{(1+L) \log ^{\alpha N}(e+L)}+C+C K(L)
$$

In the other case, where $L<1$, we obtain a similar inequality.

If $\|u\|_{K, B_{r}}>1$, the first step gives

$$
\int_{B_{r}}|\nabla u|^{N} d x \leq C\|u\|_{K, B_{r}}+C
$$

If $\|u\|_{K, B_{r}} \leq 1$, then by a similair argument as before, we have

$$
|\nabla u|^{N} \leq C \frac{M(|\nabla u|)}{(1+|u|) \log ^{\alpha N}(e+|u|)}+C+C K(|u|)
$$

Also

$$
\int_{B_{r}}|\nabla u|^{N} d x \leq C\|u\|_{K, B_{r}}+C .
$$

In the both cases, we obtain

$$
\begin{equation*}
\|\nabla u\|_{N, B_{r}}^{N} \leq C\|u\|_{K, B_{r}}+C . \tag{3.7}
\end{equation*}
$$

In the other hand, we have $\left\|u _\bar{u}_{r}\right\|_{K, B_{r}} \leq C\|\nabla u\|_{N, B_{r}}$ (see [12]), where $\bar{u}_{r}=\frac{1}{\left|B_{r}\right|} \int_{B_{r}} u d x$
Then

$$
\|u\|_{K, B_{r}} \leq C\|\nabla u\|_{N, B_{r}}+\frac{1}{K^{-1}\left(\frac{1}{\left|B_{r}\right|}\right)}\left|\bar{u}_{r}\right|
$$

A. BENKIRANE AND M. KBiri Alaoui Existence of solutions of Strongly ...

Holder inequality gives

$$
\left|\bar{u}_{r}\right| \leq \frac{1}{\left|B_{r}\right|^{\frac{1}{N^{\prime}}}}\|u\|_{N^{\prime}, B_{r}}
$$

We suppose $\|u\|_{K, B_{r}}>1$ (the other case is obvious by (3.7)), then

$$
\|u\|_{N^{\prime}, B_{r}}^{N^{\prime}} \leq C\|u\|_{K, B_{r}}
$$

Indeed:
If $N>2$, then $N^{\prime}<2<\delta$ and $\|u\|_{N^{\prime}, B_{r}} \leq C\|u\|_{\delta, B_{r}} \leq C$, hence

$$
\|u\|_{N^{\prime}, B_{r}}^{N^{\prime}} \leq C\|u\|_{K, B_{r}}
$$

If $N=2, \int_{B_{r}}|u|^{2} \leq\|u\|_{\delta, B_{r}}\|u\|_{\delta^{\prime}, B_{r}} \leq C\|u\|_{K, B_{r}}$
By (3.2) and since $L_{K}\left(B_{r}\right) \hookrightarrow L^{\delta^{\prime}}\left(B_{r}\right)$ (see [1])
Then, $\|u\|_{N^{\prime}, B_{r}}^{N^{\prime}} \leq C\|u\|_{K, B_{r}}$, so

$$
\|u\|_{K, B_{r}} \leq C\|u\|_{K, B_{r}}^{\frac{1}{N}}+\frac{1}{K^{-1}\left(\frac{1}{\left|B_{r}\right|}\right)} \frac{1}{\left|B_{r}\right|^{\frac{1}{N^{\prime}}}}\|u\|_{K, B_{r}}^{\frac{1}{N^{\prime}}}
$$

We deduce then

$$
\|u\|_{K, B_{r}} \leq C, \text { also }\|\nabla u\|_{N, B_{r}} \leq C .
$$

hence

$$
\begin{aligned}
&\left\|g\left(., u_{n}\right)\right\|_{1, B_{r}} \leq C . \\
&\left\|u_{n}\right\|_{W^{1, N}\left(B_{r}\right)} \leq C .
\end{aligned}
$$

Case $p_{0}<p<N$.

As the same proof as in step 1, we have (3.2) and (3.3)' by taking $l=\frac{p}{(p-1)+\epsilon}$ with an appropriate ϵ.

We have with $\bar{q}^{*}=\frac{\bar{q}}{p-\bar{q}}$

$$
\begin{aligned}
& \int_{B_{r}}\left|\nabla u_{n}\right|^{\bar{q}} d x=\int_{B_{r}} \frac{\left|\nabla u_{n}\right|^{\bar{q}}}{\left(1+\left|u_{n}\right|\right)^{\frac{\bar{q}}{p}}}\left(1+\left|u_{n}\right|\right)^{\frac{\bar{q}}{p}} d x \\
\leq & \left(\int_{B_{r}} \frac{\left|\nabla u_{n}\right|^{p}}{\left(1+\left|u_{n}\right|\right)} d x\right)^{\frac{\bar{q}}{p}}\left(\int_{B_{r}}\left(1+\left|u_{n}\right|\right)^{\bar{q}^{*}} d x\right)^{1-\frac{\bar{q}}{p}} \\
\leq & \left(\int_{B_{r} \cap\left\{\left|u_{n}\right|<\left|\nabla u_{n}\right|\right\}} \frac{M\left(\left|\nabla u_{n}\right|\right)}{\left(1+\left|u_{n}\right|\right) \log ^{\alpha p}\left(e+\left|\nabla u_{n}\right|\right)}\right. \\
+ & \left.\int_{B_{r}}\left|\nabla u_{n}\right|^{p-1}\right)^{\frac{\bar{q}}{p}}\left(\int_{B_{r}}\left(1+\left|u_{n}\right|\right)^{\bar{q}^{*}}\right)^{1-\frac{\bar{q}}{p}} \\
\leq & C+C\left(\int_{B_{r}}\left|u_{n}\right|^{\bar{q}^{*}}\right)^{1-\frac{\bar{q}}{p}}
\end{aligned}
$$

by (3.3)' and since $\left\|\nabla u_{n}\right\|_{p-1, B_{r}} \leq C$ (lemma 2.2 of [11]).
Then, we continue the proof as in lemma 2.2 ([11] part i)) to have the boundedness of $\left(u_{n}\right)$ in $W^{1, \bar{q}}\left(B_{r}\right)$.

Passage to the limit.

By the estimation's step we have, u_{n} is bounded in $W^{1, \bar{q}}\left(B_{r}\right)$, then there exists a subsequence noted $\left(u_{n}\right)$ such that:

$$
\begin{cases}u_{n} \rightarrow u & \text { weakly in } W^{1, \bar{q}}\left(B_{r}\right), \\ u_{n} \rightarrow u & \text { strongly in } L^{\bar{q}}\left(B_{r}\right) .\end{cases}
$$

By the same technique as in lemma 1 of [10], we deduce that:

$$
\nabla u_{n} \rightarrow \nabla u \text { in measure and also a.e. }
$$

We have $g\left(., u_{n}\right) \rightarrow g(., u)$ a.e. and $\left(g\left(., u_{n}\right)\right)_{n \geq 0} \subset L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, then

$$
g\left(., u_{n}\right) \rightarrow g(., u) \text { strongly in } L_{l o c}^{1}\left(\mathbf{R}^{N}\right) . \text { (see [11]) }
$$

We combine the fact that a is a Carathéodory function, the boundedness of $\left(u_{n}\right)$ in $W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ and the simple inequality: $\log (e+t) \leq C \frac{t^{\epsilon}}{\epsilon}$ for $t \geq 1, \epsilon \in] 0, \frac{1}{2}[$, we deduce the existence for some $\beta>1$ such that:

$$
a\left(., u_{n}, \nabla u_{n}\right) \rightarrow a(., u, \nabla u) \text { strongly in } L_{l o c}^{\beta}\left(\mathbf{R}^{N}\right) .
$$

By passage to the limit, we obtain that u is a weak solution of (1.6) and $u \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$.

In the following, we suppose a (resp. g) satisfies (1.1)', (1.2), (1.3)' (resp. (1.4), (1.5)).

Remark 3.1. In the last theorem, if f is nonnegative, so is u (see [7]).
Remark 3.2. The theorem 3.1 can be formulated as follow:
Under the hypotheses (1.1)', (1.2), (1.3)', (1.4), (1.5), $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right), \delta>$ $p-1, \alpha>\frac{1}{p}$, there exists at least one weak solution $u \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ for (1.6) satisfying, for every $r>0$

$$
\left\{\begin{array}{l}
\|u\|_{K, B_{r}} \leq C\|f\|_{1, B_{2 r}}+C(\text { in the case } p=N) \tag{H}\\
\|\nabla u\|_{\bar{q}, B_{r}} \leq C\|f\|_{1, B_{2 r}}+C
\end{array}\right.
$$

Remark 3.3. The condition $\alpha>\frac{1}{p}$ is necessary to obtain the regularity $W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ for the solutions satisfying (H).

Counterexample. We suppose $p=N=2,0<\alpha \leq \frac{1}{2}$ and for every $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, the problem (1.7) has a solution $u \in W_{l o c}^{1, \bar{q}^{2}}\left(\mathbf{R}^{N}\right)$ satisfying (H).

Let $\mu \in M_{b}\left(\mathbf{R}^{N}\right), A(u)=-\operatorname{div}\left(\nabla u \log ^{2 \alpha}(e+|\nabla u|)\right), g(., s)=|s|^{\delta-1} s, \delta>$ 1 and $K(t)=\exp t^{N^{\prime}}-1$.
Consider the problem :

$$
\left\{\begin{array}{l}
u \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right), a(., \nabla u) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right), g(., u) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \tag{3.8}\\
A(u)+g(., u)=\mu \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

Let $\left(f_{n}\right) \subset W^{-1} L_{\bar{M}}\left(B_{2 r}\right) \cap L^{1}\left(B_{2 r}\right)$ such that $\left\|f_{n}\right\|_{1} \leq\|\mu\|_{M_{b}\left(B_{2 r}\right)}$ and $f_{n} \rightarrow \mu$ in $\mathcal{D}^{\prime}\left(B_{2 r}\right)$, for every $r>0$. There exists a solution $u_{n} \in$
$W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$ satisfying (H) solution of the problem:

$$
\left\{\begin{array}{l}
u_{n} \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right), a\left(., \nabla u_{n}\right) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right), g\left(., u_{n}\right) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \\
A\left(u_{n}\right)+g\left(., u_{n}\right)=f_{n} \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{N}\right)
\end{array}\right.
$$

$\left(u_{n}\right)$ is bounded in $L_{K}\left(B_{r}\right)$ and $\left(\left|\nabla u_{n}\right|\right)$ is bounded in $L^{\bar{q}}\left(B_{r}\right)$, so $\left(u_{n}\right)$ is in $W^{1, \bar{q}}\left(B_{r}\right)$.
A subsequence $\left(u_{n}\right)$ and $u \in W^{1, \bar{q}}\left(B_{r}\right)$ exist such that:

$$
\left\{\begin{array}{l}
u_{n} \rightarrow u \text { in } W^{1, \bar{q}}\left(B_{r}\right), \text { weakly and a.e. in } B_{r} \\
g\left(., u_{n}\right) \rightarrow g(., u) \text { a.e in } B_{r} .
\end{array}\right.
$$

(u_{n}) is bounded in $L_{K}\left(B_{r}\right)$, so $\left(\left|u_{n}\right|^{\delta-1} u_{n}\right)$ is bounded in $L_{K^{\prime}}\left(B_{r}\right)$, with $K(t)=\exp t^{N^{\prime}}-1$ and $K^{\prime}(t)=\exp t^{\frac{\delta}{N^{\prime}}}-1$. Then the subsequence $\left(g\left(., u_{n}\right)\right)$ is equiintegrable on B_{r}, so

$$
g\left(., u_{n}\right) \rightarrow g(., u) \text { strongly in } L^{1}\left(B_{r}\right) .
$$

Then, we deduce $A(u)=\mu-g(., u)=\mu-\nu$ in $\mathcal{D}^{\prime}\left(B_{r}\right)$ and $u \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$. ν is a Radon measure associated to $g(., u)$ which does not charge the sets of zero $C_{1, N_{\alpha}}$, where $C_{1, N_{\alpha}}$ is the N_{α} - capacity defined in [3].
Let $r \in \mathbf{R}_{+}^{*}$ small enough $(0<r<1 / 2), f(x)=|x|^{-r}$, then:

$$
\begin{align*}
& f \in L_{N_{\alpha}}\left(B_{r}\right), N_{\alpha}(t)=t^{2} \log ^{4 \alpha}(e+t) . \tag{3.9}\\
& G_{1} * f(0)=+\infty, G_{1} \text { is the Bessel potential. } \tag{3.10}
\end{align*}
$$

Indeed, it is clear that $f \in L_{N_{\alpha}}\left(B_{r}\right)$, since r is small.
$G_{1} * f(0)>\int_{B(0,1)} G_{1}(y) f(-y) d y \geq C \int_{B(0, l)}|y|^{r_{-} 1} d y=+\infty$, where l is small enough, since G_{1} is equivalent to $|y|^{-1}$ near zero.
By (3.9), (3.10) and theorem 3 of [3], we have

$$
C_{1, N_{\alpha}}\{0\}=0 .
$$

We have also $A(u) \in W^{-1} L_{\overline{N_{\alpha}}}\left(B_{r}\right)$ and $J\left(N_{\alpha}, 2\right) \geq 1$ (where $J\left(N_{\alpha}, 2\right)$ is the well known Donaldson-Trudinger's indice defined in [1] chap.8)
Indeed:
$\overline{N_{\alpha}}(t) \leq C t^{2} \log ^{-4 \alpha}(e+t)$ (see [17]), hence
$\overline{N_{\alpha}}(|a(., \nabla u)|) \leq C|\nabla u|^{2} \log ^{4 \alpha}(e+|\nabla u|) \log ^{-4 \alpha}(e+|\nabla u|$
$\left.\log ^{2 \alpha}(e+|\nabla u|)\right) \leq C|\nabla u|^{2}$.
On the other hand, since $N_{\alpha}^{-1}(t) \geq C t^{\frac{1}{2}} \log ^{-2 \alpha}(e+t)$, then $\int_{\text {. }}^{\infty} \frac{N_{\alpha}-1(t)}{t^{1+\frac{1}{2}}} d t=$ $+\infty$ (because $\alpha \leq \frac{1}{2}$).
Then, we conclude : $C_{1, N_{\alpha}}\{0\}=0, A(u) \in W^{-1} L_{\overline{N_{\alpha}}}\left(B_{r}\right) \cap M_{b}\left(B_{r}\right)$ and $J\left(N_{\alpha}, 2\right) \geq 1$.
By lemma 2 of [4] (see also [2]), $A(u)$ defines a bounded measure which is absolutely continuous with respect to $C_{1, N_{\alpha}}$, then if we take $\mu=\delta_{0}$ we deduce the result.

Remark 3.4. In the case $p=N, \alpha>\frac{1}{N}, g(., s)=|s|^{\delta-1} s$ and $\delta>$ $N-1$, (3.8) has a weak solution $u \in W_{l o c}^{1, \bar{q}}\left(\mathbf{R}^{N}\right)$.

Indeed:
Let r, f_{n}, u_{n} as in the counterexample. The subsequence $\left(g\left(., u_{n}\right)\right)$ is equiintegrable on B_{r}, so
$g\left(., u_{n}\right) \rightarrow g(., u)$ strongly in $L^{1}\left(B_{r}\right)$.
We then conclude the result.

Theorem 3.2. Let $1<p \leq p_{0}, \delta(p-1)>1$, and $\alpha>\frac{1}{p}$. Then, for every $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, there exists at least a weak solution u of (1.6), which belongs to $W_{\text {loc }}^{1, q_{1}}\left(\mathbf{R}^{N}\right)$.
Proof. We take the same constructions of the solutions u_{n} as in theorem 3.1.
By the same technique as in step 1 (theorem 3.1), we have (3.2), (3.3)', which we combine with lemma 2.3 of [11], Young inequality and using the decomposition:
$B_{r}=\left(\left\{\left|u_{n}\right|<\left|\nabla u_{n}\right|\right\} \cap B_{r}\right) \cup\left(\left\{\left|u_{n}\right|\left|\nabla u_{n}\right|\right\} \cap B_{r}\right)$, we obtain

$$
\begin{aligned}
\int_{B_{r}}\left|\nabla u_{n}\right|^{q_{1}} d x & \leq \int_{B_{r}} \frac{\left|\nabla u_{n}\right|^{p}}{1+\left|u_{n}\right|} d x+C \int_{B_{r}}\left(1+\left|u_{n}\right|\right)^{\delta} d x \\
& \leq \int_{B_{r}} \frac{M\left(\left|\nabla u_{n}\right|\right)}{\left(1+\left|u_{n}\right|\right) \log ^{\alpha p}\left(e+\left|u_{n}\right|\right)} d x \\
& +\int_{B_{r}}\left|\nabla u_{n}\right|^{p-1}+C \int_{B_{r}}\left|u_{n}\right|^{\delta} d x \leq C
\end{aligned}
$$

Since $\delta>p-1$, we have $q_{1}<\delta$, then $\left\|u_{n}\right\|_{q_{1}, B_{r}} \leq C$.
Then, we deduce:

$$
\left\{\begin{array}{l}
u_{n} \rightarrow u \text { weakly in } W^{1, q_{1}}\left(B_{r}\right) \\
u_{n} \rightarrow u \text { strongly in } L^{q_{1}}\left(B_{r}\right) \\
g\left(., u_{n}\right) \rightarrow g(., u) \text { strongly in } L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \text { (as in theorem 3,[11]). }
\end{array}\right.
$$

Following the same way as the third step (theorem 3.1), we conclude the result.

Theorem 3.3. Let $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, and assume that: $p_{0}<p<N, \delta>\bar{q}^{*}$ and $\alpha>\frac{1}{p}$, then the solution constructed in theorem 3.1 satisfies $|\nabla u| \in$ $L_{l o c}^{q_{1}}\left(\mathbf{R}^{N}\right)$.

Proof. As in theorem 3.1, we obtain

$$
\begin{aligned}
\int_{B_{r}}\left|\nabla u_{n}\right|^{q_{1}} d x & \leq \int_{B_{r}} \frac{M\left(\left|\nabla u_{n}\right|\right)}{\left(1+\left|u_{n}\right|\right) \log ^{\alpha p}\left(e+\left|\nabla u_{n}\right|\right)} d x \\
& +\int_{B_{r}}\left|\nabla u_{n}\right|^{p-1}+C \int_{B_{r}}\left|u_{n}\right|^{\delta} d x+C
\end{aligned}
$$

Combining (3.2), (3.3)', lemma 2.2 of [11] and using the same decomposition of B_{n} as in theorem 3.2, we conclude the result.

Remark 3.5. It is to be noticed that the results in the last theorems can be proved in the case where we replace \mathbf{R}^{N} by a bounded open subset Ω. The proof is the same as in [11]. In this case, our existence result in theorem 3.1 is in some sense the "dual" of the following one (due to L . Boccardo and T. Gallouet in [10]): If the right hand side belongs to the Orlicz space $L \log L(\Omega)$, then the solutions belong to $W_{0}^{1, \bar{q}}(\Omega)$.

References

[1] R. Adams, Sobolev spaces, Ac. Press, New York, 1975.
[2] N. Aissaoui, Bessel potentials in Orlicz spaces. Revista Matematica Complutense vol. $10 n^{0} 1$ (1997).
[3] N. Aissaoui et A. Benkirane, Capacités dans les espaces d'Orlicz, Ann.Sci.Math.Québec 18 (1994), 1-23.
[4] A. Benkirane, A Theorem of H. Brezis and F. E. Browder type in Orlicz spaces and application, Pitman Research Notes in Mathematics series 343 (1994), pp. 10-36.
[5] A. Benkirane and J. P. Gossez, An approximation theorem for higher order Orlicz-Sobolev spaces, Studia Math., 92 (1989), 231-255.
[6] A. Benkirane and A. Elmahi, Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. T. M. A. vol 28, $N^{0} 11$, pp. 1769-1784, 1997.
[7] A. Benkirane and A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal.(1999), pp. 11-24.
[8] A. Benkirane and M. Kbiri Alaoui, On some nonlinear elliptic equations with right hand side measures-Preprint.
[9] L. Boccardo and T. Gallouet, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169.
[10] L. Boccardo and T. Gallouet, Nonlinear elliptic equations with right hand side measures, Comm. in Partial Diff. Equa., 17 (3 \& 4), (1992), 641-655.
[11] L. Boccardo, T. Gallouet and J. L. Vázquez, Nonlinear elliptic equations in \mathbf{R}^{N} without growth restrictions on the second member, J. Diff. Equa. 105, 334-363 (1993).
[12] A. Cianchi, Continuity properties of functions from Orlicz-Sobolev spaces and embeddings theorems Ann. Scuola Norm. Sup. Pisa cl. Sci. (4) 23 (1996) $N^{0} 3,575-608$.
[13] J.-P. Gossez, some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982), pp. 17-24.
[14] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidely or slowly)increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163-205.
[15] J.-P. Gossez, A strongly nonlinear elliptic problem in Orlicz-Sobolev spaces, Proc. A. M. S. Symp. Pure Math., 45 (1986), pp. 455.
[16] J.-P. Gossez and V. Mustonen, Variationnal inequality in Orlicz-Sobolev spaces, Nonlinear Anal. Theory Appli. 11 (1987), 379-392.
[17] M. Krasnoselśkii and Ya. Rutickii, convex functions and Orlicz spaces, Nodhoff Groningen, 1969.

Département de Mathematiques
Faculté des Sciences Dhar El Mehraz
B.P. 1796 Atlas, Fès-Maroc

E-mail: benkirane@fesnet.net.ma

Recibido: 15 de Septiembre de 1998
Revisado: 16 de Febrero de 2000

