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Abstract
The present paper studies the existence and uniqueness of global

solutions and decay rates to the nonlinear hyperbolic problem

(∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2y

∂t2
−M

(∫
Ω
|∇y|2dx

)
∆y −

∂

∂t
∆y = 0 in Q = Ω× (0,∞)

y = 0 on Σ1 = Γ1 × (0,∞)

M

(∫
Ω
|∇y|2dx

)
∂y

∂ν
+

∂

∂t

(
∂y

∂ν

)
+ |y|γ y = 0 on Σ0 = Γ0 × (0,∞)

y(0) = y
0
,

∂y

∂t
(0) = y

1
in Ω.

where M is a C1 function; M(λ) ≥ 0;∀λ ≥ 0.

1 Introduction

Let Ω be a bounded domain of Rn and let Γ denote its C2 boundary.
Assume that Γ consists of two parts, Γ0 and Γ1, with positive measure
and such that Γ0 and Γ1 are closed and disjoint. Let ν be the unit
normal vector pointing towards the exterior of Ω and let ∂

∂ν denote the
normal derivative.

Let M ∈ C1([0,∞),R ) be a function which verifies

M(λ) ≥ 0; ∀λ ≥ 0 . (1.1)
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The aim of this paper is to prove existence and uniqueness of strong
and weak solutions and to show that these solutions decay to zero uni-
formly when t goes to infinity.

The motivation for this problem comes from the small vibrations of
an elastic string whose mathematical model, c.f. J. L. Lions [12], is given
by the following Kirchhoff-Carrier equation

ρh
∂2y

∂t2
=

(
P0 +

Eh

2L

∫ L

0

∣∣∣∣∂y∂x(x, t)
∣∣∣∣2 dx

)
∂2y

∂x2
; 0 ≤ x ≤ L, t ≥ 0.

Here y is the lateral displacement at the space coordinate x and the
time t, ρ the mass density, h the cross-section area, L the length, E the
Young’s modulus and P0 the initial axial tension.

When n = 1 , for instance, problem (*) describes the nonlinear
vibrations of an one dimensional string which is clamped in one end
and is free in the other end in the sense that it can move up and down
subject to nonlinear effects caused by the function f(y) = |y|γy.

HypothesisM(0) = 0 andM(λ) > 0 in a neighbourhood of the origin
(see assumption (2.5) below)raised from the fact that we are interested
in the case P0 = 0.

A lot of papers have been devoted to this context. In this direction
we can cite, for instance, Menzala [17], Arosio-Spagnolo [1], Rivera [21]
and Ebihara-Milla Miranda-Medeiros [5]. Let us also mention the re-
sults of Yamada [24, 25], Vasconcellos-Teixeira [23], Muñoz Rivera [18]
and Medeiros-Milla Miranda [14] which are in connection with damped
problems. It is interesting to observe that problems without viscosity,
that is, when ∆y′ = 0 and assuming that M = 1 and a feedback occurs
on the boundary were studied by many authors, see Quinn and Russel
[20], Chen [4], Lagnese [8,9], Komornik and Zuazua [7], Lasiecka and
Tataru [10] and Cavalcanti, Domingos Cavalcanti and Soriano [2].

In spite of the importance of the subject, there are relatively few
mathematical results in the presence of nonlinear boundary conditions
combined with the nonlinearity due to the function M . To deal with
this kind of problem is the contribution of this paper. Comparing the
present paper with the problems considered in [11] and [16], where the
term ∆yt was not added, we observe that in both cases the function M
is not supposed to degenerate which contrasts with assumption (1.1).
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In order to obtain the existence of solutions in [3], the authors employ
Galerkin’s method and, as they are not allowed to use basis formed by
eigenfunctions, make use of arguments which are only valid when the
only nonlinearity is given by M = M(t). However, in the present paper ,
we have to deal with a nonlinear boundary condition and the degeneracy
of the function M , which do not permit us to repeat the same arguments
used in [3]. To overcome these difficulties is the goal of our work.

To obtain the uniform decay rates of the energy (c.f. Theorem 2.1
below)

E(t) = 1
2

[∫
Ω |y

′(x, t)|2 dx+ M̂
(∫

Ω |∇y(x, t)|
2 dx

)]
+

+ 1
γ+2

∫
Γ0

|y(x, t)|γ+2 dΓ
(1.3)

where

M̂(λ) =
∫ λ

0
M(s)ds (1.4)

we use the perturbed energy method, see Zuazua [7,26], combined with
techniques from Muñoz Rivera [18].

Our paper is organized as follows. In section 2 we give the notations
and state the main result. In section 3 we study existence and uniqueness
of strong and weak solutions while in section 4 we obtain the uniform
decay rates for solutions obtained in section 3.

2 Notations and main results

In this section we present some notations which will be used throughout
this paper and will state the main result.

Let
V =

{
v ∈ H1(Ω); v = 0 on Γ1

}
which indowed with the topology given by the norm |∇·|L2(Ω) is a Hilbert
subspace of H1(Ω).

We denote

(u, v) =
∫

Ω
u(x)v(x) dx; (u, v)Γ0 =

∫
Γ0

u(x)v(x) dx,

|u|2 =
∫

Ω
|u(x)|2 dx, |u|2Γ0

=
∫

Γ0

|u(x)|2 dΓ, ||u||pp,Γ0
=
∫

Γ0

|u(x)|p dΓ
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and assume that

0 < γ ≤ 1
n− 2

; n ≥ 3 or γ > 0 if n = 1, 2. (2.1)

Now, we are in position to state our main results.

Theorem 2.1. Assume that (1.1) holds and{
y0, y1

}
∈ V 2. (2.2)

Then, the problem (∗) possesses a unique strong solution satisfying

y ∈ L∞(0,∞;V ), y′ ∈ L∞(0,∞;V ); y′′ ∈ L2(0,∞;L2(Ω)). (2.3)

Besides, the following energy decay holds

E(t) ≤ C(1 + t)−1, ∀t ≥ 0, (2.4)

where C is a positive constant.
Assuming that M is non decreasing and, for some α > 0, satisfies

the assumptions

lim inf
s→0+

M(s)
sα

> 0 and M(s) = O(sα), s→ 0+, (2.5)

there exist positive constants C and N such that

E(t) +
1
2
|∇y(t)|2 ≤ C (1 + t)−

1
α , ∀t ≥ N (2.6)

and
M
(
|∇y(t)|2

)
≤ C(1 + t)−1, t ≥ N. (2.7)

Moreover, under the hypothesis

M(λ) ≥ λ0 > 0 for all λ > 0 (2.8)

we obtain the exponential decay, that is, there exist positive constants
C, θ such that

E(t) ≤ C exp(−θt), t ≥ 0. (2.9)

Remark. The assumption (2.5 ) means that the function M(s) > 0 and
it is bounded by a polinomial P (s) = k sα (k > 0) in an neighbourhood of
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the origin. Consequently M(0) = 0 and the algebraic decay rates occur
according to the exponent α of the polinomial P (s) which dominates the
function M(s).

Theorem 2.2. Let {
y0, y1

}
∈ V × L2(Ω) (2.10)

and assume that M ∈ C1(0,∞). Then, problem (∗) possesses a unique
weak solution in the class

y ∈ C0([0,∞);V ); y′ ∈ C0([0,∞);L2(Ω)) (2.11)

and verify the decay rate given in (2.4).
Moreover, if M is non decreasing and satisfies the assumptions given

in (2.5), we have the decay rates obtained in (2.6) and (2.7) in the
degenerate case and the decay given by (2.9) in the nondegenerate one.

3 Existence and uniqueness of solutions

Let us consider initially {
y0, y1

}
∈ V 2. (3.1)

The variational formulation associated with problem (∗) is given by(
y′′(t), w

)
+M

(
|∇y(t)|2

)
(∇y(t),∇w) +

(
∇y′(t),∇w

)
(3.2)

+ (|y(t)|γ y(t), w)Γ0
= 0; for all w ∈ V.

We represent by (ωj)j∈N a basis in V , which is ortonormal in L2(Ω),
and by Vm the subspace of V generate by the m-first vectors ω1, · · · , ωm.
Let us define

ym(t) =
m∑

i=1

gim(t)ωi, (3.3)

where ym(t) is the solution of the following Cauchy problem

(
y′′m(t), ωj

)
+M

(
|∇ym(t)|2

)
(∇ym(t),∇ωj) +

(
∇y′m(t),∇ωj

)
(3.4)

+ (|ym(t)|γ ym(t), ωj)Γ0
= 0,

ym(0) = y0m → y0 in V and y′m(0) = y1m → y1 in V. (3.5)

181 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 177-203



m.m. cavalcanti et al. existence and asymptotic behaviour . . .

The above approximate system is a normal one of ordinary differen-
tial equations and has a solution in [0, tm). The extension of the solution
to the whole interval [0,T] is a consequence of the first estimate which
we are going to obtain below.

3.1 A priori estimates

The first estimate.
Multiplying (3.4) by g′jm(t) and summing over j from (1.4) we have

d
dt

{
1
2 |y

′
m(t)|2 + 1

2M̂
(
|∇ym(t)|2

)
+ 1

γ+2 ||ym(t)||γ+2
γ+2,Γ0

}
+ |∇y′m(t)|2 = 0.

(3.6)

Integrating (3.6) over (0,t) we get

1
2

∣∣y′m(t)
∣∣2 +

1
2
M̂
(
|∇ym(t)|2

)
+

1
γ + 2

||ym(t)||γ+2
γ+2,Γ0

+
∫ t

0

∣∣∇y′m(s)
∣∣2 ds
(3.7)

=
1
2
|y1m|2 +

1
2
M̂
(
|∇y0m|2

)
+

1
γ + 2

||y0m||γ+2
γ+2,Γ0

.

From (3.5) and (3.7) we obtain the first estimate∣∣y′m(t)
∣∣2 + M̂

(
|∇ym(t)|2

)
+ ||ym(t)||γ+2

γ+2,Γ0
+
∫ t

0

∣∣∇y′m(s)
∣∣2 ds ≤ L1,

(3.9)
where L1 is a positive constant independent of m ∈ N and t ≥ 0.

The second estimate.

Multiplying (3.4) by gjm(t) and summing over j we have

d

dt

(
y′m(t), ym(t)

)
+M

(
|∇ym(t)|2

)
|∇ym(t)|2 +

1
2
d

dt
|∇ym(t)|2 (3.10)

+ ||ym(t)||γ+2
γ+2,Γ0

=
∣∣y′m(t)

∣∣2 .
Integrating (3.10) over (0,t), taking (1.1), (3.5) into account and

observing that there exists C0 > 0 such that |v| ≤ C0|∇v|,∀v ∈ V , it
follows that

1
2
|∇ym(t)|2 +

∫ t

0
||ym(s)||γ+2

γ+2,Γ0
ds
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≤ k0 + C0

∣∣y′m(t)
∣∣ |∇ym(t)|+ C2

0

∫ t

0

∣∣∇y′m(s)
∣∣2 ds,

where k0 is a positive constant, that is,

1
4
|∇ym(t)|2 +

∫ t

0
||ym(s)||γ+2

γ+2,Γ0
ds (3.11)

≤ k0 +
C2

0

2

∣∣y′m(t)
∣∣2 + C2

0

∫ t

0

∣∣∇y′m(s)
∣∣2 ds.

From (3.11) and considering the first estimate we obtain the second
one

|∇ym(t)|2 +
∫ t

0
||ym(s)||γ+2

γ+2,Γ0
ds ≤ L2, (3.12)

where L2 is a positive constant independent of m ∈ N and t ≥ 0.

The third estimate.

Multiplying (3.4) by g′′jm(t) and summing over (0,t) we have

∣∣y′′m(t)
∣∣2 +M

(
|∇ym(t)|2

) (
∇ym(t),∇y′′m(t)

)
+

1
2
d

dt

∣∣∇y′m(t)
∣∣2 (3.13)

+
(
|ym(t)|γ ym(t), y′′m(t)

)
Γ0

= 0.

Estimate for I1 := M
(
|∇ym(t)|2

)
(∇ym(t),∇y′′m(t)) .

We have

I1 =
d

dt

[
M
(
|∇ym(t)|2

) (
∇ym(t),∇y′m(t)

)]
−2M ′

(
|∇ym(t)|2

) [(
∇ym(t),∇y′m(t)

)]2 −M
(
|∇ym(t)|2

) ∣∣∇y′m(t)
∣∣2 .

Considering that M ∈ C1(R+) and the inequality (3.12), we obtain∣∣∣2M ′
(
|∇ym (t)|2

) [(
∇ym (t) ,∇y′m (t)

)]2∣∣∣
≤ 2

∣∣∣M ′
(
|∇ym (t)|2

)∣∣∣ |∇ym (t)|2
∣∣∇y′m (t)

∣∣2
≤ C1

∣∣∇y′m (t)
∣∣2

183 REVISTA MATEMÁTICA COMPLUTENSE
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and ∣∣∣M (
|∇ym (t)|2

) ∣∣∇y′m (t)
∣∣2∣∣∣ ≤ C2

∣∣∇y′m (t)
∣∣2 .

Then,∣∣y′′m(t)
∣∣2 +

d

dt

[
M
(
|∇ym(t)|2

) (
∇ym(t),∇y′m(t)

)]
(3.14)

+
1
2
d

dt

∣∣∇y′m(t)
∣∣2 +

d

dt

(
|ym(t)|γ ym(t), y′m(t)

)
Γ0

−(γ + 1)
(
|ym(t)|γ y′m(t), y′m(t)

)
Γ0
≤ C3

∣∣∇y′m(t)
∣∣2 ,

where C3 is the positive constant C1 + C2.

Estimate for I2 := (γ + 1) (|ym(t)|γ y′m(t), y′m(t))Γ0
.

Noting that γ
2(γ+1)+

1
2(γ+1)+

1
2 = 1 , the generalized Hölder inequality

yields

|I2| ≤ (γ + 1) ||ym(t)||γ2(γ+1),Γ0

∣∣∣∣y′m(t)
∣∣∣∣

2(γ+1),Γ0

∣∣y′m(t)
∣∣
Γ0
.

Now, since V ↪→ L2(γ+1)(Γ0) then, from the last inequality and con-
sidering the second estimate we conclude

|I3| ≤ (γ + 1) |∇ym(t)|γ
∣∣∇y′m(t)

∣∣ ∣∣∇y′m(t)
∣∣ ≤ C4

∣∣∇y′m(t)
∣∣2 , (3.15)

where C4 is a positive constant.
Combining (3.14) and (3.15) and integrating the obtained result

over(0,t) we deduce

∫ t

0

∣∣y′′m(s)
∣∣2 ds+ 2M

(
|∇ym(t)|2

) (
∇ym(t),∇y′m(t)

)
(3.16)

−2M
(
|∇y0m|2

)
(∇y0m,∇y1m) +

∣∣∇y′m(t)
∣∣2 − |∇y1m|2

≤ 2C5

∫ t

0

∣∣∇y′m(s)
∣∣2 ds−2

(
|ym(t)|γ ym(t), y′m(t)

)
Γ0

+2 (|y0m|γ y0m, y1m)Γ0

where C5 is a positive constant.

Estimate for I3 := −2 (|ym(t)|γ ym(t), y′m(t))Γ0
.
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From Cauchy-Schwarz inequality, making use of the inequality ab ≤
1
4ηa

2 + ηb2 (η > 0 arbitrary) and considering the second estimate we
obtain k1 and C6(η) positive constants such that

|I3| ≤ 2
∫

Γ0

|ym|γ+1
∣∣y′m∣∣ dΓ (3.17)

≤ 2 ||ym(t)||γ+1
2(γ+1),Γ0

∣∣y′m(t)
∣∣
Γ0

≤ k1 |∇ym(t)|γ+1
∣∣∇y′m(t)

∣∣
≤ C6(η) + η

∣∣∇y′m(t)
∣∣2 .

Thus, from (3.5), (3.16) and (3.17) there exists a positive constant
C7(η) such that∫ t

0

∣∣y′′m(s)
∣∣2 ds+ 2M

(
|∇ym(t)|2

) (
∇ym(t),∇y′m(t)

)
+ (1− η)

∣∣∇y′m(t)
∣∣2

≤ C7(η) + 2C5

∫ t

0

∣∣∇y′m(s)
∣∣2 ds.

Consequently, from the second estimate and from the last inequality
we conclude ∫ t

0

∣∣y′′m(s)
∣∣2 ds+ (1− 2η)

∣∣∇y′m(t)
∣∣2 (3.18)

≤ C8(η) + 2C5

∫ t

0

∣∣∇y′m(s)
∣∣2 ds.

where C8 is a positive constant.
Finally from (3.18), choosing η sufficiently small and making use of

Gronwall’s lemma we obtain the third estimate∫ t

0

∣∣y′′m(s)
∣∣2 ds+

∣∣∇y′m(t)
∣∣2 ≤ L3, (3.19)

where L3 is a positive constant independent of m ∈ N and t ∈ [0, T ].
From the estimate (3.19) we can extract a subsequence (yµ) of (ym)

such that
y′′µ ⇀ y′′ weakly in L2(0, T ;L2(Ω)) (3.20)

and
y′µ ⇀ y′ weakly star i n L∞(0, T ;V ). (3.21)
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3.2 Analysis of the nonlinear terms

From now on we are interested in the convergence of the nonlinear terms.
We define:

ϕm(t) = |∇ym(t)|2 ; t ∈ [0, T ]. (3.22)

From the second estimate we have

|ϕm(t)| ≤ C; ∀m ∈ N, ∀t ∈ [0, T ], (3.23)

where C is a positive constant.
Now, if t1, t2 ∈ [0, T ] we obtain

|ϕm(t1)− ϕm(t2)| ≤
∫ t2

t1

∣∣ϕ′m(s)
∣∣ ds. (3.24)

On the other hand, from the second and third estimates we deduce

ϕ′m(s) = 2
(
∇ym(s),∇y′m(s)

)
≤ C; ∀m ∈ N, ∀s ∈ [0, T ]; (3.25)

where C is a positive constant independent of m.
Combining (3.24) and (3.25) it follows that

|ϕm(t1)− ϕm(t2)| ≤ C |t1 − t2| ; ∀m ∈ N. (3.26)

Then, from (3.23) and (3.26) by Arzela-Ascoli’s theorem there exists
a continuous function ϕ : [0, T ] → R such that

ϕm(t) → ϕ(t) (3.27)

uniformly in [0, T ] and, since M ∈ C1([0,∞),R), we obtain

M
(
|∇ym(t)|2

)
→M (ϕ(t)) (3.28)

uniformly in [0,T].
From the second estimate and noting that V ↪→ L2(γ+1)(Γ0) we

deduce
{|ym|γ ym} is bounded in L∞(0, T ;L2(Γ0)). (3.29)

Also, we note that from the second and third estimates and noting
that ||v||H1/2(Γ0) ≤ C |∇v|, for all v ∈ V , we infer

{ym} is bounded in L2(0, T ;H1/2(Γ0)), (3.30)

186 REVISTA MATEMÁTICA COMPLUTENSE
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y′m
}

is bounded in L2(0, T ;L2(Γ0)). (3.31)

Since the injection H1/2(Γ0) ↪→ L2(Γ0) is continuous and compact,
making use of Aubin-Lions theorem, see J. L. Lions [13, Theo. 5.1],
there exist {yµ} a subsequence of {ym} such that

yµ → y strongly in L2(0, T ;L2(Γ0)). (3.32)

From now on all the eventual subsequences are denoted by the same
notation.

Therefore,
yµ → y a.e. in Γ0 × (0, T )

and consequently

|yµ|γ yµ → |y|γ y a.e. in Γ0 × (0, T ). (3.33)

Combining (3.29) and (3.33) we deduce, thanks to Lions’ lemma, see
J. L. Lions [13, lemma 1.3],

|yµ|γ yµ → |y|γ y weakly in L2(0, T ;L2(Γ0)). (3.34)

Considering the above convergences we can pass to the limit in the
approximate system given by (3.4) using standard arguments in order
to obtain

y′′ −M (ϕ(t))∆y −∆y′ = 0 in L2(0, T ;L2(Ω)), (3.35)

y(0) = y0; y′(0) = y1.

Moreover, making use of the generalized Green formula we deduce

M (ϕ(t))
∂y

∂ν
+
∂yt

∂ν
+ |y|γ y = 0 i n L2(0, T ;L2(Γ0)). (3.36)

Our aim is to show that

ϕ(t) = |∇y(t)|2 ; t ∈ [0, T ]. (3.37)

Indeed, multiplying (3.4) by gjm, summing over j and integrating
over [0,t] we obtain∫ t

0

(
y′′m(s), ym(s)

)
ds+

∫ t

0
M
(
|∇ym(s)|2

)
|∇ym(s)|2 ds (3.38)
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+
∫ t

0
(|ym(s)|γ ym(s), ym(s))Γ0

ds+
∫ t

0

(
∇y′m(s),∇ym(s)

)
ds = 0.

On the other hand, from the first and second estimates and making
use of Aubin-Lions theorem one has

ym → y strongly in L2(0, T ;L2(Ω)). (3.39)

Considering the convergences given by (3.20), (3.27), (3.28), (3.32),
(3.34), (3.39) we can pass to the limit in (3.38) to obtain

lim
m→∞

∫ t

0

(
∇y′m(s),∇ym(s)

)
ds (3.40)

= −
∫ t

0

(
y′′(s), y(s)

)
ds−

∫ t

0
M (ϕ(s))ϕ(s)ds−

∫ t

0
(|y(s)|γ y(s), y(s))Γ0

ds.

Combining (3.35), (3.36) and (3.40) and taking the generalized Green
formula into account we deduce

lim
m→∞

∫ t

0

(
∇y′m(s),∇ym(s)

)
ds

=
∫ t

0
M (ϕ(s))

[
|∇y(s)|2 − ϕ(s)

]
ds+

∫ t

0

(
∇y′(s),∇y(s)

)
ds.

The last equality yields

lim
m→∞

[
1
2
|∇ym(t)|2 − 1

2
|∇y0m|2

]
(3.41)

=
∫ t

0
M (ϕ(s))

[
|∇y(s)|2 − ϕ(s)

]
ds+

1
2
|∇y(t)|2 − 1

2
|∇y(0)|2 .

Then, from (3.41) and considering the convergences in (3.5) and
(3.27) we conclude∣∣∣ϕ(t)− |∇y(t)|2

∣∣∣ ≤ 2
∫ t

0
M (ϕ(s))

∣∣∣|∇y(s)|2 − ϕ(s)
∣∣∣ ds

≤ C

∫ t

0

∣∣∣|∇y(s)|2 − ϕ(s)
∣∣∣ ds,
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where C is a positive constant. Employing Gronwall’s lemma, from the
last inequality we obtain the desired in (3.37).

We observe that for each fixed t in [0,∞), we have that y(t) is the
weak solution of the Dirichlet-Neumann problem

∣∣∣∣∣∣∣∣∣
−∆

[
M
(
|∇y|2

)
y + y′

]
= −y′′ in L2(0,∞;L2(Ω))

M
(
|∇y|2

)
y + y′ = 0 on Σ1

∂

∂ν

[
M
(
|∇y|2

)
y + y′

]
+ |y|γ y = 0 in L2(0,∞;L2(Γ0)).

Then, the theory of elliptic problems gives

M
(
|∇y|2

)
y + y′ ∈ L2(0,∞;V ∩H3/2(Ω)). (3.42)

3.3 Uniqueness

Let y and ŷ be two solutions of problem (∗). Denoting z = y − ŷ, it
comes from (3.35) and (3.36) that

1
2
d

dt

∣∣z′(t)∣∣2 +M
(
|∇y(t)|2

) (
∇y(t),∇z′(t)

)
(3.43)

−M
(
|∇ŷ(t)|2

) (
∇ŷ(t),∇z′(t)

)
+
∣∣∇z′(t)∣∣2

+
(
|y(t)|γ y(t), z′(t)

)
Γ0
−
(
|ŷ(t)|γ ŷ(t), z′(t)

)
Γ0

= 0.

Summing and subtracting the term M
(
|∇y(t)|2

)
(∇ŷ(t),∇z′(t)) in

(3.43) we obtain

1
2
d

dt

∣∣z′(t)∣∣2 +M
(
|∇y(t)|2

) (
∇z(t),∇z′(t)

)
(3.44)

+
∣∣∇z′(t)∣∣2 =

(
M
(
|∇ŷ(t)|2

)
−M

(
|∇y(t)|2

)) (
∇ŷ(t),∇z′(t)

)
+
(
|ŷ(t)|γ ŷ(t)− |y(t)|γ y(t), z′(t)

)
Γ0
.

On the other hand, since M is C1 we get∣∣∣M (
|∇ŷ(t)|2

)
−M

(
|∇y(t)|2

)∣∣∣ (3.45)
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≤ k1

∣∣∣|∇y(t)|2 − |∇ŷ(t)|2
∣∣∣

≤ k1 [|∇y(t)|+ |∇ŷ(t)|] |∇y(t)−∇ŷ(t)|

≤ k2 |∇z(t)|

where k1 and k2 are positive constants.
Combining (3.44) and (3.45) and using analogous considerations like

those ones used in the third estimate (see estimate for I3) it follows that

1
2
d

dt

∣∣z′(t)∣∣2 +
∣∣∇z′(t)∣∣2 (3.46)

≤ C1 |∇z(t)|
∣∣∇z′(t)∣∣+ C2(γ)

∫
Γ0

(|ŷ|γ + |y|γ) |z|
∣∣z′∣∣ dΓ

≤ C3 |∇z(t)| |∇z′(t)|

≤ C2
3

2
|∇z(t)|2 +

1
2

∣∣∇z′(t)∣∣2 .
Integrating (3.46) over (0,t) we obtain

1
2

∣∣z′(t)∣∣2 +
1
2

∫ t

0

∣∣∇z′(s)∣∣2 ds (3.47)

≤ C2
3

2

∫ t

0
|∇z(s)|2 ds.

Since

|∇z(t)|2 ≤ T

∫ t

0

∣∣∇z′(s)∣∣2 ds (3.48)

combining (3.47) and (3.48) and applying Gronwall’s lemma we obtain
|∇z(t)| = |z′(t)| = 0. This concludes the uniqueness of strong solutions.

3.4 Solvability of weak solutions

We have just proved the existence of solutions to problem (∗) when{
y0, y1

}
∈ V 2. However, when

{
y0, y1

}
∈ V × L2(Ω), by density ar-

guments and using analogous considerations like those ones used in the
first and second estimates and in the uniqueness, we can find a sequence
{yµ} of solutions to problem (∗) and a function y : Ω× (0, T ) → R such
that

yµ ∈ L∞(0,∞;V ), y′µ ∈ L∞(0,∞;V ), y′′µ ∈ L2(0,∞;L2(Ω)),
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yµ → y strongly in C0([0, T ];V ) (3.49)

y′µ → y′ strongly in C0([0, T ];L2(Ω)) (3.50)

y′µ → y′ strongly in L2(0, T ;V ) (3.51)

y′µ ⇀ y′ weakly star in L∞(0, T ;V ) (3.52)

and

y′′µ −M
(
|∇yµ|2

)
∆yµ −∆y′µ = 0 in L2(0, T ;L2 (Ω) .

Consider θ ∈ D (0, T ) and φ ∈ D (Ω). Then,

−
∫ T

0

(
y′µ (t) , φ

)
θ′ (t) dt+

∫ T

0
M
(
|∇yµ (t)|2

)
(∇yµ (t) ,∇φ) θ (t) dt

+
∫ T

0

(
∇y′µ (t) ,∇φ

)
θ (t) dt = 0.

The above convergences are sufficient to pass to the limit in the above
equality in order to obtain

−
∫ T

0

(
y′ (t) , φ

)
θ′ (t) dt+

∫ T

0
M
(
|∇y (t)|2

)
(∇y (t) ,∇φ) θ (t) dt

+
∫ T

0

(
∇y′ (t) ,∇φ

)
θ (t) dt = 0,

for all θ ∈ D (0, T ) and φ ∈ D (Ω).
Consequently,〈
−
〈
y′, θ′

〉
, φ
〉
−
〈〈
M
(
|∇y|2

)
∆y, θ

〉
, φ
〉
−
〈〈

∆y′, θ
〉
, φ
〉

= 0,

for all θ ∈ D (0, T ), φ ∈ D (Ω); where 〈·, θ〉 and 〈·, φ〉 represent the
duality D′ (0, T )×D (0, T ) and D′ (Ω)×D (Ω), respectively.

Then, 〈
y′′, θφ

〉
−
〈
M
(
|∇y|2

)
∆y, θφ

〉
−
〈
∆y′, θφ

〉
= 0,

for all θ ∈ D (0, T ), φ ∈ D (Ω); that is,
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y′′ −M
(
|∇y|2

)
∆y −∆y′ = 0 in D′ (Ω×]0, T [) ,

since {θφ; θ ∈ D (0, T ) , φ ∈ D (Ω)} is dense in D (Ω×]0, T [).
However, ∆y,∆y′ ∈ L2 (0, T : V ′), which implies that

y′′ ∈ L2
(
0, T ;V ′

)
,

provided that y′′ = M
(
|∇y|2

)
∆y + ∆y′ in D′ (Ω×]0, T [). Then, we

obtain a weak solution y to (∗) in the class

y ∈ C0 ([0,∞);V ) ; y′ ∈ C0([0,∞);
L2 (Ω)) ∩ L2 (0,∞;V ) ; y′′ ∈ L2 (0,∞;V ′)

verifying

y′′ −M
(
|∇y|2

)
∆y −∆y′ = 0 in L2(0,∞;V ′). (3.53)

3.5 Characterization of the boundary condition

Let us consider the elliptic problem∣∣∣∣∣∣∣∣
−∆p = y′ in Ω
p = 0 on Γ1

∂p

∂ν
=
∫ t

0
|y(s)|γ y(s) ds on Γ0

(3.54)

where y is the weak solution of (∗) verifying (3.53). Taking the regularity
of Γ into account, we have

p ∈ L2(0,∞;H) (3.55)

where
H =

{
u ∈ V ; ∆u ∈ L2(Ω)

}
.

Next, we are going to prove that

M
(
|∇y|2

)
y + y′ = −p′ in H−1(0,∞;H). (3.56)

Indeed, from (3.53) we can write

−∆
[
M
(
|∇y|2

)
y + y′

]
= −y′′ in L2

loc(0,∞;V ′)
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and from (3.56) we obtain

−∆
[
M
(
|∇y|2

)
y + y′

]
= ∆p′ in D′loc(0,∞;V ′).

Therefore〈
−∆

[
M
(
|∇y|2

)
y + y′

]
, θ
〉

=
〈
−∆p, θ′

〉
in V ′, for all θ ∈ D(0,∞).

Hence,∫ T

0
(−∆)

(
M
(
|∇y|2

)
y + y′

)
(t)θ(t) dt =

∫ T

0
(−∆) p(t)θ′(t) dt in V ′

and consequently

∆
∫ T

0

(
M
(
|∇y|2

)
y + y′

)
θ(t) dt = ∆

∫ T

0
p(t)θ′(t) dt in V ′. (3.57)

In order to prove (3.56) it remains to prove that the operator −∆ :
V → V ′ is an injective map. In fact, if this afirmative is true we conclude
from (3.57) that∫ T

0

(
M
(
|∇y|2

)
y + y′

)
θ (t) dt =

∫ T

0
p (t) θ (t) dt in V,

for all θ ∈ D (0,∞), and, consequently, (3.56) follows from the above
inequality and from (3.55). To prove the desired result, let us define the
following

a(u, v) =
∫
∇u · ∇vdx; for all u, v ∈ V

L(v) =
∫

Γ0

gvdΓ +
∫

Ω
fvdx; for all v ∈ V,

where g ∈ L2 (Γ0) and f ∈ L2 (Ω). From the above definitions we
conclude from Lax-Milgran’s lemma that there exists a unique u ∈ V
such that

a(u, v) = L(v), for all v ∈ V.

In other words, there exists a unique u ∈ V verifying

193 REVISTA MATEMÁTICA COMPLUTENSE
(2001) vol. XIV, num. 1, 177-203



m.m. cavalcanti et al. existence and asymptotic behaviour . . .

∣∣∣∣∣∣∣
−∆u = f in Ω
u = 0 on Γ1

∂u

∂ν
= g on Γ0.

Then, given {f, g} ∈ L2 (Ω) × L2 (Γ0), the solution of the above
elliptic problem is uniquely determined, which proves that the operator
−∆ : V → V ′ is an injective map.

In what follows we are going to consider the dual trace operators

γ̂0 : H−1
loc (0,∞;V ) → H−1

loc (0,∞;L2(Γ0)), (3.58)

γ̂1 : H−1
loc (0,∞;H) → H−1

loc (0,∞;H−1/2(Γ0)), (3.59)

whose constructions and properties can be found in Milla Miranda [15].
From (3.56) we obtain

(γ̂1|Σ0)
(
M
(
|∇y|2

)
y + y′

)
= − (γ̂1|Σ0)

(
p′
)

= − (γ1(p))
′ , (3.60)

where
γ1 : L2

loc(0,∞;H) → L2
loc(0,∞;H−1/2(Γ0))

is the trace operator given by

(γ1u) (t) = γ1 (u(t))

and γ1 : H → H−1/2(Γ0) is the usual one related to the normal deriva-
tive.

Thus, from (3.54) and (3.60) we conclude

(γ̂1|Σ0)
(
M
(
|∇y|2

)
y + y′

)
= −

(
γ0

(∫ t

0
|y(s)|γ y(s)ds

))′
(3.61)

= − (γ̂0|Σ0) (|y|γ y)

where, analogously,

γ0 : L2
loc(0,∞;V ) → L2

loc(0,∞;L2(Γ0))

is the trace operator defined by

(γ0u) (t) = γ0 (u(t)) .
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Hence, from (3.61) we can give meaning to the boundary condition.
More precisely we have

∂

∂ν

(
M
(
|∇y|2

)
y + y′

)
+ |y|γ y = 0 in H−1

loc (0,∞;L2(Γ0)). (3.62)

Since |y|γ y ∈ L2(0,∞;L2(Γ0)) we have the boundary characteriza-
tion valid a.e. on Σ0.

3.6 Uniqueness

According to (3.53) we have

y′′ −M
(
|∇y|2

)
∆y −∆y′ = 0 in L2

(
0, T ;V ′

)
.

Let y and ŷ be two weak solutions of problem (∗). Defining z = y− ŷ
we have that z ∈ H1 (0, T, V ) and z satisfies

z′′ −∆
(
M |∇y|2 y − y′

)
+ ∆

(
M |∇ŷ|2 ŷ − ŷ

)
= 0 in L2

(
0, T ;V ′

)
.

Then, we are able to compose the above equation with z′, and fol-
lowing step by step the arguments done in the case of strong solutions,
we conclude that |∇z (t)| = |z′ (t)| = 0; which proves the uniqueness.

4 Asymptotic behaviour

In this section we are going to obtain the algebraic decay for strong
solutions of (∗). Using density arguments we obtain the same result for
weak solutions.

The derivative of the energy defined in (1.3) is given by

E′(t) = −
∣∣∇y′(t)∣∣2 . (4.1)

Let us consider the perturbed energy

Eε(t) = E(t) + εψ(t), (4.2)

where
ψ(t) =

(
y′(t), y(t)

)
+

1
2
|∇y(t)|2 . (4.3)
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Taking the derivative of (4.2) with respect to t, replacing

(y′′(t), y(t)) = −M
(
|∇y(t)|2

)
|∇y(t)|2 − (∇y′(t),∇y(t))−

(|y(t)|γ y(t), y(t))Γ0

in the obtained result and considering (4.1), it follows that

E′ε(t) = E′(t) + εψ′(t) (4.4)

= −
∣∣∇y′(t)∣∣2 − εM

(
|∇y(t)|2

)
|∇y(t)|2 − ε ||y(t)||γ+2

γ+2,Γ0
+ ε

∣∣y′(t)∣∣2 .
Let µ be a positive constant such that

|v|2 ≤ µ|∇v|2, ∀v ∈ V. (4.5)

From (4.4) and (4.5) we obtain

E′ε(t) ≤ (−1+
3
2
εµ)

∣∣∇y′(t)∣∣2− εM (
|∇y(t)|2

)
|∇y(t)|2− ε ||y(t)||γ+2

γ+2,Γ0
.

(4.6)
Besides, taking into account that M is a non decreasing function we

have
M̂
(
|∇y(t)|2

)
≤M

(
|∇y(t)|2

)
|∇y(t)|2

and therefore (4.6) yields

E′ε(t) ≤ −(1− 3
2
εµ)

∣∣∇y′(t)∣∣2 − εE(t). (4.7)

Considering ε ∈ (0, ε1], where ε1 = 2
3µ , we deduce

E′ε(t) ≤ −εE(t) (4.8)

and, consequently, integrating the last inequality over [0,t] it follows that

ε

∫ t

0
E(s)ds ≤ Eε(0)− Eε(t) ≤ L, (4.9)

where L is a positive constant which depends only on the initial data
{y0, y1}.
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Thus, from (4.9) we have∫ t

0
E(s)ds ≤ L

ε
,

which implies that
E ∈ L1(0,∞). (4.10)

On the other hand, since E′(t) ≤ 0, we have

(1 + t)E′(t) ≤ 0, ∀t ≥ 0,

then
d

dt
[(1 + t)E(t)] ≤ E(t). (4.11)

Integrating (4.11) and taking (4.10) into account we obtain

E(t) ≤
[
E(0) +

∫ ∞

0
E(s)ds

]
(1 + t)−1 (4.12)

which concludes the desired in (2.4).

From now on we assume that hypothesis (2.5) hold. Then, we con-
clude the following result

Lemma 4.1. We have

lim
t→∞

|∇y(t)|2 = 0. (4.13)

Proof. Assume that (4.13) does not hold. Then, there exists ε0 > 0
such that for every n ∈ N there exists tn, with tn > n and

|∇y(tn)|2 ≥ ε0.

From the last inequality and since M̂ is a non decreasing function
we have

M̂
(
|∇y(tn)|2

)
≥ M̂(ε0) ≥ 0; tn > n. (4.14)

Consequently from (4.12) and (4.14) we obtain

M̂(ε0) = 0. (4.15)
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On the other hand, from assumption (2.5) we have

lim inf
s→0+

M(s)
sα

= l > 0,

which implies the existence of a real number δ1 > 0 such that

M(s) >
l

2
sα; ∀s ∈ (0, δ1) (4.16)

and
M(s) > 0, ∀s ∈ (0, δ1). (4.17)

Defining
δ = min{δ1, ε0}

we have from (4.15) that

0 ≤
∫ δ

0
M(λ)dλ ≤

∫ ε0

0
M(λ)dλ = M̂(ε0) = 0,

that is, ∫ δ

0
M(λ)dλ = 0. (4.18)

But (4.18) it is a contradiction with (4.17). This proves the lemma.

Next, we are going to prove that there exist C1 and N positive
constant such that

|∇y(t)|2(α+1) ≤ C1M̂
(
|∇y(t)|2

)
; t > N. (4.19)

Indeed, from (4.13) there exists N > 0 such that

|∇y(t)|2 ≤ δ1; t > N. (4.20)

On the other hand, integrating (4.16) over (0,t) it follows that

l

2
tα+1 ≤ M̂(t), ∀t ∈ (0, δ1). (4.21)

Combining (4.20) and (4.21) we conclude the desired in (4.19).
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From (4.2),(4.3) and (4.5) we can write

Eε(t) ≥
(

1
2
− µε

) ∣∣y′(t)∣∣2 +
ε

4
|∇y(t)|2 +

1
2
M̂
(
|∇y(t)|2

)
(4.22)

+
ε

γ + 2
||y(t)||γ+2

γ+2,Γ0
.

Then,
Eε(t) ≥ 0, ∀ε ∈ (0, 1/2µ]. (4.23)

From (4.2), (4.3), (4.5), (4.12) and (4.19) we have for all ε ≤{
ε1,

1
2µ , 1

}
and t > N that

Eε(t) ≤ E(t) +
ε

2

∣∣y′(t)∣∣2 +
C1ε

2
(µ+ 1)

[
M̂
(
|∇y(t)|2

)] 1
α+1

≤ E(t) + εE(t) + C1ε(µ+ 1) [E(t)]
1

α+1

≤ C2 [E(t)]
1

α+1

and therefore
[Eε(t)]

α+1 ≤ CE(t), t > N. (4.24)

Combining (4.8) and (4.24), it follows that

E′ε(t) +
ε

C
Eα+1

ε (t) ≤ 0, t > N. (4.25)

Taking (4.23) into account and considering in (4.25) the change of
variables

zε(t) = E−α
ε (t),

for a fixed and sufficiently small ε, we obtain

z′ε(t) ≥
εα

C2
.

Integrating the last inequality over [0,t] we get

zε(t) ≥ zε(0) +
εα

C2
t

and, consequently,
E−α

ε (t) ≥ C3(1 + t). (4.26)
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From the last inequality we conclude that there exists a positive
constant C, which depends on the initial data, such that

Eε(t) ≤ C(1 + t)−
1
α , t > N. (4.27)

This result combined with (4.22) proves (2.6). Finally, since M(s) =
O(sα), s→ 0 we deduce (2.7) from (2.6).

Finally, if we have M(λ) ≥ λ0 > 0, then from (4.2) and (4.3), there
exists θ1 > 0 such that

|Eε(t)− E(t)| ≤ εθ1E(t). (4.28)

Then, combining (4.8) and (4.28) we obtain the exponential decay
mentioned in (2.9). The proof is now completed.

Further remarks
(1) Let −∆ the operator defined by the triple

{
V,L2(Ω), a(u, v)

}
where

a(u, v) =
∫

Ω
∇u · ∇v dx, u, v ∈ V

and

D(−∆) =
{
u ∈ V ∩H2(Ω);

∂u

∂ν
= 0 on Γ0

}
.

We recall that the that Spectral Theorem for self-adjoint operators
guarantees the existence of a complete orthonormal system (ων) of L2(Ω)
given by the eigenfunctions of −∆. If (λν) are the eigenvalues of −∆,
then λν → +∞ as ν → +∞. Now, since −∆ is postive, given α > 0 one
has

D [(−∆)α] =

{
u ∈ L2(Ω);

∞∑
ν=1

λ2α
ν |(u, ων)|2 <∞

}
and

(−∆)αu =
∞∑

ν==1

λα
ν (u, ων)ων , for all u ∈ D [(−∆)α] .

In D [(−∆)α] we consider the topology given by

||u||D[−(∆)α] = |(−∆)αu|L2(Ω) .
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We observe that such operators are self-adjoints, that is,

((−∆)αu, v) = (u, (−∆)αv) ; for all u, v ∈ D [(−∆)α] ,

and, moreover, D
[
(−∆)1/2

]
= V.

Choosing smooth initial data, considering a basis in D [(−∆)α], for
α ≥ 1, and noting that the injection D

[
(−∆)

α
2

]
↪→ D

[
(−∆)

1
2

]
is con-

tinuous we can repeat all the considerations used in the above estimates
in order to extend our results for a general class of damped problems



ytt −M

(∫
Ω
|∇y|2 dx

)
∆y + (−∆)αyt = 0 in Q

y = 0 on Σ1

M

(∫
Ω
|∇y|2 dx

)
∂y

∂ν
+

∂

∂ν

[
(−∆)α−1 yt

]
+ |y|γ y = 0 on Σ0

y(0) = y0; yt(0) = y1 in Ω.

(2) We observe that we could avoid the characterization of the bound-
ary condition if we use Semigroup theory. The linear part of the sys-
tem generates an analytic semigroup and the nonlinear terms could be
treated as perturbations, and it is enough to show solvability for small
times. In spite of all these facilities we need the a priori estimates to
show global solvability.

Acknowledgement.
The authors are grateful to the referee for the constructive comments

and useful suggestions.

References

[1] A. Arosio - S. Spagnolo, Global solutions of the Cauchy problem for a
nonlinear hyperbolic equation, Nonlinear Differential Equations and Their
Applications (edited by H. Brezis and J. L. Lions), Collège de France
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