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ON THE SINGULAR NUMBERS FOR SOME
INTEGRAL OPERATORS

A. MESKHI

Abstract

Two-sided estimates of Schatten—von Neumann norms for
weighted Volterra integral operators are established. Analogous
problems for some potential-type operators defined on R" are
solved.

Let H be a separable Hilbert space and let 0. (H) be the class of
all compact operators T : H — H, which forms an ideal in the normed
algebra B of all bounded linear operators on H. To construct a Schatten-
von Neumann ideal o,(H) (0 < p < 00) in 0oo(H), the sequence of
singular numbers s;(T") = X;(|T']) is used, where the eigenvalues \;(|T'|)
(|T| = (T*T)"/? ) are non-negative and are repeated according to their
multiplicity and arranged in decreasing order. A Schatten-von Neumann
quasinorm (norm if 1 < p < 00) is defined as follows:

/
Thoyany = (S 520) " 0<p< oo,
J

with the usual modification if p = co. Thus we have ||T||, ) = [|T]|
and || T, () is the Hilbert- Schmidt norm given by the formula

Tlosin = ([ [ 17360 )Pdsdy) " )

for an integral operator

zW@z/ﬂ@wﬂww

We refer, for example, to [2], [6], [7] for more information concerning
Schatten-von Neumann ideals.
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In this paper necessary and sufficient conditions for the weighted
Volterra integral operator

K, f(x) = v(z) /0 " fk(a,y)dy, @ € (0,a),

to belong to Schatten-von Neumann ideals are established, where v is a
measurable function on (0,a) (0 < a < 00).

Two-sided estimates of Schatten-von Neumann p-norms for the weighted
Riemann—Liouville operator

Rovf(t) =v(z) /Oar f(t)(x —t)* Lat,

when o > 1/2 and p > 1/«, were established in [13] (for @« = 1 and
p > 1 see [14]). Analogous results for the weighted Hardy operator

Hyuf (2) = v(x) /0 ") F(y)dy

were obtained in [3]. Similar problems for the Riemann-Liouville oper-
ator with two weights

Reonf (z) = () /O " u(t) £t — 1),

when o € N and p > 1, were solved in [4]. Further, upper and lower
bounds for Schatten-von Neumann p-norms (p > 2) of certain Volterra
integral operators, involving R ,, only for a > 1, were proved in [4]
and [18].

Our main goal is to generalize the results of [13] and [14] for
integral transforms with kernels and to give two-sided estimates of the
above-mentioned norms for these operators in terms of their kernels.

We denote by LL,(2), Q@ C R", a weighted Lebesgue space with
respect to the weight w defined on €.

Throughout the paper the expression A ~ B is interpreted as ¢; A <
B < ¢o A with some positive constants ¢; and cs.

Let us recall some definitions from [10] (see also [8]).

We say that a kernel & : {(z,y) : 0 <y < z < a} — R4 belongs to
V (k € V) if there exists a positive constant d; such that for all x,y, 2
with 0 < y < z < z < a the inequality

k(x,y) < dik(z, 2)
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holds. Further, k € V) (1 < A < o0) if there exists a positive constant
dy such that for all z, x € (0,a), the inequality

/ k’\/(m,y)dy < dozk™ (:B,:L’/Z), N=-"—
x/2

is fulfilled.
For example, if ki(z) = 2°7!, where 1 < a < 1, then k(z,y) =
k1(x —y) belongs to V NV, (for other examples of kernel k see [10], [8]).
First we investigate the mapping properties of K, in Lebesgue spaces.

The following statements in equivalent form were proved in [10] (see
also [8], [11]).

Theorem A. Let 1 <p<qg<oo,a=o00 andlet ke VNV, Then
(a) Ky is bounded from LP(0,00) into L1(0,00) if and only if

27+1 1
D, = sup D (j) = sup (/ kq(x,x/2)xQ/p/|v(x)|qu) ! < oo
JEZ JEZ 2J
Moreover, ||K,|| ~ Do.
(b) K, acts compactly from LP(0,a) into L1(0, a) if and only if Do <
o0 and lim Dy (j) = lim Dy (j) =0.
J—+o0 J——00

Theorem B. Let 1 <p < g <oo,a<oo andletk eV NV, Then
(a) K, is bounded from LP(0,a) to L4(0,a) if and only if

2779q 1
D, =sup D,(j) = sup (/ ]v(x)\qkq(x,x/2):rq/p/da:> ! < oo
i>0 j=0 2—(+1)g
Moreover, ||K,|| = D,.
(b) Ky acts compactly from LP(0, a) into L1(0,a) if and only if D, <
oo and ,ligl D.(j) =0;
j—+oo

Analogous problems for the Riemann-Liouville operator for v > 1/p
were solved in [9] (For boundedness two-weight criteria of general inte-
gral operators with positive kernels see [5], Chapter 3).

Let 0 <a <oo, k:{(z,y):0<y<z<a}— R] be a kernel and
let ko(x) = zk?(x,2/2).
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We denote by lp(L2 (0,a)) the set of all measurable functions g :
(0,a) — R! for which

2n+1

p/2\ 1/p
Hngl’(L%O(O,oo)) = (Z </n \g(x)2k0(x)da;> > < 00

nez

if a = oo and

+o0o 2—"Ng ) p/2 1/p
”g”“’(Lio(Ova)) = (Z (/2 lg()| ko(x)dx> ) < 0

n=0 ~(ntlq

if a < oo, with the usual modification for p = oco.

We shall need the following interpolation result (see, e.g., [19], p
147 for the interpolation properties of the Schatten classes, and p. 127
for the corresponding properties of the sequence spaces. See also [1],
Theorem 5.1.2):

Proposition A. Let 0 < a < oo, 1 < pg,p1 < 00, 0 < 0 < 1,
1= 11.7) + o If T is a bounded operator from lpi(Lio(O 2)) into
(Lx,

; (0,a))

0 (L3(0,a)), where i = 0,1, then it is also bounded from IP(L
into o,(L*(0,a)). Moreover,

0
HTHlP(L2 )—op(L?) < HTHZPO L2 —>0p0(L2)HT|’lp1(Lzo)_’UP1(L2)'

The next statement is obvious when p = co; and when 1 < p < o0 it
follows from Lemma 2.11.12 of [15].

Proposition B. Let 1 < p < oo and let {fi}, {gr} be orthonormal
systems in a Hilbert space H. If T € o,(H), then

/
Tl 2 (ST fngall?) "

Now we prove the main results.
In the sequel we shall assume that v € Lio (27, 2"+ for all n € Z.

Theorem 1. Leta =00, 2 < p < oo and let k € VNV, Then K,
belongs to a,(L?(0,00)) if and only if v € l”(LiO (0,00)). Moreover, there
exist positive constants by and by such that

bullvll (2 (0,000 = Hulloy(£2(0,00)) < B2V llim (12 (0,00
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Proof. Sufficiency. Note that the fact k € V NV, implies

I(x) = /Ow E*(x,y)dy < cko(x) (2)

for some positive constant ¢ independent of x. Indeed, by the condition
ke VNV, we have

z/2 T
I(x) = / k2 (z,y)dy + // K (z,y)dy < crko(z) + cako(z) = e3ko(x).
0 z/2

Consequently, using the Hilbert-Schmidt formula (1) and taking into
account (2), we find that

S 1/2
1Ko [l (22(0,00)) = (/0 /0 k2($,y)v2($)d1?dy)

- </oOO 02(@(/: k2(x,y)dy) dm)m < C4</0°° U2($)ko(x)dx)l/2

2n+1

1/2
—a( S [ o) =l o

nel

On the other hand, in view of Theorem A we see that there exist
positive constants c; and cg such that

&5[vlliee (22 (0,00)) = Kollou (z2(0,00)) = €ollvllioe (22 (0,00))-
Further, Proposition A yields
1o oy (22 0,000) = €rllvllin((22, (0.00))-

where 2 < p < 0.
Necessity. Let K, € 0,(L?(0,00)) and let

falz) = X[2n72n+1)(x)2*"/2,

gn(x) = U($)$1/2X[3.2n71’2n+1)(ﬂ?)k(fl}', :z:/2)a;1/2,
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where
2n+1

tn = /3 o ()ko(y)dy.

,277,71

Then it is easy to verify that { f,,} and {g,,} are orthonormal systems.
Further, by virtue of Proposition B (for p > 1) we have

1/p
00 > Kol 2000y = (Z |<Kufn,gn>|f°>

ne’

:< (/:; </x ”/Qk(x,y)dy>v (2)a k(2,2 /2)a 1/2daz> >1/p

€z
2n p\ 1/p
>c < < *1/2 2”/Qk(x,m/2)vz(x)(a:—2")x1/2da:> >
nez Zn_l

2ntt P\ 1/p 1/p
< ( 71/2 ko(az)UQ(x)dx> ) =y ( Z aﬁ/2> .
nez 3 2n-t

neZ
Now let
fa() = X[g.on-2 g.9n-1)(x)(3 - 2n—2)=1/2

and
!

gn(x) = v(@)z" X0 301 (2)k(2,2/2)5,

3.2n—1
B, = / o (y)ko(y)dy.

n

~1/2

where

Then it is easy to verify that {f/,} and {g/,} are orthonormal sys-
tems. Further,

1/p
00> | Koo 12000y (Z r<va;,g;>rp)

nez

(S ([ s )

neEL

xv?(z)z'?k(z, 2/2)3 de) )Up
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.2n71

2clo<2 <ﬁgl/ 2 / 2~ (=2/212(3 2/2)0%(2)
nez "
p\ 1/p
X(z—3- 2”_2)x1/2d:v> >

- (Z (ﬂ;l/Q /3.2n1 ko(x)vz(:r)dx> p) 1/p . < Z ﬁg/2> 1/p’

n

nez nez
where p > 1. Consequently
gnt1 p/2\ 1/p 1/p
([ com@a) ) < (S +ar?)

nezZ ne”Z

< 2l Kollo, (22(0,00)) + €120l (£2(0,00))
< 13K llo (22(0,00)) < 0©-
| ]

Let us now consider the case a < co. We have the following state-
ment:

Theorem 2. Let0<a<oo,2<p<ooandletk e VNV, Then K,
belongs to o,(L*(0,a)) if and only if v € lp(Lz0 (0,a)). Moreover, there
exists positive constants by and by such that

bullvllz (00 = [Kolloy(z20.0)) < b2llvllinzz 0,0))-

Proof. Sufficiency. The Hilbert— Schmidt formula and the condition

k eV NV yield
(x) ( /Ox K2 (x, y)dy) dx) v
x)ko(x)dx> v

() 2—ng 1/2
= C1 <Z /2_ U2(x)k‘0(l‘)dl') = ClHUHlQ(LiO(O’a))'
n=0

1Ko llop(22(0,0)) =

<

9]

a
0
a
2
1</ v*(
0
(n+1) ¢
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In view of Theorem B (part (a) ) we arrive at
HKvHJoo(L2(O,a)) ~ ”UHzoo(Lio(o,a))-
Using Proposition A we derive
1o o (220,01 = €2llvllzz 0,0)
when p > 2.
To prove necessity we take the orthonormal systems of functions

defined on (0, a):

falz) = X[2=(n+1)g2-1q) (93)(2_(n+1)a)_1/2

and
gn(x) = 0(2)2 X35 12102 (2K, 7/2) 0,2,
where
27 "a
cn= [ Pk
3.2—(n+2)q
and n=0,1,2,---. Consequently Proposition B yields

+oo 1/p
00 > 1Kol 0y = (Z \<van,gn>\p)
n=0

(S

n

T N\ 1/p
x(/ (2("+1)a)1/2k(x,y)dy>an1/2dx> )
2—(n+1)q

© 1/p
> 63<Zaﬁ/2> .

n=0

If we take the following orthonormal systems:

Fi(®) = Xpgo-4910 3.0- 4210y () (3 - 27" FVa) 712,

gn(2) = v($)x1/2x[2*("+1)a,3~2*("+2)a) (2)k(z, 55/2)5771/27
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where

3.2-(n+2)q
B = /2 02 (y)ko(y)dy,

*("H’l)a

then we arrive at the estimate

s 1/p
1K ollo,(22(0,a)) = C4<Z/3ﬁ/2> :
n=0

Finally we have the lower estimate for || Ky |5, (22(0,0))- ]

Remark 1. It follows from the proof of Theorems 1 and 2 that the
lower estimate of || Ky |5, (£2(0,a)) holds for 1 <p < oo.
Now we formulate and prove the next statement.

Proposition 1. Let 1 < p < o00. Then
Wl z2_ 0,000 = I (v, P),

where

e =[] / v2<y>k2<y,y/2>dy)p/2xp/2ldx> "

Proof. We have

antt p/2\ 1/p
loloisz,omn = (X ([ atalas) )

neL "

27L+1

< (Z < / n v2(:v)k:2(:z,x/2)d;v>p/22(”+1)p/2>1/p

nezZ
2n+1

_ cl(z < / ] vQ(:c)k:2(x,x/2)dx>p/22”p/2>l/p

neZ
2n+1 2n+1

S@(% /2 n yp/zl( / )k (x,x/z)dx>p/2dy> 1/p

2n+1

< 62<Z /2 ) yp/H( /y Z UQ(x)kQ(x,x/2)dx>p/2dy> Y ead(op).

ne”L
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To prove the reverse inequality we observe that

2n+1

Z /n yP/21 ( /yjz v (x) k% (x, x/2)dw) p/2dy> v

nel

J(v,p)—<

2n+1 2n+2

< <Z ( / ) yp/Q_ldy> < /2 - UQ(x)kQ(x,x/Q)d:L‘>p/2>l/p

nez
2" p/2\ 1/p
< 03<22"p/2</ v2(x)k‘2(x,:v/2)dx) >
nel, on—1

2n+1

+C3<sz’/2< / ) v2(:c)k2(x,x/2)d:c>p/2)l/p

nez
2n+2

) ) ) p/2\ 1/p
+@(2pw/(éwlvmm<%wmm§ ) < eallollnzz, (000)

neL
|

From Theorem 1 and Proposition 1 we easily derive the following
statement:

Theorem 3. Let 2 <p < oo and let k € VNVy. Then

HKUHO'p(L2(O,OO)) ~ J(’U,p)

A result analogous to Theorem 1 was obtained in [13] for the Riemann-
Liouville operator R, ,, assuming that o > 1/2 and p > 1/« (see [14]
fora =1 and p > 1).

Let us now consider the multidimensional case. In particular, we
shall deal with the operator

) (Iaf* = 1y1?)
B @) =) [ A )y, a0,
lyl<|z|
where v is a Lebesgue-measurable function on R™ with v € L?({2" <

ly| < 27*11) for all n € Z (for the definition and some properties of
B ,, where v = 1, see, e.g., [16], Chapter 7, and [17], Section 29).
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Let w be a measurable a.e. positive function on R™. We denote by
IP(L2(R™)) a set of all measurable functions ¢ : R® — R! for which

lellir L2, ) = <Z < / @2(x)w(x)dx)p/2>1/p < 0.

kez 2k <|z|<2k+1

The next result is from [19] (pp. 127, 147).
Proposition C. Let 1 < pg, p1 < oo, 0<0<1, % = lp—_og—l—]%. If T is
a bounded operator from Pi(L2 (R™)) into oy, (L2 (R™)), where i = 0,1,
then it is also bounded from IP(L2,(R™)) into o,(L*(R™)).

In the sequel we shall use the notation lp(fo‘ﬁ(R”)) = lp(L%(R”)).

First we formulate some statements concerning the mapping prop-
erties of BY .

Theorem C ([12]). Let 1 < p < ¢ < o0, a >
boundedly from LP(R™) into L1(R™) if and only if

%. Then B, acts

1/q
F =sup F(j) = sup ( / ]v(m)|q|x\q(2a"/”)dm> < 0.
j€L j€L ,

27 <|z|<2i+1

« ~
Moreover, B+’1,H ~ F.

The following result can be obtained in the same as Theorem 5 from
[12], therefore we omit the proof (see also [11]).

Theorem D. Let 1 <p < g <ocand let o> 7. Then BE ,, acts com-
pactly from LP(R™) into LY(R™) if and only if F < oo and lim F(j) =
j——00

lim F(j)=0.

j—Foo
Now we state and prove the following Theorem:
Theorem 4. Let 2 < p < oo and let a > n/2. Then B} , € op(L2(R™))

if and only if v € IP(L3,,_,,(R™)). Moreover, there exist positive constants
b1 and by such that

billvllwzz, @ey) S IBY ulloy 2@y < b2llvllm@z, @ey)-
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Proof. For sufficiency, we use the Hilbert-Schmidt formula (1) and the
condition o > 5. Thus,

9 9 2a 1
. ) (1o = 1vP?) :
188 losineey = ([ ) [ S ) o)

En lyl<lal
1
<a( [ [ -yl
R yl<lal
T
<a [lleriwn) —al 3 @)
R™ k=—00
where 1/2
ap = |z[* " v?(z)da
k<|y|<2k+l

Moreover, using Theorem C we arrive at the following two-sided inequal-
ity:

csl[vllio(zz @y < HB?-,UHUOO(LQ(W)) < callvlloo (2 (mmy),
By Proposition C we conclude that
HB?"”HUP(LQ(R")) < cslvllwz, @), 2P <oo

Now we prove necessity. For this we take the orthonormal systems { fx}
and {gi}, where

_1
frlx) = X{2’€*2<|y|<2k71}(35)2_(/&_2)”/2 “An 2,

N|=

202 -
gr(x) = X{z’€§|y\<2k+1}(m) |22 v(@)ay, 2,

An = (2% — 1)7™/2/T(n/2 + 1) and

ay = / v (z) 2| *" d.

2k < || <2k+1
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Then in view of Proposition B we have

« —-1/2 a—"
00 > || BY o llo,(22(®r)) = CG(Z Qy, / / v (x)|z?o 2

keZ 2k < |z|<2k+1

" ( / (|2 — |y’2)a2(k2)n/2dy> dI)p) 2

lz —y|"
2k-2<y| <2k~ 1

1/p
2
2 er (Z aff > = crlvllwaz, @)

keZ
which completes the proof. [

The following result is also true:

Theorem 5. Let 2 < p < oo and let o« > n/2. Then BY , € o,(L*(R™))
if and only if

p/2 5
I(v,p,a) = </< / v2(y)|y|4°‘_2”dy> |:B”p/2_"d:n) < 00.

n
R Ll cjyl<2fal
Moreover,

CII(vav Oé) S HB-?—,UH S CQI(vaa Oé)

op(L2(R™))
for some positive constants c1 and cs.

Proof. Taking into account Theorem 4, the statement will be proved if
we show that

HUHlp(Lga_n(Rn)) ~ I(v,p,a).
Indeed, we have

p/2

1
p
||“||IP<L2M<R")>§<§:< / v2(a:)\:c|4°“‘2”d:c> 2<k+1>np/2>

kez 2k < || <2k +1

:bl<z / |y|np/2n< / ”2(35)|$4a2"dx>p/2dy>l/p

keZ,
2k <Jy|<2k+1 Wl <jz<2)y|
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= blj(vap> Oé).
The reverse inequality follows similarly. ]
Remark 2. Some results of this paper were announced in [11].
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